1
|
Khojastehnezhad A, Samie A, Bisio A, El-Kaderi HM, Siaj M. Impact of Postsynthetic Modification on the Covalent Organic Framework (COF) Structures. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11415-11442. [PMID: 39569847 DOI: 10.1021/acsami.4c14030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Covalent organic frameworks (COFs) have emerged as a versatile class of materials owing to their well-defined crystalline structures and inherent porosity. In the realm of COFs, their appeal lies in their customizable nature, which can be further enhanced by incorporating diverse functionalities. Postsynthetic modifications (PSMs) emerge as a potent strategy, facilitating the introduction of desired functionalities postsynthesis. A significant challenge in PSM pertains to preserving the crystallinity and porosity of the COFs. In this study, we aim to investigate the intricate interplay between PSM strategies and the resulting crystalline and porous structures of the COFs. The investigation delves into the diverse methodologies employed in PSMs, to elucidate their distinct influences on the crystallinity and porosity of the COFs. Through a comprehensive analysis of recent advancements and case studies, the study highlights the intricate relationships among PSM parameters, including reaction conditions, precursor selection, and functional groups, and their impact on the structural features of COFs. By understanding how PSM strategies can fine-tune the crystalline and porous characteristics of COFs, researchers can harness this knowledge to design COFs with tailored properties for specific applications, contributing to the advancement of functional materials in diverse fields. This work not only deepens our understanding of COFs but also provides valuable insights into the broader realm of PSM strategies for other solid materials.
Collapse
Affiliation(s)
- Amir Khojastehnezhad
- Department of Chemistry, University of Quebec at Montreal, Montreal, H3C3P8 Quebec, Canada
| | - Ali Samie
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Anna Bisio
- Department of Chemistry, University of Quebec at Montreal, Montreal, H3C3P8 Quebec, Canada
| | - Hani M El-Kaderi
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Mohamed Siaj
- Department of Chemistry, University of Quebec at Montreal, Montreal, H3C3P8 Quebec, Canada
| |
Collapse
|
2
|
Jiang B, Zhang J, Yu K, Jia Z, Long H, He N, Zhang Y, Zou Y, Han Z, Li Y, Ma L. Dynamic Cleavage-Remodeling of Covalent Organic Networks into Multidimensional Superstructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404446. [PMID: 38837518 DOI: 10.1002/adma.202404446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/19/2024] [Indexed: 06/07/2024]
Abstract
Superstructures with complex hierarchical spatial configurations exhibit broader structural depth than single hierarchical structures and the associated broader application prospects. However, current preparation methods are greatly constrained by cumbersome steps and harsh conditions. Here, for the first time, a concise and efficient thermally responsive dynamic synthesis strategy for the preparation of multidimensional complex superstructures within soluble covalent organic networks (SCONs) with tunable morphology from 0D hollow supraparticles to 2D films is presented. Mechanism study reveals the thermally responsive dynamic "cleavage-remodeling" characteristics of SCONs, synthesized based on the unique bilayer structure of (2.2)paracyclophane, and the temperature control facilitates the process from reversible solubility to reorganization and construction of superstructures. Specifically, during the process, the oil-water-emulsion two-phase interface can be generated through droplet jetting, leading to the preparation of 0D hollow supraparticles and other bowl-like complex superstructures with high yield. Additionally, by modulating the volatility and solubility of exogenous solvents, defect-free 2D films are prepared relying on an air-liquid interface. Expanded experiments further confirm the generalizability and scalability of the proposed dynamic "cleavage-remodeling" strategy. Research on the enrichment mechanism of guest iodine highlights the superior kinetic mass transfer performance of superstructural products compared to single-hierarchical materials.
Collapse
Affiliation(s)
- Bo Jiang
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, P.R. China
| | - Jie Zhang
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, P.R. China
| | - Kaifu Yu
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, P.R. China
| | - Zhimin Jia
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, P.R. China
| | - Honghan Long
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, P.R. China
| | - Ningning He
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, P.R. China
| | - Yingdan Zhang
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, P.R. China
| | - Yingdi Zou
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, P.R. China
| | - Ziqian Han
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, P.R. China
| | - Yang Li
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, P.R. China
| | - Lijian Ma
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, P.R. China
| |
Collapse
|
3
|
Qiang L, Bai H, Li XY, Yang HL, Gong CB, Tang Q. A Visible Light Responsive Smart Covalent Organic Framework with a Bridged Azobenzene Backbone. Macromol Rapid Commun 2024; 45:e2300506. [PMID: 38134364 DOI: 10.1002/marc.202300506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Condensation of 3,3'-diamino-2,2'-ethylene-bridged azobenzene with 1,2,4,5-tetrakis-(4-formylphenyl) benzene produces a visible light responsive porous 2D covalent organic framework, COF-bAzo-TFPB, with a large surface area, good crystallinity, and thermal and chemical stability. The results demonstrate that the elaborated designed linker can make azo unit on the COF-bAzo-TFPB skeleton undergo reversible photoisomerization. This work expands the application scope of covalent organic frameworks in photo-controlled release, uptake of guest molecules, dynamic photoswitching, and UV-sensitive functions.
