1
|
Peng HY, Xu MK, Li X, Cai T. Exploiting Photoinduced Atom Transfer Radical Polymerizations with Boron-Dopant and Nitrogen-Defect Synergy in Carbon Nitride Nanosheets. Macromol Rapid Commun 2025; 46:e2400365. [PMID: 38849126 DOI: 10.1002/marc.202400365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Graphitic carbon nitrides (g-C3N4) possess various benefits as heterogeneous photocatalysts, including tunable bandgaps, scalability, and chemical robustness. However, their efficacy and ongoing advancement are hindered by challenges like limited charge-carrier separation rates, insufficient driving force for photocatalysis, small specific surface area, and inadequate absorption of visible light. In this study, boron dopants and nitrogen defects synergy are introduced into bulk g-C3N4 through the calcination of a blend of nitrogen-defective g-C3N4 and NaBH4 under inert conditions, resulting in the formation of BCN nanosheets characterized by abundant porosity and increased specific surface area. These BCN nanosheets promote intermolecular single electron transfer to the radical initiator, maintaining radical intermediates at a low concentration for better control of photoinduced atom transfer radical polymerization (photo-ATRP). Consequently, this method yields polymers with low dispersity and tailorable molecular weights under mild blue light illumination, outperforming previous reports on bulk g-C3N4. The heterogeneity of BCN enables easy separation and efficient reuse in subsequent polymerization processes. This study effectively showcases a simple method to alter the electronic and band structures of g-C3N4 with simultaneously introducing dopants and defects, leading to high-performance photo-ATRP and providing valuable insights for designing efficient photocatalytic systems for solar energy harvesting.
Collapse
Affiliation(s)
- He Yu Peng
- State Key Laboratory of Power Grid Environmental Protection, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
- Wuhan University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, P. R. China
| | - Meng Kai Xu
- State Key Laboratory of Power Grid Environmental Protection, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
- Wuhan University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, P. R. China
| | - Xue Li
- State Key Laboratory of Power Grid Environmental Protection, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
- Wuhan University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, P. R. China
| | - Tao Cai
- State Key Laboratory of Power Grid Environmental Protection, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
- Wuhan University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, P. R. China
| |
Collapse
|
2
|
Lian T, Wang Y, Yang JL, Antonietti M. Constructing a Graphene-like Layered Carbocatalyst by the Dual Templating Effect for an Efficient Fenton-like Reaction. ACS NANO 2025; 19:9156-9166. [PMID: 40018809 DOI: 10.1021/acsnano.4c18558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Two-dimensional (2D) carbon materials are receiving increasing attention due to their partly groundbreaking performance in catalysis and electrochemistry based on distinct physiochemical and textural properties. We focus on the challenge to directly achieve a well-developed layered morphology with a high doping level of heteroatoms as the active sites, a standard conflict of interests of high-temperature synthesis. Here, we report a dual-templating strategy to yield graphene-like layered carbon (GLC) by direct carbonization of a texturally prealigned zeolitic imidazolate framework-8 (ZIF-8). The recrystallization of ZIF-8 in an aqueous NaCl solution discloses a 2D packing mode that was retained after freeze-drying with recrystallized NaCl as an exotemplate and a space-confining nanoreactor. Further promoted by the chemical interaction of NaCl in promoting and stabilizing the carbonization process, the final product came with a well-separated layered morphology and high amounts of heteroatoms (16.6 wt % N and 7.5 wt % O). The structurally and catalytically special GLC functioned well in activating peroxymonosulfate-based Fenton-like reactions. It was shown that the reaction proceeded via nonfree-radical-mediated pathways, as reflected in significantly enhanced electron-transfer processes and ultrafast kinetics for pollutant removal. The proposed strategy is expected to afford a broader applicability for the bottom-up design of 2D carbon materials.
Collapse
Affiliation(s)
- Tingting Lian
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Yang Wang
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Department of Environmental Science and Engineering, University of Science and Technology of China, 230026 Hefei, China
| | - Jin-Lin Yang
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore, Singapore
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| |
Collapse
|
3
|
Ma L, Yang J, Yang P, Huang L, Zhou X, Zhao X, Kang J, Fang Y, Jiang R. Fragmented Polymetric Carbon Nitride with Rich Defects for Boosting Electrochemical Synthesis of Hydrogen Peroxide in Alkaline and Neutral Media. CHEMSUSCHEM 2025; 18:e202401121. [PMID: 39171666 DOI: 10.1002/cssc.202401121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 08/23/2024]
Abstract
Electrocatalytic oxygen reduction reaction via 2e- pathway is a safe and friendly route for hydrogen peroxide (H2O2) synthesis. In order to achieve efficient synthesis of H2O2, it is essential to accurately control the active sites. Here, fragmented polymetric carbon nitride with rich defects (DCN) is designed for H2O2 electrosynthesis. The multi-type defects, including the sodium atom doping in six-fold cavities, the boron atom doping at N-B-N sites and the cyano groups, are successfully created. Owing to the synergistic effect of these defects, the fragmented DCN achieves a high H2O2 production rate of 2.28 mol gcat. -1 h-1 and a high Faradic efficiency of nearly 90 % in alkaline media at 0.4 V vs. RHE in H-type cell. In neutral media, the H2O2 concentration produced by DCN can reach 1815 μM within 6 h at a potential of 0.2 V vs. RHE, and the H2O2 production rate of DCN is 0.23 mol gcat. -1 h-1. In addition, DCN shows excellent long-term durability in alkaline and neutral media. This study provides a new approach for the development of the boron, nitrogen doped carbon-based electrocatalysts for H2O2 electrochemical synthesis.
Collapse
Affiliation(s)
- Lixia Ma
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jie Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Peiyan Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Luo Huang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiaojie Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xuqian Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jianghao Kang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yunpeng Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ruibin Jiang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
4
|
Yang H, He D, Fan L, Cheng F, Zhou X, Zhou T, Liu C, Wang C, Zhang YN, Qu J. Visible-Light-Induced Rapid Elimination of Antibiotic Resistance Contaminations Using Graphitic Carbon Nitride Tailored with Carrier Confinement Domains. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410221. [PMID: 39529544 DOI: 10.1002/adma.202410221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Solar water disinfection facilitated by photocatalyst has been considered a viable point-of-use (POU) method for mitigating antibiotic resistance contaminations at the household or community levels. Here, density functional theory calculations are used to guide the fabrication of a carrier confinement domains (CCD)-decorated graphitic carbon nitride (CN) photocatalyst. The CCD integration effectively disrupts the electron distribution symmetry of CN, amplifies its local electron density, and facilitates the formation of a long-range ordered structure, thereby enhancing charge separation efficiency. Importantly, the CCD directs the migration of photogenerated carriers to specific regions upon light illumination, effectively minimizing their spatial proximity. As a result, the overall reactive oxygen species level of the photocatalytic system is markedly elevated, with a twelvefold increase in H2O2 concentration, alongside a significant rise in •O2 - and •OH steady-state concentrations. Remarkably, a record-high disinfection efficiency is attained, successfully inactivating 7 log of antibiotic-resistant bacteria within 30 min. Additionally, the photocatalyst can be integrated into a continuous-flow fixed-bed reactor, facilitating clean water production for up to 60 h at a rate of 121 L m-2 day-1, highlighting its significant potential for POU applications.
