1
|
Karmalkar DG, Lim H, Sundararajan M, Lee YM, Seo MS, Bae DY, Lu X, Hedman B, Hodgson KO, Kim WS, Lee E, Solomon EI, Fukuzumi S, Nam W. Synthesis, Structure, and Redox Reactivity of Ni Complexes Bearing a Redox and Acid-Base Non-innocent Ligand with Ni II, Ni III, and Ni IV Formal Oxidation States. J Am Chem Soc 2025; 147:3981-3993. [PMID: 39849908 DOI: 10.1021/jacs.4c11751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
A series of Ni complexes bearing a redox and acid-base noninnocent tetraamido macrocyclic ligand, H4-(TAML-4) {H4-(TAML-4) = 15,15-dimethyl-5,8,13,17-tetrahydro-5,8,13,17-tetraaza-dibenzo[a,g]cyclotridecene-6,7,14,16-tetraone}, with formal oxidation states of NiII, NiIII, and NiIV were synthesized and characterized structurally and spectroscopically. The X-ray crystallographic analysis of the Ni complexes revealed a square planar geometry, and the [Ni(TAML-4)] complex with the formal oxidation state of NiIV was characterized to be [NiIII(TAML-4•+)] with the oxidation state of the NiIII ion and the one-electron oxidized TAML-4 ligand, TAML-4•+. The NiIII oxidation state and the TAML-4 radical cation ligand, TAML-4•+, were supported by X-ray absorption spectroscopy and density functional theory calculations. The reversible interconversions between [NiII(TAML-4)]2- and [NiIII(TAML-4)]- and between [NiIII(TAML-4)]- and [NiIII(TAML-4•+)] were demonstrated in spectroelectrochemical measurements as well as in chemical oxidation and reduction reactions. The reactivities of [NiIII(TAML-4)]- and [NiIII(TAML-4•+)] were then investigated in hydride transfer reactions using NADH analogs. Hydride transfer from 9,10-dihydro-10-methylacridine (AcrH2) to [NiIII(TAML-4•+)] was found to proceed via electron transfer (ET) from AcrH2 to [NiIII(TAML-4•+)] with no deuterium kinetic isotope effect (kH/kD = 1.0(2)). In contrast, hydride transfer from AcrH2 to [NiIII(TAML-4)]- proceeded much more slowly via a concerted proton-coupled electron transfer (PCET) process with kH/kD = 7.0(5). In the latter reaction, an electron and a proton were transferred to the NiIII center and the TAML-4 ligand, respectively. The mechanisms of the ET by [NiIII(TAML-4•+)] and the concerted PCET by [NiIII(TAML-4)]- were ascribed to the different redox potentials of the Ni complexes.
Collapse
Affiliation(s)
- Deepika G Karmalkar
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- School of Chemical Sciences, Goa University, Taleigao, Goa 403206, India
| | - Hyeongtaek Lim
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Mahesh Sundararajan
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
- Theoretical Chemistry Section, Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Dae Young Bae
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Xiaoyan Lu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Keith O Hodgson
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Won-Suk Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Eunsung Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
- Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
2
|
Keshari K, Santra A, Velasco L, Sauvan M, Kaur S, Ugale AD, Munshi S, Marco JF, Moonshiram D, Paria S. Functional Model of Compound II of Cytochrome P450: Spectroscopic Characterization and Reactivity Studies of a Fe IV-OH Complex. JACS AU 2024; 4:1142-1154. [PMID: 38559734 PMCID: PMC10976569 DOI: 10.1021/jacsau.3c00844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/12/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Herein, we show that the reaction of a mononuclear FeIII(OH) complex (1) with N-tosyliminobenzyliodinane (PhINTs) resulted in the formation of a FeIV(OH) species (3). The obtained complex 3 was characterized by an array of spectroscopic techniques and represented a rare example of a synthetic FeIV(OH) complex. The reaction of 1 with the one-electron oxidizing agent was reported to form a ligand-oxidized FeIII(OH) complex (2). 3 revealed a one-electron reduction potential of -0.22 V vs Fc+/Fc at -15 °C, which was 150 mV anodically shifted than 2 (Ered = -0.37 V vs Fc+/Fc at -15 °C), inferring 3 to be more oxidizing than 2. 3 reacted spontaneously with (4-OMe-C6H4)3C• to form (4-OMe-C6H4)3C(OH) through rebound of the OH group and displayed significantly faster reactivity than 2. Further, activation of the hydrocarbon C-H and the phenolic O-H bond by 2 and 3 was compared and showed that 3 is a stronger oxidant than 2. A detailed kinetic study established the occurrence of a concerted proton-electron transfer/hydrogen atom transfer reaction of 3. Studying one-electron reduction of 2 and 3 using decamethylferrocene (Fc*) revealed a higher ket of 3 than 2. The study established that the primary coordination sphere around Fe and the redox state of the metal center is very crucial in controlling the reactivity of high-valent Fe-OH complexes. Further, a FeIII(OMe) complex (4) was synthesized and thoroughly characterized, including X-ray structure determination. The reaction of 4 with PhINTs resulted in the formation of a FeIV(OMe) species (5), revealing the presence of two FeIV species with isomer shifts of -0.11 mm/s and = 0.17 mm/s in the Mössbauer spectrum and showed FeIV/FeIII potential at -0.36 V vs Fc+/Fc couple in acetonitrile at -15 °C. The reactivity studies of 5 were investigated and compared with the FeIV(OH) complex (3).