Collapse
Affiliation(s)
- Liang Qiang
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Hao Bai
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Xin-Yi Li
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Hai-Lin Yang
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Cheng-Bin Gong
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Qian Tang
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
4
|
Zhou LL, Guan Q, Dong YB. Covalent Organic Frameworks: Opportunities for Rational Materials Design in Cancer Therapy. Angew Chem Int Ed Engl 2024; 63:e202314763. [PMID: 37983842 DOI: 10.1002/anie.202314763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Nanomedicines are extensively used in cancer therapy. Covalent organic frameworks (COFs) are crystalline organic porous materials with several benefits for cancer therapy, including porosity, design flexibility, functionalizability, and biocompatibility. This review examines the use of COFs in cancer therapy from the perspective of reticular chemistry and function-oriented materials design. First, the modification sites and functionalization methods of COFs are discussed, followed by their potential as multifunctional nanoplatforms for tumor targeting, imaging, and therapy by integrating functional components. Finally, some challenges in the clinical translation of COFs are presented with the hope of promoting the development of COF-based anticancer nanomedicines and bringing COFs closer to clinical trials.
Collapse
Affiliation(s)
- Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
| | - Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Taipa, Macau SAR, 999078, China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
5
|
Hao M, Xie Y, Lei M, Liu X, Chen Z, Yang H, Waterhouse GIN, Ma S, Wang X. Pore Space Partition Synthetic Strategy in Imine-linked Multivariate Covalent Organic Frameworks. J Am Chem Soc 2024; 146:1904-1913. [PMID: 38133928 DOI: 10.1021/jacs.3c08160] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Partitioning the pores of covalent organic frameworks (COFs) is an attractive strategy for introducing microporosity and achieving new functionality, but it is technically challenging to achieve. Herein, we report a simple strategy for partitioning the micropores/mesopores of multivariate COFs. Our approach relies on the predesign and synthesis of multicomponent COFs through imine condensation reactions with aldehyde groups anchored in the COF pores, followed by inserting additional symmetric building blocks (with C2 or C3 symmetries) as pore partition agents. This approach allowed tetragonal or hexagonal pores to be partitioned into two or three smaller micropores, respectively. The synthesized library of pore-partitioned COFs was then applied for the capture of iodine pollutants (i.e., I2 and CH3I). This rich inventory allowed deep exploration of the relationships between the COF adsorbent composition, pore architecture, and adsorption capacity for I2 and CH3I capture under wide-ranging conditions. Notably, one of our developed pore-partitioned COFs (COF 3-2P) exhibited greatly enhanced dynamic I2 and CH3I adsorption performances compared to its parent COF (COF 3) in breakthrough tests, setting a new benchmark for COF-based adsorbents. Results present an effective design strategy toward functional COFs with tunable pore environments, functions, and properties.
Collapse
Affiliation(s)
- Mengjie Hao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Yinghui Xie
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Ming Lei
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Xiaolu Liu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Zhongshan Chen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Hui Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | | | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, Texas 76201, United States
| | - Xiangke Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| |
Collapse
|
6
|
Liu Y, Wang M, Hui Y, Sun L, Hao Y, Ren H, Guo H, Yang W. Polyarylether-based COFs coordinated by Tb 3+ for the fluorescent detection of anthrax-biomarker dipicolinic acid. J Mater Chem B 2024; 12:466-474. [PMID: 38086684 DOI: 10.1039/d3tb02070c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In this study, a rare-earth hybrid luminescent material (lanthanide@COF) was constructed for the detection of a biomarker for anthrax (dipicolinic acid, DPA). JCU-505-COOH was prepared by the hydrolysis of the cyano group in JCU-505 via a post-synthetic modification strategy, then the carboxyl groups in JCU-505-COOH coordinated with Tb3+ ions, similar to pincer vising nut. The prepared Tb3+@JCU-505-COOH exhibited a turn-on response toward DPA, which allowed the lanthanide@COF to serve as a fluorescence sensor with excellent selectivity and high sensitivity (binding constant Ka = 3.66 × 103). The fluorescent probe showed satisfactory performance for the determination of DPA in saliva and urine with a detection limit of 0.6 μM. Moreover, we established a facile point-of-care testing (POCT) using the Tb3+@JCU-505-COOH-based fluorescent test paper together with a smartphone for the initial diagnosis of anthrax. As expected, Tb3+@JCU-505-COOH showed great potential for the rapid screening of anthrax due to low cost, simple operation, and wide applicability.