Collapse
Affiliation(s)
- Hao Yang
- School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Dongyang He
- School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Linyi Fan
- School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Fangyuan Cheng
- School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Xixiu Zhou
- School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Tong Zhou
- School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Chuanhao Liu
- School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Chengzhi Wang
- Centre for Water Research, Beijing Normal University, Beijing, 100875, China
| | - Ya-Nan Zhang
- School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Jiao Qu
- School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| |
Collapse
|
5
|
Chen C, Wu X, Chen J, Liu S, Wang Y, Wu W, Zhang J, Wang J, Jiang Z. Built-in Electric Fields in Heterostructured Lamellar Membranes Enable Highly Efficient Rejection of Charged Mass. Angew Chem Int Ed Engl 2024; 63:e202406113. [PMID: 38687257 DOI: 10.1002/anie.202406113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
Separation membranes with homogeneous charge channels are the mainstream to reject charged mass by forming electrical double layer (EDL). However, the EDL often compresses effective solvent transport space and weakens channel-ion interaction. Here, built-in electric fields (BIEFs) are constructed in lamellar membranes by assembling the heterostructured nanosheets, which contain alternate positively-charged nanodomains and negatively-charged nanodomains. We demonstrate that the BIEFs are perpendicular to horizontal channel and the direction switches alternately, significantly weakening the EDL effect and forces ions to repeatedly collide with channel walls. Thus, highly efficient rejection for charged mass (salts, dyes, and organic acids/bases) and ultrafast water transport are achieved. Moreover, for desalination on four-stage filtration option, salt rejection reaches 99.9 % and water permeance reaches 19.2 L m-2 h-1 bar-1. Such mass transport behavior is quite different from that in homogeneous charge channels. Furthermore, the ion transport behavior in nanochannels is elucidated by validating horizontal projectile motion model.
Collapse
Affiliation(s)
- Chongchong Chen
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaoli Wu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, China
| | - Jingjing Chen
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Siyu Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongzheng Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenjia Wu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Jie Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Jingtao Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, School of Chemical Engineering and Technology, Tianjin, 300072, China
| |
Collapse
|
6
|
Chen F, Lv X, Wang H, Wen F, Qu L, Zheng G, Han Q. Weak-Field Electro-Flash Induced Asymmetric Catalytic Sites toward Efficient Solar Hydrogen Peroxide Production. JACS AU 2024; 4:1219-1228. [PMID: 38559724 PMCID: PMC10976576 DOI: 10.1021/jacsau.4c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 04/04/2024]
Abstract
Borocarbonitride (BCN), in a mesoscopic asymmetric state, is regarded as a promising photocatalyst for artificial photosynthesis. However, BCN materials reported in the literature primarily consist of symmetric N-[B]3 units, which generate highly spatial coupled electron-hole pairs upon irradiation, thus kinetically suppressing the solar-to-chemical conversion efficiency. Here, we propose a facile and fast weak-field electro-flash strategy, with which structural symmetry breaking is introduced on key nitrogen sites. As-obtained double-substituted BCN (ds-BCN) possesses high-concentration asymmetric [B]2-N-C coordination, which displays a highly separated electron-hole state and broad visible-light harvesting, as well as provides electron-rich N sites for O2 affinity. Thereby, ds-BCN delivers an apparent quantum yield of 7.6% at 400 nm and a solar-to-chemical conversion efficiency of 0.3% for selective 2e-reduction of O2 to H2O2, over 4-fold higher than that of the traditional calcined BCN analogue and superior to the metal-free C3N4-based photocatalysts reported so far. The weak-field electro-flash method and as-induced catalytic site symmetry-breaking methodologically provide a new method for the fast and low-cost fabrication of efficient nonmetallic catalysts toward solar-to-chemical conversions.
Collapse
Affiliation(s)
- Fangshuai Chen
- Laboratory
of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory
of Cluster Science, Ministry of Education of China, School of Chemistry
and Chemical Engineering, Beijing Institute
of Technology, Beijing 100081, P. R. China
| | - Ximeng Lv
- Laboratory
of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory
of Molecular Catalysis and Innovative Materials, Faculty of Chemistry
and Materials Science, Fudan University, Shanghai 200438, P. R. China
| | - Haozhen Wang
- Laboratory
of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory
of Molecular Catalysis and Innovative Materials, Faculty of Chemistry
and Materials Science, Fudan University, Shanghai 200438, P. R. China
| | - Fan Wen
- Laboratory
of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory
of Cluster Science, Ministry of Education of China, School of Chemistry
and Chemical Engineering, Beijing Institute
of Technology, Beijing 100081, P. R. China
| | - Liangti Qu
- Key
Laboratory of Organic Optoelectronics & Molecular Engineering
of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Gengfeng Zheng
- Laboratory
of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory
of Molecular Catalysis and Innovative Materials, Faculty of Chemistry
and Materials Science, Fudan University, Shanghai 200438, P. R. China
| | - Qing Han
- Laboratory
of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory
of Molecular Catalysis and Innovative Materials, Faculty of Chemistry
and Materials Science, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
7
|
Kong Y, Li X, Puente Santiago AR, He T. Nonmetal Atom Doping Induced Orbital Shifts and Charge Modulation at the Edge of Two-Dimensional Boron Carbonitride Leading to Enhanced Photocatalytic Nitrogen Reduction. J Am Chem Soc 2024; 146:5987-5997. [PMID: 38381029 DOI: 10.1021/jacs.3c12780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Electronic structure, particularly charge state analysis, plays a crucial role in comprehending catalytic mechanisms. This study focuses on metal-free boron carbonitride (BCN) nanosheets as a case study to investigate the impact of heteroatom doping on the charge state of active sites at the edge of two-dimensional (2D) metal-free nanomaterials. Our observations revealed that the doping induces a shift in the frontier py orbital near the Fermi level, accompanied by alterations in its charge state. These changes provide insights into the nitrogen adsorption descriptors and the critical hydrogenation step, ultimately leading to the proposal of a competitive charge transfer mechanism. Additionally, this exploration has led to the screening of five BCN-type structures (P@T1-C1, S@T1-B1, O@T1-B1, P@T1-B1C2, and P@T1-B1C3) with promising nitrogen reduction reaction (NRR) performances. The BCN structure (S@T1-B1) exhibited the lowest NRR overpotential reaching -0.2 V, which is associated with the proposed charge competition mechanism. Furthermore, the investigation delves into the key step hydrogenation mechanism, descriptors, and volcano diagrams of the conformational relationships. In addition, the proposed doping strategy endows the 2D-BCN with more sensitivity toward the solar spectrum, suggesting its application as a potential photocatalyst. Overall, this study establishes a strong foundation for the advancement of nonmetal-atom-doped BCN nanosheets in nitrogen reduction applications, while also providing a versatile framework for fine-tuning edge-site activity within the broader context of two-dimensional photo/electrocatalytic materials.