Collapse
Affiliation(s)
- Kritika Keshari
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi 110016, India
| | - Aakash Santra
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi 110016, India
| | - Lucía Velasco
- Instituto
de Ciencia de Materiales de Madrid, Consejo
Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Maxime Sauvan
- Instituto
de Ciencia de Materiales de Madrid, Consejo
Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Simarjeet Kaur
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi 110016, India
| | - Ashok D. Ugale
- Instituto
de Ciencia de Materiales de Madrid, Consejo
Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Sandip Munshi
- School
of Chemical Science, Indian Association
for the Cultivation of Science, Raja S C Mulliick Road, Kolkata 700032, India
| | - J. F. Marco
- Instituto
de Quimica Fisica Blas Cabrera, Consejo
Superior de Investigaciones Científicas, C. de Serrano, 119, Serrano, Madrid 28006, Spain
| | - Dooshaye Moonshiram
- Instituto
de Ciencia de Materiales de Madrid, Consejo
Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Sayantan Paria
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
3
|
Yang J, Tripodi GL, Derks MTGM, Seo MS, Lee YM, Southwell KW, Shearer J, Roithová J, Nam W. Generation, Spectroscopic Characterization, and Computational Analysis of a Six-Coordinate Cobalt(III)-Imidyl Complex with an Unusual S = 3/2 Ground State that Promotes N-Group and Hydrogen Atom-Transfer Reactions with Exogenous Substrates. J Am Chem Soc 2023; 145:26106-26121. [PMID: 37997643 PMCID: PMC11175169 DOI: 10.1021/jacs.3c08117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
We report the synthesis and characterization of a mononuclear nonheme cobalt(III)-imidyl complex, [Co(NTs)(TQA)(OTf)]+ (1), with an S = 3/2 spin state that is capable of facilitating exogenous substrate modifications. Complex 1 was generated from the reaction of CoII(TQA)(OTf)2 with PhINTs at -20 °C. A flow setup with ESI-MS detection was used to explore the kinetics of the formation, stability, and degradation pathway of 1 in solution by treating the Co(II) precursor with PhINTs. Co K-edge XAS data revealed a distinct shift in the Co K-edge compared to the Co(II) precursor, in agreement with the formation of a Co(III) intermediate. The unusual S = 3/2 spin state was proposed based on EPR, DFT, and CASSCF calculations and Co Kβ XES results. Co K-edge XAS and IR photodissociation (IRPD) spectroscopies demonstrate that 1 is a six-coordinate species, and IRPD and resonance Raman spectroscopies are consistent with 1 being exclusively the isomer with the NT ligand occupying the vacant site trans to the TQA aliphatic amine nitrogen atom. Electronic structure calculations (broken symmetry DFT and CASSCF/NEVPT2) demonstrate an S = 3/2 oxidation state resulting from the strong antiferromagnetic coupling of an •NTs spin to the high-spin S = 2 Co(III) center. Reactivity studies of 1 with PPh3 derivatives revealed its electrophilic characteristic in the nitrene-transfer reaction. While the activation of C-H bonds by 1 was proved to be kinetically challenging, 1 could oxidize weak O-H and N-H bonds. Complex 1 is, therefore, a rare example of a Co(III)-imidyl complex capable of exogenous substrate transformations.