Collapse
Affiliation(s)
- Yinsheng Liu
- Key Laboratory of Eco-functional Polymer Materials of Ministry of Education, Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection of Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China.
| | - Mingyue Wang
- Key Laboratory of Eco-functional Polymer Materials of Ministry of Education, Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection of Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China.
| | - Yinfei Hui
- Key Laboratory of Eco-functional Polymer Materials of Ministry of Education, Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection of Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China.
| | - Lei Sun
- Key Laboratory of Eco-functional Polymer Materials of Ministry of Education, Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection of Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China.
| | - Yanrui Hao
- Key Laboratory of Eco-functional Polymer Materials of Ministry of Education, Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection of Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China.
| | - Henlong Ren
- Key Laboratory of Eco-functional Polymer Materials of Ministry of Education, Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection of Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China.
| | - Hao Guo
- Key Laboratory of Eco-functional Polymer Materials of Ministry of Education, Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection of Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China.
| | - Wu Yang
- Key Laboratory of Eco-functional Polymer Materials of Ministry of Education, Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection of Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China.
| |
Collapse
|
7
|
Zou Y, Qi Y, Li X, Long H, Jia Z, He N, Zhang J, Liu N, Li Y, Ma L. Simple and Efficient Hydrogen Bond-Assisted Unit Exchange for Constructing Highly Soluble Covalent Organic Frameworks. ACS Macro Lett 2023; 12:1237-1243. [PMID: 37638609 DOI: 10.1021/acsmacrolett.3c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
The majority of COFs synthesized using current methods exist as insoluble powders, which is unfavorable for processing and molding and greatly limits their practical applications. The syntheses of solution-processable or soluble COFs are challenging but hold immense promise and potential. Herein, for the first time, we have developed a simple and high-efficiency solvothermal-treated unit exchange approach to convert insoluble COF powders into smaller, highly soluble COFs via a hydrogen bond-assisted strategy. Due to the enhanced backbone-solvent hydrogen-bonding interactions between COFs and protic solvents and the effect of grain size reduction, the COFs after unit exchange can be easily dissolved in various protic solvents while remaining as insoluble powders in nonprotic solvents. The obtained soluble COFs exhibit remarkable fluorescence quenching upon detection of iodine in aqueous solution, with a detection limit as low as 75 nM, and can be fabricated into membranes for the efficient treatment of iodine-contaminated solutions.
Collapse
Affiliation(s)
- Yingdi Zou
- College of Chemistry, Ministry of Education, Sichuan University, Chengdu 610064, People's Republic of China
| | - Yue Qi
- College of Chemistry, Ministry of Education, Sichuan University, Chengdu 610064, People's Republic of China
| | - Xiaofeng Li
- College of Chemistry, Ministry of Education, Sichuan University, Chengdu 610064, People's Republic of China
| | - Honghan Long
- College of Chemistry, Ministry of Education, Sichuan University, Chengdu 610064, People's Republic of China
| | - Zhimin Jia
- College of Chemistry, Ministry of Education, Sichuan University, Chengdu 610064, People's Republic of China
| | - Ningning He
- College of Chemistry, Ministry of Education, Sichuan University, Chengdu 610064, People's Republic of China
| | - Jie Zhang
- College of Chemistry, Ministry of Education, Sichuan University, Chengdu 610064, People's Republic of China
| | - Ning Liu
- Institute of Nuclear Science and Technology, Sichuan University, Key Laboratory of Radiation Physics and Technology, Ministry of Education, Chengdu 610064, People's Republic of China
| | - Yang Li
- College of Chemistry, Ministry of Education, Sichuan University, Chengdu 610064, People's Republic of China
| | - Lijian Ma
- College of Chemistry, Ministry of Education, Sichuan University, Chengdu 610064, People's Republic of China
| |
Collapse
|
8
|
Das S, Hazarika G, Manna D. Guanidine-Functionalized Fluorescent sp 2 Carbon-Conjugated Covalent Organic Framework for Sensing and Capture of Pd(II) and Cr(VI) Ions. Chemistry 2023; 29:e202203595. [PMID: 36592116 DOI: 10.1002/chem.202203595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/20/2022] [Accepted: 12/25/2022] [Indexed: 01/03/2023]
Abstract
Palladium is a key element in fuel cells, electronic industries, and organic catalysis. At the same time, chromium is essential in leather, electroplating, and metallurgical industries. However, their unpremeditated leakage into aquatic systems has caused human health and environmental apprehensions. Herein, we reported the development of an sp2 carbon-conjugated fluorescent covalent organic framework with a guanidine moiety (sp2 c-gCOF) that showed excellent thermal and chemical stability. The sp2 c-gCOF showed effective sensing, capture, and recovery/removal of Pd(II) and Cr(VI) ions, which could be due to the highly accessible pore walls decorated with guanidine moieties. The fluorescent sp2 c-gCOF showed higher selectivity for Pd(II) and Cr(VI) ions, with an ultra-low detection limit of 2.7 and 3.2 nM, respectively. The analysis of the adsorption properties with a pseudo-second-order kinetic model showed that sp2 c-gCOF could successfully and selectively remove both Pd(II) and Cr(VI) ions from aqueous solutions. The polymer also showed excellent capture efficacy even after seven consecutive adsorption-desorption cycles. Hence, this study reveals the potential of fluorescent sp2 c-gCOF for detecting, removing, and recovering valuable metals and hazardous ions from wastewater, which would be useful for economic benefit, environmental safety, human health, and sustainability. The post-synthetic modification of sp2 c-COF with suitable functionalities could also be useful for sensing and extracting other water pollutants and valuable materials from an aqueous system.