Collapse
Affiliation(s)
- Youchao Kong
- Department of Physics and Electronic Engineering, Yancheng Teachers University, Yancheng 224002, China
| | - Xiaoshuang Li
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| | - Alain R Puente Santiago
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Tianwei He
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| |
Collapse
|
8
|
Tian Z, Zhang Q, Liu T, Chen Y, Antonietti M. Emerging Two-Dimensional Carbonaceous Materials for Electrocatalytic Energy Conversions: Rational Design of Active Structures through High-Temperature Chemistry. ACS NANO 2024; 18:6111-6129. [PMID: 38368617 DOI: 10.1021/acsnano.3c12198] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Electrochemical energy conversion and storage technologies involving controlled catalysis provide a sustainable way to handle the intermittency of renewable energy sources, as well as to produce green chemicals/fuels in an ecofriendly manner. Core to such technology is the development of efficient electrocatalysts with high activity, selectivity, long-term stability, and low costs. Here, two-dimensional (2D) carbonaceous materials have emerged as promising contenders for advancing the chemistry in electrocatalysis. We review the emerging 2D carbonaceous materials for electrocatalysis, focusing primarily on the fine engineering of active structures through thermal condensation, where the design, fabrication, and mechanism investigations over different types of active moieties are summarized. Interestingly, all the recipes creating two-dimensionality on the carbon products also give specific electrocatalytic functionality, where the special mechanisms favoring 2D growth and their consequences on materials functionality are analyzed. Particularly, the structure-activity relationship between specific heteroatoms/defects and catalytic performance within 2D metal-free electrocatalysts is highlighted. Further, major challenges and opportunities for the practical implementation of 2D carbonaceous materials in electrocatalysis are summarized with the purpose to give future material design guidelines for attaining desirable catalytic structures.
Collapse
Affiliation(s)
- Zhihong Tian
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, P. R. China
| | - Qingran Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
| |
Collapse
|
9
|
Zhang K, Song R, Wu N, Wang Y, Zhang M, Chen X, Wang L, Xing J. Enhancing the Photoluminescence and Electroluminescence of Graphitic Carbon Nitride via Atomic and Molecular Co-modification. J Phys Chem Lett 2024; 15:925-932. [PMID: 38241479 DOI: 10.1021/acs.jpclett.3c03409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Graphitic carbon nitride (g-CN) materials exhibit attractive optoelectronic physical properties; however, their low photoluminescence quantum yields (PLQYs) limit their applications in luminescent devices. Here, boron-doped aromatic carbon nitride (B-PhCNx) was synthesized for the first time via direct thermal polymerization of 2,4-diamino-6-phenyl-1,3,5-triazine and boric acid. The impact of B doping and phenyl modifying on the structural and optical characteristics of the samples was investigated in detail. The highest PLQY of 40.7% was achieved in B-PhCN20, which is 6.8 times that of pristine carbon nitride (p-CN). The B-PhCN20-based light-emitting diode demonstrates a maximum luminance of 1494 cd m-2 and a maximum external quantum efficiency of 1.03%, which are 3.5 and 4.9 times that of the p-CN-based device, respectively. Our findings will provide a reference for rationally designing low-cost and high-performance carbon-nitride-based optoelectronic devices.
Collapse
Affiliation(s)
- Kai Zhang
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, Shandong 266042, People's Republic of China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, Shandong 266042, People's Republic of China
| | - Ruili Song
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, Shandong 266042, People's Republic of China
| | - Ning Wu
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, Shandong 266042, People's Republic of China
| | - Yunhu Wang
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, Shandong 266042, People's Republic of China
| | - Mingming Zhang
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, Shandong 266042, People's Republic of China
| | - Xilei Chen
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, Shandong 266042, People's Republic of China
| | - Lei Wang
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, Shandong 266042, People's Republic of China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, Shandong 266042, People's Republic of China
| | - Jun Xing
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, Shandong 266042, People's Republic of China
| |
Collapse
|
10
|
Bai X, Zhang X, Sun Y, Huang M, Fan J, Xu S, Li H. Low Ruthenium Content Confined on Boron Carbon Nitride as an Efficient and Stable Electrocatalyst for Acidic Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2023; 62:e202308704. [PMID: 37489759 DOI: 10.1002/anie.202308704] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
To date, only a few noble metal oxides exhibit the required efficiency and stability as oxygen evolution reaction (OER) catalysts under the acidic, high-voltage conditions that exist during proton exchange membrane water electrolysis (PEMWE). The high cost and scarcity of these catalysts hinder the large-scale application of PEMWE. Here, we report a novel OER electrocatalyst for OER comprised of uniformly dispersed Ru clusters confined on boron carbon nitride (BCN) support. Compared to RuO2 , our BCN-supported catalyst shows enhanced charge transfer. It displays a low overpotential of 164 mV at a current density of 10 mA cm-2 , suggesting its excellent OER catalytic activity. This catalyst was able to operate continuously for over 12 h under acidic conditions, whereas RuO2 without any support fails in 1 h. Density functional theory (DFT) calculations confirm that the interaction between the N on BCN support and Ru clusters changes the adsorption capacity and reduces the OER energy barrier, which increases the electrocatalytic activity of Ru.