Collapse
Affiliation(s)
- Jindou Yang
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Guilherme L. Tripodi
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Max T. G. M. Derks
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Kendal W. Southwell
- Department of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Jason Shearer
- Department of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Jana Roithová
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
4
|
Britto NJ, Sen A, Rajaraman G. Unravelling the Effect of Acid-Driven Electron Transfer in High-Valent Fe IV =O/Mn IV =O Species and Its Implications for Reactivity. Chem Asian J 2023; 18:e202300773. [PMID: 37855305 DOI: 10.1002/asia.202300773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/20/2023]
Abstract
The electron transfer (ET) step is one of the crucial processes in biochemical redox reactions that occur in nature and has been established as a key step in dictating the reactivity of high-valent metal-oxo species. Although metalloenzymes possessing metal-oxo units at their active site are typically associated with outer-sphere electron transfer (OSET) processes, biomimetic models, in contrast, have been found to manifest either an inner-sphere electron transfer (ISET) or OSET mechanism. This distinction is clearly illustrated through the behaviour of [(N4Py)MnIV (O)]2+ (1) and [(N4Py)FeIV (O)]2+ (2) complexes, where complex 1 showcases an OSET mechanism, while complex 2 exhibits an ISET mechanism, especially evident in their reactions involving C-H bond activation and oxygen atom transfer reactions in the presence of a Lewis/Bronsted acid. However, the precise reason for this puzzling difference remains elusive. This work unveils the origin of the perplexing inner-sphere vs outer-sphere electron transfer process (ISET vs OSET) in [(N4Py)MnIV (O)]2+ (1) and [(N4Py)FeIV (O)]2+ (2) species in the presence of Bronsted acid. The calculations indicate that when the substrate (toluene) approaches both 1 and 2 that is hydrogen bonded with two HOTf molecules (denoted as 1-HOTf and 2-HOTf, respectively), proton transfer from one of the HOTf molecules to the metal-oxo unit is triggered and a simultaneous electron transfer occurs from toluene to the metal centre. Interestingly, the preference for OSET by 1-HOTf is found to originate from the choice of MnIV =O centre to abstract spin-down (β) electron from toluene to its δ(dxy ) orbital. On the other hand, in 2-HOTf, a spin state inversion from triplet to quintet state takes place during the proton (from HOTf) coupled electron transfer (from toluene) preferring a spin-up (α) electron abstraction to its σ* (dz 2 ) orbital mediated by HOTf giving rise to ISET. In addition, 2-HOTf was calculated to possess a larger reorganisation energy, which facilitates the ISET process via the acid. The absence of spin-inversion and smaller reorganisation energy switch the mechanism to OSET for 1-HOTf. Therefore, for the first time, the significance of spin-state and spin-inversion in the electron transfer process has been identified and demonstrated within the realm of high-valent metal-oxo chemistry. This discovery holds implications for the potential involvement of high-valent Mn-oxo species in performing similar transformative processes within Photosystem II.
Collapse
Affiliation(s)
| | - Asmita Sen
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India
| |
Collapse
|
5
|
Kang WJ, Pan Y, Ding A, Guo H. Organophotocatalytic Alkene Reduction Using Water as a Hydrogen Donor. Org Lett 2023; 25:7633-7638. [PMID: 37844204 DOI: 10.1021/acs.orglett.3c02920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
The chemical activation and functionalization of water are considered an ideal method for converting earth-abundant sources into valuable chemicals. Here, we show that a non-activated free water molecule can be applied directly as a hydrogen donor to achieve the carbanion-mediated alkene reduction with 9-HTXTF serving as an organophotocatalyst. Notably, direct syntheses of high-value-added drugs and bioactive molecules are readily achieved by utilizing plentiful energy and an earth-abundant resource, showcasing the usefulness of the protocol in chemical synthesis.