Collapse
Affiliation(s)
- Sribash Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Gunanka Hazarika
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Debasis Manna
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam, 781039, India
| |
Collapse
|
9
|
Sun M, Liu Z, Wu L, Yang J, Ren J, Qu X. Bioorthogonal-Activated In Situ Vaccine Mediated by a COF-Based Catalytic Platform for Potent Cancer Immunotherapy. J Am Chem Soc 2023; 145:5330-5341. [PMID: 36815731 DOI: 10.1021/jacs.2c13010] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Personalized tumor vaccines have become a promising modality for cancer immunotherapy. However, in situ personalized tumor vaccines generated from immunogenic cancer cell death (ICD) and adjuvants are mired by toxic side effects and unsatisfactory efficiency. Herein, by functionalizing the reticular structure to optimize the catalytic activity of the materials, a series of biocompatible covalent organic framework (COF)-based catalysts have been designed and screened for establishing a bioorthogonal-activated in situ cancer vaccine in an efficient and safe way. Especially, pro-doxorubicin (pro-DOX) could be bioorthogonally activated in situ by the COF-based Fe(II) catalysts, which elicited ICD and released tumor-associated antigens (TAAs). This in situ prodrug activation strategy could minimize drug side effects and maximize treatment effects. More importantly, the system could also catalytically activate pro-imiquimod (pro-IMQ, a TLR7/8 immune agonist), which served as an adjuvant to amplify the antitumor immunity. Notably, this bioorthogonal-activated in situ cancer vaccine not only facilitated a strong antitumor immune response but also prevented the dose-dependent side effects of chemotherapeutic drugs, including systemic inflammation caused by the random distribution of adjuvants. To the best of our knowledge, it is the first time to devise an efficient catalytic platform for generating an in situ bioorthogonal-activated cancer vaccine, which would provide a paradigm for achieving secure and robust immunotherapy.
Collapse
Affiliation(s)
- Mengyu Sun
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Zhengwei Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Li Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong 226019, Jiangsu, P. R. China
| | - Jie Yang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| |
Collapse
|
10
|
Song Y, Zhang JJ, Dou Y, Zhu Z, Su J, Huang L, Guo W, Cao X, Cheng L, Zhu Z, Zhang Z, Zhong X, Yang D, Wang Z, Tang BZ, Yakobson BI, Ye R. Atomically Thin, Ionic-Covalent Organic Nanosheets for Stable, High-Performance Carbon Dioxide Electroreduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110496. [PMID: 36008371 DOI: 10.1002/adma.202110496] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The incorporation of charged functional groups is effective to modulate the activity of molecular complexes for the CO2 reduction reaction (CO2 RR), yet long-term heterogeneous electrolysis is often hampered by catalyst leaching. Herein, an electrocatalyst of atomically thin, cobalt-porphyrin-based, ionic-covalent organic nanosheets (CoTAP-iCONs) is synthesized via a post-synthetic modification strategy for high-performance CO2 -to-CO conversion. The cationic quaternary ammonium groups not only enable the formation of monolayer nanosheets due to steric hindrance and electrostatic repulsion, but also facilitate the formation of a *COOH intermediate, as suggested by theoretical calculations. Consequently, CoTAP-iCONs exhibit higher CO2 RR activity than other cobalt-porphyrin-based structures: an 870% and 480% improvement of CO current densities compared to the monomer and neutral nanosheets, respectively. Additionally, the iCONs structure can accommodate the cationic moieties. In a flow cell, CoTAP-iCONs attain a very small onset overpotential of 40 mV and a stable total current density of 212 mA cm-2 with CO Faradaic efficiency of >95% at -0.6 V for 11 h. Further coupling the flow electrolyzer with commercial solar cells yields a solar-to-CO conversion efficiency of 13.89%. This work indicates that atom-thin, ionic nanosheets represent a promising structure for achieving both tailored activity and high stability.