Collapse
Affiliation(s)
- Xiaofang Bai
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Xiuping Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Yujiao Sun
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Mingcheng Huang
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Jiantao Fan
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Shaoyi Xu
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Hui Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
- Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Hydrogen Energy, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| |
Collapse
|
11
|
Chen H, Jiang DE, Yang Z, Dai S. Engineering Nanostructured Interfaces of Hexagonal Boron Nitride-Based Materials for Enhanced Catalysis. Acc Chem Res 2023; 56:52-65. [PMID: 36378327 DOI: 10.1021/acs.accounts.2c00564] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
ConspectusHexagonal boron nitrides (h-BNs) are attractive two-dimensional (2D) nanomaterials that consist of alternating B and N atoms and layered honeycomb-like structures similar to graphene. They have exhibited unique properties and promising application potentials in the field of energy storage and transformation. Recent advances in utilizing h-BN as a metal-free catalyst in the oxidative dehydrogenation of propane have triggered broad interests in exploring h-BN in catalysis. However, h-BN-based materials as robust nanocatalysts in heterogeneous catalysis are still underexplored because of the limited methodologies capable of affording h-BN with controllable crystallinity, abundant porosity, high purity, and defect engineering, which played important roles in tuning their catalytic performance. In this Account, our recent progress in addressing the above issues will be highlighted, including the synthesis of high-quality h-BN-based nanomaterials via both bottom-up and top-down pathways and their catalytic utilization as metal-free catalysts or as supports to tune the interfacial electronic properties on the metal nanoparticles (NPs). First, we will focus on the large-scale fabrication of h-BN nanosheets (h-BNNSs) with high crystallinity, improved surface area, satisfactory purity, and tunable defects. h-BN derived from the traditional approaches using boron trioxide and urea as the starting materials generally contains carbon/oxygen impurities and has low crystallinity. Several new strategies were developed to address the issues. Using bulk h-BN as the precursor via gas exfoliation in liquid nitrogen, single- or few-layered h-BNNS with abundant defects could be generated. Amorphous h-BN precursors could be converted to h-BN nanosheets with high crystallinity assisted by a magnesium metallic flux via a successive dissolution/precipitation/crystallization procedure. The as-fabricated h-BNNS featured high crystallinity and purity as well as abundant porosity. An ionothermal metathesis procedure was developed using inorganic molten salts (NaNH2 and NaBH4) as the precursors. The h-BN scaffolds could be produced on a large scale with high yield, and the as-afforded materials possessed high purity and crystallinity. Second, utilization of the as-prepared h-BN library as metal-free catalysts in dehydrogenation and hydrogenation reactions will be summarized, in which they exhibited enhanced catalytic activity over the counterparts from the previous synthesis method. Third, the interface modulation between metal NPs with the as-prepared defects' abundant h-BN support will be highlighted. The h-BN-based strong metal-support interaction (SMSI) nanocatalysts were constructed without involving reducible metal oxides via the ionothermal procedure we developed by deploying specific inorganic metal salts, acting as robust nanocatalysts in CO oxidation. Under conditions simulated for practical exhaust systems, promising catalytic efficiency together with high thermal stability and sintering resistance was achieved. Across all of these examples, unique insights into structures, defects, and interfaces that emerge from in-depth characterization through microscopy, spectroscopy, and diffraction will be highlighted.
Collapse
Affiliation(s)
- Hao Chen
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, Tennessee 37996, United States.,College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - De-En Jiang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Zhenzhen Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sheng Dai
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, Tennessee 37996, United States.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
12
|
Cai ZX, Xia Y, Ito Y, Ohtani M, Sakamoto H, Ito A, Bai Y, Wang ZL, Yamauchi Y, Fujita T. General Synthesis of MOF Nanotubes via Hydrogen-Bonded Organic Frameworks toward Efficient Hydrogen Evolution Electrocatalysts. ACS NANO 2022; 16:20851-20864. [PMID: 36458840 DOI: 10.1021/acsnano.2c08245] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The application scope of metal-organic frameworks (MOFs) can be extended by rationally designing the architecture and components of MOFs, which can be achieved via a metal-containing solid templated strategy. However, this strategy suffers from low efficiency and provides only one specific MOF from one template. Herein, we present a versatile templated strategy in which organic ligands are weaved into hydrogen-bonded organic frameworks (HOFs) for the controllable and scalable synthesis of MOF nanotubes. HOF nanowires assembled from benzene-1,3,5-tricarboxylic acid and melamine via a simple sonochemical approach serve as both the template and precursor to produce MOF nanotubes with varied metal compositions. Hybrid nanotubes containing nanometal crystals and N-doped graphene prepared through a carbonization process show that the optimized NiRuIr alloy@NG nanotube exhibits excellent electrocatalytic HER activity and durability in alkaline media, outperforming most reported catalysts. The strategy proposed here demonstrates a pioneering study of combination of HOF and MOF, which shows great potential in the design of other nanosized MOFs with various architectures and compositions for potential applications.
Collapse
Affiliation(s)
- Ze-Xing Cai
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami, Kochi782-8502, Japan
- School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang464000, P.R. China
| | - Yanjie Xia
- School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang464000, P.R. China
| | - Yoshikazu Ito
- Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba305-8573, Japan
| | - Masataka Ohtani
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami, Kochi782-8502, Japan
| | - Hikaru Sakamoto
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami, Kochi782-8502, Japan
| | - Akitaka Ito
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami, Kochi782-8502, Japan
| | - Yijia Bai
- Chemical Engineering College, Inner Mongolia University of Technology, No. 49 Aimin Street, Hohhot010051, P.R. China
- Key Laboratory of CO2 Resource Utilization at Universities of Inner Mongolia Autonomous Region, No. 49 Aimin Street, Hohhot010051, P.R. China
| | - Zhong-Li Wang
- Tianjin Key Laboratory of Applied Catalysis Science & Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, P.R. China
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space Tectonics Project and International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki305-0044, Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland4072, Australia
| | - Takeshi Fujita
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami, Kochi782-8502, Japan
| |
Collapse
|
13
|
Ru C, Chen P, Wu X, Chen C, Zhang J, Zhao H, Wu J, Pan X. Enhanced Built-in Electric Field Promotes Photocatalytic Hydrogen Performance of Polymers Derived from the Introduction of B←N Coordination Bond. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204055. [PMID: 36285682 PMCID: PMC9762295 DOI: 10.1002/advs.202204055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/29/2022] [Indexed: 05/15/2023]
Abstract
High concentrations of active carriers on the surface of a semiconductor through energy/electron transfer are the core process in the photocatalytic hydrogen production from water. However, it remains a challenge to significantly improve photocatalytic performance by modifying simple molecular modulation. Herein, a new strategy is proposed to enhance the photocatalytic hydrogen evolution performance using boron and nitrogen elements to construct B←N coordination bonds. Experimental results show that polynaphthopyridine borane (PNBN) possessing B←N coordination bonds shows a hydrogen evolution rate of 217.4 µmol h-1 , which is significantly higher than that of the comparison materials 0 µmol h-1 for polyphenylnaphthalene (PNCC) and 0.66 µmol h-1 for polypyridylnaphthalene (PNNC), mainly attributed to the formation of a strong built-in electric field that promotes the separation of photo-generated electrons/holes. This work opens up new prospects for the design of highly efficient polymeric photocatalysts at the molecular level.