Collapse
Affiliation(s)
- Wen-Jie Kang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Yuze Pan
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Aishun Ding
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
| | - Hao Guo
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| |
Collapse
|
6
|
Yang B, Yan S, Li C, Ma H, Feng F, Zhang Y, Huang W. Mn(iii)-mediated C-P bond activation of diphosphines: toward a highly emissive phosphahelicene cation scaffold and modulated circularly polarized luminescence. Chem Sci 2023; 14:10446-10457. [PMID: 37799992 PMCID: PMC10548521 DOI: 10.1039/d3sc03201a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/11/2023] [Indexed: 10/07/2023] Open
Abstract
Transition metal mediated C-X (X = H, halogen) bond activation provides an impressive protocol for building polyaromatic hydrocarbons (PAHs) in C-C bond coupling and annulation; however, mimicking both the reaction model and Lewis acid mediator simultaneously in a hetero-PAH system for selective C-P bond cleavage faces unsolved challenges. At present, developing the C-P bond activation protocol of the phosphonic backbone using noble-metal complexes is a predominant passway for the construction of phosphine catalysts and P-center redox-dependent photoelectric semiconductors, but non-noble metal triggered methods are still elusive. Herein, we report Mn(iii)-mediated C-P bond activation and intramolecular cyclization of diphosphines by a redox-directed radical phosphonium process, generating phosphahelicene cations or phosphoniums with nice regioselectivity and substrate universality under mild conditions. Experiments and theoretical calculations revealed the existence of the unusual radical mechanism and electron-deficient character of novel phosphahelicenes. These rigid quaternary bonding skeletons facilitated versatile fluorescence with good tunability and excellent efficiency. Moreover, the enantiomerically enriched crystals of phosphahelicenes emitted intense circularly polarized luminescence (CPL). Notably, the modulated CPL of racemic phosphahelicenes was induced by chiral transmission in the cholesteric mesophase, showing ultrahigh asymmetry factors of CPL (+0.51, -0.48). Our findings provide a new approach for the design of emissive phosphahelicenes towards chiral emitters and synthesized precursors.
Collapse
Affiliation(s)
- Bo Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 P. R. China
| | - Suqiong Yan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 P. R. China
| | - Chengbo Li
- School of Materials and Energy, University of Electronic Science and Technology of China Chengdu 610000 P. R. China
| | - Hui Ma
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 P. R. China
| | - Fanda Feng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 P. R. China
| | - Yuan Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 P. R. China
| | - Wei Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 P. R. China
- Shenzhen Research Institute of Nanjing University Shenzhen 51805 P. R. China
| |
Collapse
|
7
|
Li Q, Fei J, Ruan K, Hua Y, Chen D, Luo M, Xia H. Reshaping aromatic frameworks: expansion of aromatic system drives metallabenzenoids to metallapentalenes. Chem Sci 2023; 14:5672-5680. [PMID: 37265719 PMCID: PMC10231429 DOI: 10.1039/d3sc01491f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/22/2023] [Indexed: 06/03/2023] Open
Abstract
Reshaping an aromatic framework to generate other skeletons is a challenging issue due to the stabilization energy of aromaticity. Such reconfigurations of aromatics commonly generate non-aromatic products and hardly ever reshape to a different aromatic framework. Herein, we present the transformation of metallaindenols to metallapentalenes and metallaindenes in divergent pathways, converting one aromatic framework to another with an extension of the conjugation framework. The mechanistic study of this transformation shows that phosphorus ligands play different roles in the divergent processes. Further theoretical studies indicate that the expansion of the aromatic system is the driving force promoting this skeletal rearrangement. Our findings offer a new concept and strategy to reshape and construct aromatic compounds.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Jiawei Fei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Kaidong Ruan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Yuhui Hua
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology Shenzhen 518055 China
| | - Dafa Chen
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology Shenzhen 518055 China
| | - Ming Luo
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology Shenzhen 518055 China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
8
|