Collapse
Affiliation(s)
- Yun Song
- Department of Chemistry and State Key Laboratory of Marine Pollution, Hong Kong Institute for Advanced Study, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Jun-Jie Zhang
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, 77005, USA
| | - Yubing Dou
- Department of Chemistry and State Key Laboratory of Marine Pollution, Hong Kong Institute for Advanced Study, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Zhaohua Zhu
- Department of Chemistry and State Key Laboratory of Marine Pollution, Hong Kong Institute for Advanced Study, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Jianjun Su
- Department of Chemistry and State Key Laboratory of Marine Pollution, Hong Kong Institute for Advanced Study, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Libei Huang
- Department of Chemistry and State Key Laboratory of Marine Pollution, Hong Kong Institute for Advanced Study, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Weihua Guo
- Department of Chemistry and State Key Laboratory of Marine Pollution, Hong Kong Institute for Advanced Study, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Xiaohu Cao
- Department of Chemistry and State Key Laboratory of Marine Pollution, Hong Kong Institute for Advanced Study, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Le Cheng
- Department of Chemistry and State Key Laboratory of Marine Pollution, Hong Kong Institute for Advanced Study, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Zonglong Zhu
- Department of Chemistry and State Key Laboratory of Marine Pollution, Hong Kong Institute for Advanced Study, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Zhenhua Zhang
- Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310012, P. R. China
- Shenzhen Futian Research Institute, City University of Hong Kong, Shenzhen, 518048, P. R. China
| | - Xiaoyan Zhong
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Dengtao Yang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Zhaoyu Wang
- School of Science and Engineering, Shenzhen Institute of Molecular Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Molecular Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| | - Boris I Yakobson
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, 77005, USA
| | - Ruquan Ye
- Department of Chemistry and State Key Laboratory of Marine Pollution, Hong Kong Institute for Advanced Study, City University of Hong Kong, Hong Kong, 999077, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
11
|
The effect of enantioselective chiral covalent organic frameworks and cysteine sacrificial donors on photocatalytic hydrogen evolution. Nat Commun 2022; 13:5768. [PMID: 36182957 PMCID: PMC9526734 DOI: 10.1038/s41467-022-33501-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/21/2022] [Indexed: 11/11/2022] Open
Abstract
Covalent organic frameworks (COFs) have constituted an emerging class of organic photocatalysts showing enormous potential for visible photocatalytic H2 evolution from water. However, suffering from sluggish reaction kinetics, COFs often cooperate with precious metal co-catalysts for essential proton-reducing capability. Here, we synthesize a chiral β-ketoenamine-linked COF coordinated with 10.51 wt% of atomically dispersed Cu(II) as an electron transfer mediator. The enantioselective combination of the chiral COF-Cu(II) skeleton with L-/D-cysteine sacrificial donors remarkably strengthens the hole extraction kinetics, and in turn, the photoinduced electrons accumulate and rapidly transfer via the coordinated Cu ions. Also, the parallelly stacking sequence of chiral COFs provides the energetically favorable arrangement for the H-adsorbed sites. Thus, without precious metal, the visible photocatalytic H2 evolution rate reaches as high as 14.72 mmol h−1 g−1 for the enantiomeric mixtures. This study opens up a strategy for optimizing the reaction kinetics and promises the exciting potential of chiral COFs for photocatalysis. Chiral covalent organic frameworks are demonstrated to enable the docking of sacrificial electron donors via enantioselective combination, thereby improving oxidative half-reaction kinetics and boosting visible photocatalytic H2 production.
Collapse
|
12
|
She P, Qin Y, Wang X, Zhang Q. Recent Progress in External-Stimulus-Responsive 2D Covalent Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2101175. [PMID: 34240479 DOI: 10.1002/adma.202101175] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/19/2021] [Indexed: 05/26/2023]
Abstract
Recently, smart 2D covalent organic frameworks (COFs), combining the advantages of both inherent structure features and functional building blocks, have been demonstrated to show reversible changes in conformation, color, and luminescence in response to external stimuli. This review provides a summary on the recent progress of 2D COFs that are responsive to external stimuli such as metal ions, gas molecules, pH values, temperature, electricity, light, etc. Moreover, the responsive mechanisms and design strategies, along with the applications of these stimulus-responsive 2D COFs in chemical sensors and photoelectronic devices are also discussed. It is believed that this review would provide some guidelines for designing novel single-/multistimulus-responsive 2D COFs with controllable responsive behaviors for advanced photoelectronic applications.