Collapse
Affiliation(s)
- Chenglong Ru
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University)Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceCollege of Chemistry and Chemical EngineeringLanzhou UniversityNo. 222 South Tianshui RoadLanzhouGansu730000P. R. China
| | - Peiyan Chen
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University)Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceCollege of Chemistry and Chemical EngineeringLanzhou UniversityNo. 222 South Tianshui RoadLanzhouGansu730000P. R. China
| | - Xuan Wu
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University)Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceCollege of Chemistry and Chemical EngineeringLanzhou UniversityNo. 222 South Tianshui RoadLanzhouGansu730000P. R. China
| | - Changjuan Chen
- College of Chemistry and Pharmaceutical EngineeringHuanghuai UniversityNo.76 Kaiyuan AvenueZhumadianHenan463000P. R. China
| | - Jin Zhang
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University)Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceCollege of Chemistry and Chemical EngineeringLanzhou UniversityNo. 222 South Tianshui RoadLanzhouGansu730000P. R. China
| | - Hao Zhao
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University)Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceCollege of Chemistry and Chemical EngineeringLanzhou UniversityNo. 222 South Tianshui RoadLanzhouGansu730000P. R. China
- School of Physics and Electronic InformationYantai University30 Qingquan RoadYantaiShandong264005China
| | - Jincai Wu
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University)Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceCollege of Chemistry and Chemical EngineeringLanzhou UniversityNo. 222 South Tianshui RoadLanzhouGansu730000P. R. China
| | - Xiaobo Pan
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University)Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceCollege of Chemistry and Chemical EngineeringLanzhou UniversityNo. 222 South Tianshui RoadLanzhouGansu730000P. R. China
- Northwest Institute of Eco‐Environment and ResourcesChinese Academy of SciencesDonggang West Road 320LanzhouGansu730000P. R. China
- Key Laboratory of Petroleum Resources ResearchChinese Academy of SciencesDonggang West Road 320LanzhouGansu730000P. R. China
| |
Collapse
|
14
|
Biswas A, Kapse S, Thapa R, Dey RS. Oxygen Functionalization-Induced Charging Effect on Boron Active Sites for High-Yield Electrocatalytic NH 3 Production. NANO-MICRO LETTERS 2022; 14:214. [PMID: 36334149 PMCID: PMC9637079 DOI: 10.1007/s40820-022-00966-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/04/2022] [Indexed: 05/16/2023]
Abstract
Ammonia has been recognized as the future renewable energy fuel because of its wide-ranging applications in H2 storage and transportation sector. In order to avoid the environmentally hazardous Haber-Bosch process, recently, the third-generation ambient ammonia synthesis has drawn phenomenal attention and thus tremendous efforts are devoted to developing efficient electrocatalysts that would circumvent the bottlenecks of the electrochemical nitrogen reduction reaction (NRR) like competitive hydrogen evolution reaction, poor selectivity of N2 on catalyst surface. Herein, we report the synthesis of an oxygen-functionalized boron carbonitride matrix via a two-step pyrolysis technique. The conductive BNCO(1000) architecture, the compatibility of B-2pz orbital with the N-2pz orbital and the charging effect over B due to the C and O edge-atoms in a pentagon altogether facilitate N2 adsorption on the B edge-active sites. The optimum electrolyte acidity with 0.1 M HCl and the lowered anion crowding effect aid the protonation steps of NRR via an associative alternating pathway, which gives a sufficiently high yield of ammonia (211.5 μg h-1 mgcat-1) on the optimized BNCO(1000) catalyst with a Faradaic efficiency of 34.7% at - 0.1 V vs RHE. This work thus offers a cost-effective electrode material and provides a contemporary idea about reinforcing the charging effect over the secured active sites for NRR by selectively choosing the electrolyte anions and functionalizing the active edges of the BNCO(1000) catalyst.
Collapse
Affiliation(s)
- Ashmita Biswas
- Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India
| | - Samadhan Kapse
- Department of Physics, SRM University-AP, Amaravati, Andhra Pradesh, 522240, India
| | - Ranjit Thapa
- Department of Physics, SRM University-AP, Amaravati, Andhra Pradesh, 522240, India
| | - Ramendra Sundar Dey
- Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India.
| |
Collapse
|
15
|
Tian Z, Zhang Q, Thomsen L, Gao N, Pan J, Daiyan R, Yun J, Brandt J, López‐Salas N, Lai F, Li Q, Liu T, Amal R, Lu X, Antonietti M. Constructing Interfacial Boron-Nitrogen Moieties in Turbostratic Carbon for Electrochemical Hydrogen Peroxide Production. Angew Chem Int Ed Engl 2022; 61:e202206915. [PMID: 35894267 PMCID: PMC9542833 DOI: 10.1002/anie.202206915] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Indexed: 11/06/2022]
Abstract
The electrochemical oxygen reduction reaction (ORR) provides a green route for decentralized H2 O2 synthesis, where a structure-selectivity relationship is pivotal for the control of a highly selective and active two-electron pathway. Here, we report the fabrication of a boron and nitrogen co-doped turbostratic carbon catalyst with tunable B-N-C configurations (CNB-ZIL) by the assistance of a zwitterionic liquid (ZIL) for electrochemical hydrogen peroxide production. Combined spectroscopic analysis reveals a fine tailored B-N moiety in CNB-ZIL, where interfacial B-N species in a homogeneous distribution tend to segregate into hexagonal boron nitride domains at higher pyrolysis temperatures. Based on the experimental observations, a correlation between the interfacial B-N moieties and HO2 - selectivity is established. The CNB-ZIL electrocatalysts with optimal interfacial B-N moieties exhibit a high HO2 - selectivity with small overpotentials in alkaline media, giving a HO2 - yield of ≈1787 mmol gcatalyst -1 h-1 at -1.4 V in a flow-cell reactor.