Zhang J, Lee YM, Seo MS, Nilajakar M, Fukuzumi S, Nam W. A Contrasting Effect of Acid in Electron Transfer, Oxygen Atom Transfer, and Hydrogen Atom Transfer Reactions of a Nickel(III) Complex. Inorg Chem 2022; 61:19735-19747. [PMID: 36445726 DOI: 10.1021/acs.inorgchem.2c02504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There have been many examples of the accelerating effects of acids in electron transfer (ET), oxygen atom transfer (OAT), and hydrogen atom transfer (HAT) reactions. Herein, we report a contrasting effect of acids in the ET, OAT, and HAT reactions of a nickel(III) complex, [NiIII(PaPy3*)]2+ (1) in acetone/CH3CN (v/v 19:1). 1 was synthesized by reacting [NiII(PaPy3*)]+ (2) with magic blue or iodosylbenzene in the absence or presence of triflic acid (HOTf), respectively. Sulfoxidation of thioanisole by 1 and H2O occurred in the presence of HOTf, and the reaction rate increased proportionally with increasing concentration of HOTf ([HOTf]). The rate of ET from diacetylferrocene to 1 also increased linearly with increasing [HOTf]. In contrast, HAT from 9,10-dihydroanthracene (DHA) to 1 slowed down with increasing [HOTf], exhibiting an inversely proportional relation to [HOTf]. The accelerating effect of HOTf in the ET and OAT reactions was ascribed to the binding of H+ to the PaPy3* ligand of 2; the one-electron reduction potential (Ered) of 1 was positively shifted with increasing [HOTf]. Such a positive shift in the Ered value resulted in accelerating the ET and OAT reactions that proceeded via the rate-determining ET step. On the other hand, the decelerating effect of HOTf on HAT from DHA to 1 resulted from the inhibition of proton transfer from DHA•+ to 2 due to the binding of H+ to the PaPy3* ligand of 2. The ET reactions of 1 in the absence and presence of HOTf were well analyzed in light of the Marcus theory of ET in comparison with the HAT reactions.
Collapse
Affiliation(s)
- Jisheng Zhang
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Madhuri Nilajakar
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
9
|
Zhang J, Lee YM, Seo MS, Fukuzumi S, Nam W. Acid Catalysis in the Oxidation of Substrates by Mononuclear Manganese(III)-Aqua Complexes. Inorg Chem 2022; 61:6594-6603. [PMID: 35442673 DOI: 10.1021/acs.inorgchem.2c00430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acids are known to enhance the reactivities of metal-oxygen intermediates, such as metal-oxo, -hydroperoxo, -peroxo, and -superoxo complexes, in biomimetic oxidation reactions. Although metal-aqua (and metal-hydroxo) complexes have been shown to be potent oxidants in oxidation reactions, acid effects on the reactivities of metal-aqua complexes have never been investigated previously. In this study, a mononuclear manganese(III)-aqua complex, [(dpaq5NO2)MnIII(OH2)]2+ (1; dpaq5NO2 = 2-[bis(pyridin-2-ylmethyl)]amino-N-quinolin-8-ylacetamidate with an NO2 substituent at the 5 position), which is relatively stable in the presence of triflic acid (HOTf), is used in the investigation of acid-catalyzed oxidation reactions by metal-aqua complexes. As a result, we report a remarkable acid catalysis in the six-electron oxidation of anthracene by 1 in the presence of HOTf; anthraquinone is formed as the product. In the HOTf-catalyzed six-electron oxidation of anthracene by 1, the rate constant increases linearly with an increase of the HOTf concentration. Combined with the observed one-electron oxidation product, anthracene (derivative) radical cation, and the substitution effect at the 5 position of the dpaq ligand in 1 on the rate constants of the oxidation of anthracene, it is concluded that the oxidation of anthracene occurs via an acid-promoted electron transfer (APET) from anthracene to 1. The dependence of the rate constants of the APET from electron donors, including anthracene derivatives, to 1 on the driving force of electron transfer is also shown to be well fitted by the Marcus equation of outer-sphere electron transfer. To the best of our knowledge, this is the first example showing acid catalysis in the oxidation of substrates by metal(III)-aqua complexes.
Collapse
Affiliation(s)
- Jisheng Zhang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.,Faculty of Science and Engineering, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Wonwoo Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.,Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
10
|
Karumban KS, Muley A, Giri B, Kumbhakar S, Kella T, Shee D, Maji S. Synthesis, characterization, structural, redox and electrocatalytic proton reduction properties of cobalt polypyridyl complexes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Zhang J, Lee YM, Seo MS, Kim Y, Lee E, Fukuzumi S, Nam W. Oxidative versus basic asynchronous hydrogen atom transfer reactions of Mn(III)-hydroxo and Mn(III)-aqua complexes. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00741j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen atom transfer (HAT) of metal-oxygen intermediates such as metal-oxo, -hydroxo and -superoxo species have so far been studied extensively. However, HAT reactions of metal-aqua complexes have yet to be...