Collapse
Affiliation(s)
- Pengfei She
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yanyan Qin
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Xiang Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
13
|
Li Y, Li M, Liu L, Xue C, Fei Y, Wang X, Zhang Y, Cai K, Zhao Y, Luo Z. Cell-Specific Metabolic Reprogramming of Tumors for Bioactivatable Ferroptosis Therapy. ACS NANO 2022; 16:3965-3984. [PMID: 35200009 DOI: 10.1021/acsnano.1c09480] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ferroptosis is a nonapoptotic iron-dependent cell death pathway with a significant clinical potential, but its translation is impeded by lack of tumor-specific ferroptosis regulators and aberrant tumor iron metabolism. Herein, we report a combinational strategy based on clinically tested constituents to selectively induce ferroptosis in metabolically reprogrammed tumor cells through cooperative GPX4-inhibition and ferritinophagy-enabled Fe2+ reinforcement. Azido groups were first introduced on tumor cells using biocompatible long-circulating self-assemblies based on polyethylene glycol-disulfide-N-azidoacetyl-d-mannosamine via metabolic glycoengineering. The azido-expressing tumor cells could specifically react with dibenzocyclooctyne-modified disulfide-bridged nanoassemblies via bioorthogonal click reactions, where the nanoassemblies were loaded with ferroptosis inducer RSL3 and ferritinophagy initiator dihydroartemisinin (DHA) and could release them in a bioresponsive manner. DHA-initiated ferritinophagy could degrade intracellular ferritin to liberate stored iron species and cooperate with the RSL3-mediated GPX4-inhibition for enhanced ferroptosis therapy. This tumor-specific ferroptosis induction strategy provides a generally applicable therapy with enhanced translatability, especially for tumors lacking targetable endogenous receptors.
Collapse
Affiliation(s)
- Yanan Li
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Li Liu
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Chencheng Xue
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Yang Fei
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Xuan Wang
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Yuchen Zhang
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, P. R. China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
14
|
Charged nanochannels endow COF membrane with weakly concentration-dependent methanol permeability. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Venkata Sravani V, Sengupta S, Sreenivasulu B, Gopakumar G, Tripathi S, Chandra M, Brahmmananda Rao CVS, Suresh A, Nagarajan S. Highly efficient functionalized MOF-LIC-1 for extraction of U(VI) and Th(IV) from aqueous solution: experimental and theoretical studies. Dalton Trans 2022; 51:3557-3571. [PMID: 35143598 DOI: 10.1039/d1dt03317d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A set of four new functionalized MOFs, namely MOF-LIC-DPPC, MOF-LIC-GA, MOF-LIC-PCA and MOF-LIC-SA, were synthesized via the post-synthetic modification (PSM) strategy using MOF-LIC-1 for efficient extraction of U(VI) and Th(IV) from an aqueous medium. FTIR, powder XRD, TGA and SEM-EDX were employed for characterization of the functionalized MOFs. Sorption studies for U(VI) and Th(IV) were performed by monitoring the pH and contact time. Interestingly, the modified MOF-LIC-SA displayed rapid (∼5 min) and efficient extraction towards U(VI) and Th(IV) from an aqueous medium and modified MOF-LIC-DPPC displayed enhanced thermal stability (600 °C) compared with the parent MOF-LIC-1 (450 °C). These studies revealed that the grafted functionalities on MOF-LIC-1 possess enhanced sorption efficiency towards U(VI) and Th(IV) as well as thermal stability. MOF-LIC-SA exhibited the highest sorption capacity towards U(VI) and Th(IV), viz. 298 mg g-1 (pH 6) and 149 mg g-1 (pH 6), respectively. Leaching, recyclability, and radiation stability studies were also performed using MOF-LIC-1 MOFs. Additionally, we investigated the nature of U(VI) interactions on MOFs by applying density functional theory (DFT). PSM MOFs with various functionalities display high selectivity and efficient extraction of U(VI) and Th(IV) over a wide pH range (2-9) and also exhibit easy recovery of metal ions from MOFs. These studies reveal that U(VI) and Th(IV) can be extracted from aqueous streams in a pH range from 6 to 8 and potential applications of these MOFs include recovery of U(VI) and Th(IV) from mine water, sea water, etc. The studies reported in the present work also have extensive potential applications for environmental concerns as well as in the nuclear industry.