Collapse
Affiliation(s)
- Zhihong Tian
- Engineering Research Center for NanomaterialsHenan UniversityKaifeng475004P. R. China
- Department of Colloid ChemistryMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Qingran Zhang
- Particles and Catalysis Research GroupSchool of Chemical EngineeringUniversity of New South WalesSydneyNew South Wales 2052Australia
| | - Lars Thomsen
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation800 Blackburn RoadClaytonVIC 3168Australia
| | - Nana Gao
- Engineering Research Center for NanomaterialsHenan UniversityKaifeng475004P. R. China
| | - Jian Pan
- Particles and Catalysis Research GroupSchool of Chemical EngineeringUniversity of New South WalesSydneyNew South Wales 2052Australia
| | - Rahman Daiyan
- Particles and Catalysis Research GroupSchool of Chemical EngineeringUniversity of New South WalesSydneyNew South Wales 2052Australia
| | - Jimmy Yun
- Particles and Catalysis Research GroupSchool of Chemical EngineeringUniversity of New South WalesSydneyNew South Wales 2052Australia
| | - Jessica Brandt
- Department of Colloid ChemistryMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Nieves López‐Salas
- Department of Colloid ChemistryMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Feili Lai
- Department of ChemistryKU LeuvenCelestijnenlaan 200F3001LeuvenBelgium
| | - Qiuye Li
- Engineering Research Center for NanomaterialsHenan UniversityKaifeng475004P. R. China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxi214122P. R. China
| | - Rose Amal
- Particles and Catalysis Research GroupSchool of Chemical EngineeringUniversity of New South WalesSydneyNew South Wales 2052Australia
| | - Xunyu Lu
- Particles and Catalysis Research GroupSchool of Chemical EngineeringUniversity of New South WalesSydneyNew South Wales 2052Australia
| | - Markus Antonietti
- Department of Colloid ChemistryMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| |
Collapse
|
16
|
Wang X, Liang F, Gu H, Wu S, Cao Y, Lv G, Zhang H, Jia Q, Zhang S. In situ synthesized α-Fe2O3/BCN heterojunction for promoting photocatalytic CO2 reduction performance. J Colloid Interface Sci 2022; 621:311-320. [DOI: 10.1016/j.jcis.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 01/23/2023]
|
17
|
Synthesis of boron carbon nitride layers for the adsorption of hazardous basic dye from aqueous solutions. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04798-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Tian Z, Zhang Q, Thomsen L, Gao N, Pan J, Daiyan R, Yun J, Brandt J, López-Salas N, Lai F, Li Q, Liu T, Amal R, Lu X, Antonietti M. Constructing Interfacial Boron‐nitrogen Moieties in Turbostratic Carbon for Electrochemical Hydrogen Peroxide Production. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhihong Tian
- Henan University Engineering Research Center for Nanomaterials 475001 CHINA
| | - Qingran Zhang
- University of New South Wales School of Chemical Engineering AUSTRALIA
| | - Lars Thomsen
- Australian Nuclear Science and Technology Organisation Australian Synchrotron AUSTRALIA
| | - Nana Gao
- Henan University Engineering Research Center for Nanomaterials CHINA
| | - Jian Pan
- University of New South Wales School of Chemical Engineering AUSTRALIA
| | - Rahman Daiyan
- University of New South Wales School of Chemical Engineering AUSTRALIA
| | - Jimmy Yun
- University of New South Wales School of Chemical Engineering AUSTRALIA
| | - Jessica Brandt
- Max Planck Institute of Colloids and Interfaces: Max-Planck-Institut fur Kolloid und Grenzflachenforschung Colloid Chemistry GERMANY
| | - Nieves López-Salas
- Max Planck Institute of Colloids and Interfaces: Max-Planck-Institut fur Kolloid und Grenzflachenforschung Colloid Chemistry GERMANY
| | - Feili Lai
- KU Leuven University: Katholieke Universiteit Leuven Chemistry BELGIUM
| | - Qiuye Li
- Henan University Engineering Research Center for Nanomaterials CHINA
| | - Tianxi Liu
- Jiangnan University School of Chemical and Material Engineering CHINA
| | - Rose Amal
- University of New South Wales School of Chemical Engineering AUSTRALIA
| | - Xunyu Lu
- University of New South Wales School of Chemical Engineering AUSTRALIA
| | - Markus Antonietti
- Max Planck Institute of Colloids and Interfaces: Max-Planck-Institut fur Kolloid und Grenzflachenforschung Department of Kolloidchemie, Department of Kolloidchemie Am Mühlenberg 1 14476 Potsdam-Golm GERMANY
| |
Collapse
|
19
|
Zhen J, Nie S, Sun J, Pan S, Wang J, Sun J, Lv W, Yao Y. Fe 3O 4 nanoparticles encapsulated in boron nitride support via N-doped carbon layer as a peroxymonosulfate activator for pollutant degradation: Important role of metal boosted C-N sites. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114859. [PMID: 35276558 DOI: 10.1016/j.jenvman.2022.114859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/17/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Developing highly efficient and stable catalysts for peroxymonosulfate (PMS) based advanced oxidation processes (AOPs) are crucial in the field of environmental remediation. In this work, a facile encapsulated-precursor pyrolysis strategy was reported to prepare a competent PMS-activation catalyst, in which uniformly distributed Fe3O4 nanoparticles were firmly anchored on porous boron nitride (BN) nanosheets by N-doped carbon shell (NC layer). Taking advantage of strong metal-support interaction, the as-synthesized catalyst (BFA-500) could efficiently activate PMS to achieve 100% removal of 4-chlorophenol (4-CP) in 6 min, and the corresponding turnover frequency (TOF) value was 1-2 orders of magnitude higher than that of the benchmark homogeneous (Fe2+) and nanoparticle (Fe0 and Fe3O4) catalysts. Moreover, the well protected encapsulated structure of BFA-500 ensured the remarkable stability that could effectively resist the interference of complex water environment, including initial pH value, various inorganic ions and actual water, and its catalytic activity remained almost unchanged in 5 use-regeneration cycles. More importantly, the generation of O2•- and 1O2 radicals for the 4-CP removal in BFA-500/PMS system was ascribed to Fe3O4 boosted C-N sites containing pyridinic N, where electrons transferred from the embedded Fe3O4 nanoparticles to C-N sites to secure the PMS dissociation into reactive radicals. Overall, this work provided a promising way to design desired PMS-activation catalyst toward wastewater purification.
Collapse
Affiliation(s)
- Jianzheng Zhen
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Shisong Nie
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Jiahao Sun
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Shiyuan Pan
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Jinhui Wang
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Jian Sun
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Weiyang Lv
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China.
| | - Yuyuan Yao
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| |
Collapse
|
20
|
Shao T, Duan D, Liu S, Gao C, Ji H, Xiong Y. Tuning the local electronic structure of a single-site Ni catalyst by co-doping a 3D graphene framework with B/N atoms toward enhanced CO 2 electroreduction. NANOSCALE 2022; 14:833-841. [PMID: 34985080 DOI: 10.1039/d1nr06545a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Various single metal sites supported on N-doped carbon materials have been demonstrated to be effective catalysts for CO2 electroreduction. However, it remains a challenging task to gain comprehensive understanding on how the local electronic structures of single metal catalytic sites are rationally tuned, which eventually holds the key to significantly enhance the electrocatalytic performance. Herein, we implement B-N bonds into an N-doped 3D graphene framework by B doping to further stabilize the supported catalytic Ni single-sites and simultaneously tune their local electronic structure. Moreover, electrochemical in situ Fourier-transform infrared spectroscopy reveals that the B-N bonds can further facilitate the production of pivotal *COOH intermediates in comparison with only N doping. As a result, the Ni single-site catalyst on the B, N co-doped 3D graphene framework achieves excellent catalytic performance with a CO faradaic efficiency (FE) of 98% and a turnover frequency (TOF) value of 20.1 s-1 at -0.8 V (vs. RHE), whereas the FE and TOF for the control sample without B doping are as low as 62% and 6.0 s-1, respectively. This work highlights the superiority of modulating local electronic structures of single-site catalysts toward efficient electrocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Tianyi Shao
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Delong Duan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shengkun Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chao Gao
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hengxing Ji
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yujie Xiong
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
- Institute of Energy, Hefei Comprehensive National Science Center, 350 Shushanhu Rd., Hefei, Anhui 230031, China.
| |
Collapse
|
21
|
Chakraborty J, Nath I, Verpoort F. A physicochemical introspection of porous organic polymer photocatalysts for wastewater treatment. Chem Soc Rev 2022; 51:1124-1138. [DOI: 10.1039/d1cs00916h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A detailed physicochemical explanation for experimental observations is provided for POPs as powerful photocatalysts for organic transformations and wastewater decontamination.