Collapse
|
12
|
Cook EN, Machan CW. Bioinspired mononuclear Mn complexes for O 2 activation and biologically relevant reactions. Dalton Trans 2021; 50:16871-16886. [PMID: 34730590 DOI: 10.1039/d1dt03178c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A general interest in harnessing the oxidizing power of dioxygen (O2) continues to motivate research efforts on bioinspired and biomimetic complexes to better understand how metalloenzymes mediate these reactions. The ubiquity of Fe- and Cu-based enzymes attracts significant attention and has resulted in many noteworthy developments for abiotic systems interested in direct O2 reduction and small molecule activation. However, despite the existence of Mn-based metalloenzymes with important O2-dependent activity, there has been comparatively less focus on the development of these analogues relative to Fe- and Cu-systems. In this Perspective, we summarize important contributions to the development of bioinspired mononuclear Mn complexes for O2 activation and studies on their reactivity, emphasizing important design parameters in the primary and secondary coordination spheres and outlining mechanistic trends.
Collapse
Affiliation(s)
- Emma N Cook
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, VA 22904-4319, USA.
| | - Charles W Machan
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, VA 22904-4319, USA.
| |
Collapse
|
13
|
Ding Y, Cui K, Guo Z, Cui M, Chen Y. Manganese peroxidase mediated oxidation of sulfamethoxazole: Integrating the computational analysis to reveal the reaction kinetics, mechanistic insights, and oxidation pathway. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125719. [PMID: 33774358 DOI: 10.1016/j.jhazmat.2021.125719] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/09/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
In this study, manganese peroxidase (MnP) was applied to induce the in vitro oxidation of sulfamethoxazole (SMX). The results indicated that 87.04% of the SMX was transformed and followed first-order kinetics (kobs=0.438 h-1) within 6 h when 40 U L-1 of MnP was added. The reaction kinetics were investigated under different conditions, including pH, MnP activity, and H2O2 concentration. The active species Mn3+ was responsible for the oxidation of SMX, and the Mn3+ production rate was monitored to reveal the interaction among MnP, Mn3+, and SMX. By integrating the characterizations analysis of the MnP/H2O2 system with the density functional theory (DFT) calculations, the proton-coupled electron transfer (PCET) process dominated the catalytic circle of MnP and the transformation of Mn3+. Additionally, possible oxidation pathways of SMX were proposed based on single-electron transfer mechanism, which primarily included the S-N bond cleavage, the C-S bond cleavage, and one electron loss without bond breakage. It was then transformed to hydrolysis, N-H oxidation, self-coupling, and carboxylic acid coupling products. This study provides insights into the atomic-level mechanism of MnP and the transformation pathways of sulfamethoxazole, which lays a significant foundation for the potential of MnP in wastewater treatment applications.
Collapse
Affiliation(s)
- Yan Ding
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Kangping Cui
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China.
| | - Zhi Guo
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Minshu Cui
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Yihan Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
14
|
Sánchez-Vergara ME, Hamui L, Gómez E, Chans GM, Galván-Hidalgo JM. Design of Promising Heptacoordinated Organotin (IV) Complexes-PEDOT: PSS-Based Composite for New-Generation Optoelectronic Devices Applications. Polymers (Basel) 2021; 13:1023. [PMID: 33806246 PMCID: PMC8038072 DOI: 10.3390/polym13071023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
The synthesis of four mononuclear heptacoordinated organotin (IV) complexes of mixed ligands derived from tridentated Schiff bases and pyrazinecarboxylic acid is reported. This organotin (IV) complexes were prepared by using a multicomponent reaction, the reaction proceeds in moderate to good yields (64% to 82%). The complexes were characterized by UV-vis spectroscopy, IR spectroscopy, mass spectrometry, 1H, 13C, and 119Sn nuclear magnetic resonance (NMR) and elemental analysis. The spectroscopic analysis revealed that the tin atom is seven-coordinate in solution and that the carboxyl group acts as monodentate ligand. To determine the effect of the substituent on the optoelectronic properties of the organotin (IV) complexes, thin films were deposited, and the optical bandgap was obtained. A bandgap between 1.88 and 1.98 eV for the pellets and between 1.23 and 1.40 eV for the thin films was obtained. Later, different types of optoelectronic devices with architecture "contacts up/base down" were manufactured and analyzed to compare their electrical behavior. The design was intended to generate a composite based on the synthetized heptacoordinated organotin (IV) complexes embedded on the poly(3,4-ethylenedyoxithiophene)-poly(styrene sulfonate) (PEDOT:PSS). A Schottky curve at low voltages (<1.5 mV) and a current density variation of as much as ~3 × 10-5 A/cm2 at ~1.1 mV was observed. A generated photocurrent was of approximately 10-7 A and a photoconductivity between 4 × 10-9 and 7 × 10-9 S/cm for all the manufactured structures. The structural modifications on organotin (IV) complexes were focused on the electronic nature of the substituents and their ability to contribute to the electronic delocalization via the π system. The presence of the methyl group, a modest electron donor, or the non-substitution on the aromatic ring, has a reduced effect on the electronic properties of the molecule. However, a strong effect in the electronic properties of the material can be inferred from the presence of electron-withdrawing substituents like chlorine, able to reduce the gap energies.