Collapse
Affiliation(s)
- V Venkata Sravani
- Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102, Tamil Nadu, India.,Material Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102, Tamil Nadu, India.
| | - Somnath Sengupta
- Material Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102, Tamil Nadu, India.
| | - B Sreenivasulu
- Material Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102, Tamil Nadu, India.
| | - Gopinadhanpillai Gopakumar
- Material Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102, Tamil Nadu, India.
| | - Sarita Tripathi
- Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102, Tamil Nadu, India
| | - Manish Chandra
- Material Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102, Tamil Nadu, India.
| | - C V S Brahmmananda Rao
- Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102, Tamil Nadu, India.,Material Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102, Tamil Nadu, India.
| | - A Suresh
- Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102, Tamil Nadu, India.,Material Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102, Tamil Nadu, India.
| | - Sivaraman Nagarajan
- Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102, Tamil Nadu, India.,Material Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102, Tamil Nadu, India.
| |
Collapse
|
16
|
Wang J, Wang K, Xu Y. Emerging Two-Dimensional Covalent and Coordination Polymers for Stable Lithium Metal Batteries: From Liquid to Solid. ACS NANO 2021; 15:19026-19053. [PMID: 34842431 DOI: 10.1021/acsnano.1c09194] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lithium metal anodes (LMAs) have attracted much attention in recent years because of their high theoretical capacity (3860 mAh g-1) and low electrochemical potential (-3.040 V vs standard hydrogen electrode). Lithium metal can be coupled with various cathodes to construct high-energy-density lithium metal batteries (LMBs) which hold great promise for next-generation batteries. However, the unstable solid electrolyte interphases (SEIs) and the uncontrollable lithium dendrite growth severely hinder the commercial development of LMAs. The emerging 2D polymers (2DPs), which possess high mechanical flexibility, high specific surface area, abundant surface chemistry, and rich chemical modification characteristics, have shown great advantages in addressing the inherent issues of LMAs. Herein, the current progress of 2DPs for stable and dendrite-free LMAs in liquid- and solid-based batteries is comprehensively reviewed. Some perspectives for the application of 2DPs in LMBs are also discussed. It is believed that the emerging 2DPs will provide insights into developing high-energy-density LMBs and beyond.
Collapse
Affiliation(s)
- Jiwei Wang
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
- Northeast Center for Chemical Energy Storage (NECCES), Binghamton University, Binghamton, New York 13902, United States
| | - Kaixi Wang
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, China
| | - Yuxi Xu
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
17
|
Wang Y, Chang JP, Xu R, Bai S, Wang D, Yang GP, Sun LY, Li P, Han YF. N-Heterocyclic carbenes and their precursors in functionalised porous materials. Chem Soc Rev 2021; 50:13559-13586. [PMID: 34783804 DOI: 10.1039/d1cs00296a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Though N-heterocyclic carbenes (NHCs) have emerged as diverse and powerful discrete functional molecules in pharmaceutics, nanotechnology, and catalysis over decades, the heterogenization of NHCs and their precursors for broader applications in porous materials, like metal-organic frameworks (MOFs), porous coordination polymers (PCPs), covalent-organic frameworks (COFs), porous organic polymers (POPs), and porous organometallic cages (POMCs) was not extensively studied until the last ten years. By de novo or post-synthetic modification (PSM) methods, myriads of NHCs and their precursors containing building blocks were designed and integrated into MOFs, PCPs, COFs, POPs and POMCs to form various structures and porosities. Functionalisation with NHCs and their precursors significantly expands the scope of the potential applications of porous materials by tuning the pore surface chemical/physical properties, providing active sites for binding guest molecules and substrates and realizing recyclability. In this review, we summarise and discuss the recent progress on the synthetic methods, structural features, and promising applications of NHCs and their precursors in functionalised porous materials. At the end, a brief perspective on the encouraging future prospects and challenges in this contemporary field is presented. This review will serve as a guide for researchers to design and synthesize more novel porous materials functionalised with NHCs and their precursors.
Collapse
Affiliation(s)
- Yao Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Jin-Ping Chang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China.
| | - Rui Xu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Sha Bai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China.
| | - Dong Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Guo-Ping Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China.
| | - Li-Ying Sun
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China.
| | - Peng Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China.
| |
Collapse
|
18
|
Zhang M, Chang JN, Chen Y, Lu M, Yu TY, Jiang C, Li SL, Cai YP, Lan YQ. Controllable Synthesis of COFs-Based Multicomponent Nanocomposites from Core-Shell to Yolk-Shell and Hollow-Sphere Structure for Artificial Photosynthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105002. [PMID: 34561905 DOI: 10.1002/adma.202105002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/26/2021] [Indexed: 06/13/2023]
Abstract
The precise tuning and multi-dimensional processing of covalent organic frameworks (COFs)-based materials into multicomponent superstructures with appropriate diversity are essential to maximize their advantages in catalytic reactions. However, up to now, it remains an ongoing challenge for the precise design of COFs-based multicomponent nanocomposites with diverse architectures. Herein, a metal organic framework (MOF)-sacrificed in situ acid-etching (MSISAE) strategy that enables continuous synthesis of core-shell, yolk-shell, and hollow-sphere COFs-based nanocomposites through tuning of core decomposition (NH2 -MIL-125 into TiO2 ) rate is developed. More importantly, due to the multiple active sites, fast transfer of carriers, increased light utilization ability, et al, one of the obtained samples, NH2 -MIL-125/TiO2 @COF-366-Ni-OH-HAc (yolk-shell) with special three components, exhibits high photocatalytic CO2 -to-CO conversion efficiency in the gas-solid mode. The MSISAE strategy developed in this work achieves the precise morphology design and control of multicomponent hybrid composites based on COFs, which may pave a new way in devealoping porous crystalline materials with powerful superstructures for multifunctional catalytic reactions.