Collapse
Affiliation(s)
- Jeet Chakraborty
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Centre for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 (S3), 9000, Ghent, Belgium
| | - Ipsita Nath
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Centre for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 (S3), 9000, Ghent, Belgium
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russia
| |
Collapse
|
22
|
Bhakare MA, Lokhande KD, Dhumal PS, Bondarde MP, Some S. Multifunctional heteroatom doped sustainable carbon nanocomposite for rapid removal of persistent organic pollutant and iodine from water. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
23
|
Wang X, Yang L, Fu G, Chen Y, Yang C, Sun J. Experimental and theoretical investigation for the cycloaddition of carbon dioxide to epoxides catalyzed by potassium and boron co-doped carbon nitride. J Colloid Interface Sci 2021; 609:523-534. [PMID: 34802754 DOI: 10.1016/j.jcis.2021.11.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022]
Abstract
Much endeavor has been devoted to efficient heterogeneous catalysts for carbon dioxide (CO2) conversion to high-value chemicals. Meanwhile, the cycloaddition of CO2 to epoxides is considered as a green and atom-economy reaction to produce cyclic carbonates. Herein, a series of K, B co-doped CN with various doping contents (K, B-CN-X) were developed by simple one-step calcination of melamine and KBH4. B was confirmed to replace the C site and KN bond was formed, which was verified by XPS (X-ray photoelectron spectroscopy) and DFT (density functional theory) calculation. Particularly, K, B-CN-4 displayed the optimal catalytic performance in the presence of Bu4NBr (tetrabutylammonium bromide) cocatalyst for the CO2 cycloaddition with propylene oxide. Besides, K, B-CN-4/Bu4NBr catalyst exhibited good substrate versatility to various epoxides and excellent recycling performance. According to the DFT calculation on CO2 adsorption and experimental results, K, B-CN-4 presented satisfactory catalytic activity due to the enhanced CO2 adsorption after K and B dopings then the possible reaction mechanism was proposed. The promising K, B-CN-X catalyst presented an attractive application due to the simple, eco-friendly synthesis route for the efficient fixation of CO2.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Li Yang
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China.
| | - Gang Fu
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Yanglin Chen
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Chaokun Yang
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Jianmin Sun
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China.
| |
Collapse
|
24
|
Zhang T, Schilling W, Khan SU, Ching HYV, Lu C, Chen J, Jaworski A, Barcaro G, Monti S, De Wael K, Slabon A, Das S. Atomic-Level Understanding for the Enhanced Generation of Hydrogen Peroxide by the Introduction of an Aryl Amino Group in Polymeric Carbon Nitrides. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tong Zhang
- Department of Chemistry, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Waldemar Schilling
- Department of Chemistry, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Shahid Ullah Khan
- Department of Bioscience Engineering, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | | | - Can Lu
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Jianhong Chen
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Aleksander Jaworski
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Giovanni Barcaro
- CNR-IPCF─Institute for Chemical and Physical Processes, 56124 Pisa, Italy
| | - Susanna Monti
- CNR-ICCOM─Institute of Chemistry of Organometallic Compounds, 56124 Pisa, Italy
| | - Karolien De Wael
- Department of Bioscience Engineering, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Adam Slabon
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Shoubhik Das
- Department of Chemistry, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| |
Collapse
|
25
|
Facile synthesis of carboxyl- and hydroxyl‑functional carbon nitride catalyst for efficient CO2 cycloaddition. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Zhao M, Miao Q. Design, Synthesis and Hydrogen Bonding of B 3 N 6 -[4]Triangulene. Angew Chem Int Ed Engl 2021; 60:21289-21294. [PMID: 34343393 DOI: 10.1002/anie.202109326] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/02/2021] [Indexed: 12/22/2022]
Abstract
Replacement of the allylic C=C-C unit with a N-B-N unit at each of the three zigzag edges of [4]triangulene gives rise to B3 N6 -[4]triangulene, which is envisioned to represent a key structural unit of a new hypothetical boron carbon nitride (BC4 N). A tert-butylated B3 N6 -[4]triangulene has been successfully synthesized by three-fold nitrogen-directed borylation, and the X-ray crystallographic analysis indicates that its slightly bent triangular polycyclic framework can be viewed as a 1,3,5-triphenylbenzene connected by three 4π-electron N-B-N units. The HN-B-NH moiety provides a dual hydrogen-bond donor, which forms H-bonds with halide or carboxylate anions in solution, and form DD-AA hydrogen-bond arrays with 2,7-di(tert-butyl)-pyrene-4,5,9,10-tetraone in the co-crystal. Moreover, the blue fluorescence of B3 N6 -[4]triangulene in solution is responsive to binding p-nitrobenzoate anion through hydrogen bonds.
Collapse
Affiliation(s)
- Mengna Zhao
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Qian Miao
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
27
|
Zhao M, Miao Q. Design, Synthesis and Hydrogen Bonding of B
3
N
6
‐[4]Triangulene. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mengna Zhao
- Department of Chemistry The Chinese University of Hong Kong Shatin, New Territories Hong Kong China
| | - Qian Miao
- Department of Chemistry The Chinese University of Hong Kong Shatin, New Territories Hong Kong China
| |
Collapse
|
28
|
Giusto P, Cruz D, Heil T, Tarakina N, Patrini M, Antonietti M. Chemical Vapor Deposition of Highly Conjugated, Transparent Boron Carbon Nitride Thin Films. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101602. [PMID: 34218530 PMCID: PMC8425861 DOI: 10.1002/advs.202101602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Indexed: 05/25/2023]
Abstract
Ternary materials made up only from the lightweight elements boron, carbon, and nitrogen are very attractive due to their tunable properties that can be obtained by changing the relative elemental composition. However, most of the times, the synthesis requires to use up to three different precursor and very high temperatures for the synthesis. Moreover, the low reciprocal solubility of boron nitride and graphene often leads to BN-C composite materials due to phase segregation. Herein, an innovative method is presented to prepare BCN thin films by chemical vapor deposition from a single source precursor, melamine diborate. The deposition occurs homogenously at relatively low temperatures generating very high degree of sp2 conjugation. The as-prepared thin films possess high transparency and refractive index values in the visible range that are of interest for reflective mirrors and lenses. Furthermore, they are wide-bandgap semiconductor with very positive valence band, making these materials very stable against oxidation of interest as protective coating and charge transport layer for solar cells. The simple chemical vapor deposition method that relies on commonly available and low-hazard precursor can open the way for application of BCN thin films in optics, optoelectronics, and beyond.