Collapse
Affiliation(s)
- María Elena Sánchez-Vergara
- Facultad de Ingeniería, Universidad Anáhuac México, Avenida Universidad Anáhuac 46, Col. Lomas Anáhuac, Huixquilucan 52786, Estado de México, Mexico;
| | - Leon Hamui
- Facultad de Ingeniería, Universidad Anáhuac México, Avenida Universidad Anáhuac 46, Col. Lomas Anáhuac, Huixquilucan 52786, Estado de México, Mexico;
| | - Elizabeth Gómez
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n. C.U., Alcaldia Coyoacán, Ciudad de México 04510, Mexico; (G.M.C.); (J.M.G.-H.)
| | - Guillermo M. Chans
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n. C.U., Alcaldia Coyoacán, Ciudad de México 04510, Mexico; (G.M.C.); (J.M.G.-H.)
| | - José Miguel Galván-Hidalgo
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n. C.U., Alcaldia Coyoacán, Ciudad de México 04510, Mexico; (G.M.C.); (J.M.G.-H.)
| |
Collapse
|
15
|
Yu J, Lai W. Mechanistic insights into dioxygen activation by a manganese corrole complex: a broken-symmetry DFT study. RSC Adv 2021; 11:24852-24861. [PMID: 35481047 PMCID: PMC9036905 DOI: 10.1039/d1ra02722k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/08/2021] [Indexed: 12/14/2022] Open
Abstract
The Mn–oxygen species have been implicated as key intermediates in various Mn-mediated oxidation reactions. However, artificial oxidants were often used for the synthesis of the Mn–oxygen intermediates. Remarkably, the Mn(v)–oxo and Mn(iv)–peroxo species have been observed in the activation of O2 by Mn(iii) corroles in the presence of base (OH−) and hydrogen donors. In this work, density functional theory methods were used to get insight into the mechanism of dioxygen activation and formation of Mn(v)–oxo. The results demonstrated that the dioxygen cannot bind to Mn without the axial OH− ligand. Upon the addition of the axial OH− ligand, the dioxygen can bind to Mn in an end-on fashion to give the Mn(iv)–superoxo species. The hydrogen atom transfer from the hydrogen donor (substrate) to the Mn(iv)–superoxo species is the rate-limiting step, having a high reaction barrier and a large endothermicity. Subsequently, the O–C bond formation is concerted with an electron transfer from the substrate radical to the Mn and a proton transfer from the hydroperoxo moiety to the nearby N atom of the corrole ring, generating an alkylperoxo Mn(iii) complex. The alkylperoxo O–O bond cleavage affords a Mn(v)–oxo complex and a hydroxylated substrate. This novel mechanism for the Mn(v)–oxo formation via an alkylperoxo Mn(iii) intermediate gives insight into the O–O bond activation by manganese complexes. DFT calculations revealed a novel mechanism for the formation of Mn(v)–oxo in the dioxygen activation by a Mn(iii) corrole complex involving a Mn(iii)–alkylperoxo intermediate.![]()
Collapse
Affiliation(s)
- Jiangfeng Yu
- Department of Chemistry
- Renmin University of China
- Beijing
- China
| | - Wenzhen Lai
- Department of Chemistry
- Renmin University of China
- Beijing
- China
| |
Collapse
|