Collapse
Affiliation(s)
- Paolo Giusto
- Max Planck Institute of Colloids and InterfacesDepartment of Colloid ChemistryAm Mühlenberg 1Potsdam14476Germany
| | - Daniel Cruz
- Max Planck Institute of Colloids and InterfacesDepartment of Colloid ChemistryAm Mühlenberg 1Potsdam14476Germany
| | - Tobias Heil
- Max Planck Institute of Colloids and InterfacesDepartment of Colloid ChemistryAm Mühlenberg 1Potsdam14476Germany
| | - Nadezda Tarakina
- Max Planck Institute of Colloids and InterfacesDepartment of Colloid ChemistryAm Mühlenberg 1Potsdam14476Germany
| | | | - Markus Antonietti
- Max Planck Institute of Colloids and InterfacesDepartment of Colloid ChemistryAm Mühlenberg 1Potsdam14476Germany
| |
Collapse
|
29
|
Sakaushi K, Nishihara H. Two-Dimensional π-Conjugated Frameworks as a Model System to Unveil a Multielectron-Transfer-Based Energy Storage Mechanism. Acc Chem Res 2021; 54:3003-3015. [PMID: 33998232 DOI: 10.1021/acs.accounts.1c00172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
ConspectusAlthough electrochemical energy storage is commonplace in our society, further advancements in this technology are indispensable for the transition to a low-carbon society. Recent intensive research has expanded concepts in this field; however, finding one suitable material to obtain a high energy density accomplishing the criteria of next-generation batteries is still a conundrum. To solve this issue, material investigations based on big data combined with artificial intelligence are a present trend. On the contrary, this Account focuses on an alternative approach, i.e., fundamental research to shed light on key basic principles to design new electrode materials and new principles achieving multielectron transfer, which is a key to improve a specific capacity. In addition to the cation-redox mechanism, materials showing the multielectron-transfer mechanism based on cation-/anion-redox can enrich material choices with high theoretical energy densities. The challenge in this mechanism is that a rational design of electrode materials based on microscopic understanding of underlying electrode processes has not been fully achieved so far. This is a key bottleneck in machine-learning approaches as well because the reliability of outputs from an algorithm is dependent on the reliability of data from a corresponding microscopic electrode process. Therefore, uncovering fundamental mechanisms in electrochemical energy storage remains one of the primary goals for the present research. In our series of investigations, we developed concepts for replacing complex practical electrode materials, such as polyanion or Li-rich layered oxides, by simplified model systems based on two-dimensional (2D) π-conjugated frameworks, which are based on purely organic aromatic systems and metal-containing coordination polymers. These materials are relatively simple, but it is still possible to control their complexity of systems in order to mimic certain aspects of structure-property relations in practical electrode materials. In particular, recent studies have shown that we can tune electronic structures of 2D π-conjugated frameworks, which is a key feature to investigate electron-transfer mechanisms, along with the concept of the threefold correlation approach, i.e., the relations in chemical structures, electronic structures, and electrochemical reactions. In this Account, several model studies focusing on microscopic understandings of structure-electrochemical energy storage functions are presented in which we investigate how the structural periodicity and nature of the coordination environment affect their electronic properties and the electrochemical reactions. In particular, we investigate the effects of combinations of linkers and metal ions toward the mechanism of the electrochemical energy storage reaction. We identified few major factors determining the energy storage mechanism of 2D π-conjugated frameworks. Local configurations of coordinate covalent bonding and organic linkers interact with each other, and these effects provide unique electronic states. These electronic states are projections of intriguing electrochemical features in this materials system, such as cation/anion co-redox mechanism, anion-insertion mechanism, or inductive effect. This Account indicates that 2D π-conjugated frameworks can be applied as models to extract fundamental/microscopic principles in the complicated electrode processes, which is linked to practical electrode materials, such as oxides. Therefore, the approach shown here is a powerful tool to unveil microscopic electrochemical energy storage mechanisms, which is indispensable to advance clean energy technology and accelerate decarbonization.
Collapse
Affiliation(s)
- Ken Sakaushi
- Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Hiroshi Nishihara
- Research Center for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
30
|
Liu Z, Zhang Z, Li Y. Highly Sensitive and Selective Detection Toward Melamine in Dairy Product by Turn-On Fluorescence of Ultrathin Graphitic Carbon Nitride Nanosheet. LUMINESCENCE 2021; 36:1885-1890. [PMID: 34032371 DOI: 10.1002/bio.4094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 05/20/2021] [Indexed: 11/06/2022]
Abstract
It is meaningful and promising to develop a practical sensor toward melamine in dairy products with high sensitivity and selectivity. However, complicated composition and environment in milk necessitate stable luminophore as sensor with excellent photophysical properties. Herein, ultrathin graphitic carbon nitride nanosheet (CNNS) is prepared via successive thermal polymerization and acid exfoliation. The photophysical property of CNNS states its strong ultraviolet absorption and intense blue-light emission. Noteworthily, the CNNS could act as a chemo-sensor to detect trace melamine in dairy products. The high stability, eminent sensitivity, powerful selectivity and competitiveness substantiates that this CNNS luminophore is a promising sensor for melamine in dairy products, being of potentially practical value on monitoring milk quality.
Collapse
Affiliation(s)
- Zixuan Liu
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Material Science, Heilongjiang University, Harbin, P. R. China
| | - Zijun Zhang
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Material Science, Heilongjiang University, Harbin, P. R. China
| | - Yuxin Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Material Science, Heilongjiang University, Harbin, P. R. China
| |
Collapse
|
31
|
Zhang Y, Su S, Zhang Y, Zhang X, Giusto P, Huang X, Liu J. Visible-Light-Driven Photocatalytic Water Disinfection Toward Escherichia coli by Nanowired g-C3N4 Film. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.684788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Graphitic carbon nitride (g-C3N4) as metal-free visible light photocatalyst has recently emerged as a promising candidate for water disinfection. Herein, a nanowire-rich superhydrophilic g-C3N4 film was prepared by a vapor-assisted confined deposition method. With a disinfection efficiency of over 99.99% in 4 h under visible light irradiation, this nanowire-rich g-C3N4 film was found to perform better than conventional g-C3N4 film. Control experiments showed that the disinfection performance of the g-C3N4 film reduced significantly after hydrophobic treatment. The potential disinfection mechanism was investigated through scavenger-quenching experiments, which indicate that H2O2 was the main active specie and played an important role in bacteria inactivation. Due to the metal-free composition and excellent performance, photocatalytic disinfection by nanowire-rich g-C3N4 film would be a promising and cost-effective way for safe drinking water production.
Collapse
|