Collapse
Affiliation(s)
- Mi Zhang
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Jia-Nan Chang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yifa Chen
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Meng Lu
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Tao-Yuan Yu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Cheng Jiang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Shun-Li Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yue-Peng Cai
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
19
|
Evans AM, Strauss MJ, Corcos AR, Hirani Z, Ji W, Hamachi LS, Aguilar-Enriquez X, Chavez AD, Smith BJ, Dichtel WR. Two-Dimensional Polymers and Polymerizations. Chem Rev 2021; 122:442-564. [PMID: 34852192 DOI: 10.1021/acs.chemrev.0c01184] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Synthetic chemists have developed robust methods to synthesize discrete molecules, linear and branched polymers, and disordered cross-linked networks. However, two-dimensional polymers (2DPs) prepared from designed monomers have been long missing from these capabilities, both as objects of chemical synthesis and in nature. Recently, new polymerization strategies and characterization methods have enabled the unambiguous realization of covalently linked macromolecular sheets. Here we review 2DPs and 2D polymerization methods. Three predominant 2D polymerization strategies have emerged to date, which produce 2DPs either as monolayers or multilayer assemblies. We discuss the fundamental understanding and scope of each of these approaches, including: the bond-forming reactions used, the synthetic diversity of 2DPs prepared, their multilayer stacking behaviors, nanoscale and mesoscale structures, and macroscale morphologies. Additionally, we describe the analytical tools currently available to characterize 2DPs in their various isolated forms. Finally, we review emergent 2DP properties and the potential applications of planar macromolecules. Throughout, we highlight achievements in 2D polymerization and identify opportunities for continued study.
Collapse
Affiliation(s)
- Austin M Evans
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael J Strauss
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Amanda R Corcos
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zoheb Hirani
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Woojung Ji
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Leslie S Hamachi
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Xavier Aguilar-Enriquez
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Anton D Chavez
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Brian J Smith
- Department of Chemistry, Bucknell University,1 Dent Drive, Lewisburg, Pennsylvania 17837, United States
| | - William R Dichtel
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
20
|
Wang H, He T, Quan D, Wang T, Li C, Shen Y. Thiosemicarbazide‐Linked Covalent Organic Framework: Preparation, Properties and Applications. ChemistrySelect 2021. [DOI: 10.1002/slct.202103227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Heping Wang
- Research Centre of New Materials Ankang Research Centre of Zn Based Materials Science and Technology School of Chemistry and Chemical Engineering Ankang University Ankang Shaanxi 725000 China
| | - Tengteng He
- Research Centre of New Materials Ankang Research Centre of Zn Based Materials Science and Technology School of Chemistry and Chemical Engineering Ankang University Ankang Shaanxi 725000 China
| | - Dandan Quan
- Research Centre of New Materials Ankang Research Centre of Zn Based Materials Science and Technology School of Chemistry and Chemical Engineering Ankang University Ankang Shaanxi 725000 China
| | - Tong Wang
- Research Centre of New Materials Ankang Research Centre of Zn Based Materials Science and Technology School of Chemistry and Chemical Engineering Ankang University Ankang Shaanxi 725000 China
| | - Cong Li
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an Shaanxi 710069 China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an Shaanxi 710069 China
| |
Collapse
|
21
|
Zhang L, Yang GP, Xiao SJ, Tan QG, Zheng QQ, Liang RP, Qiu JD. Facile Construction of Covalent Organic Framework Nanozyme for Colorimetric Detection of Uranium. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102944. [PMID: 34569138 DOI: 10.1002/smll.202102944] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/20/2021] [Indexed: 06/13/2023]
Abstract
2D covalent organic frameworks (2D COFs) have been recognized as a novel class of photoactive materials owing to their extended π-electron conjugation and high chemical stabilities. Herein, a new covalent organic framework (Tph-BDP) is facilely synthesized by using a porphyrin derivative and an organic dye BODIPY derivative (5,5-difluoro-2,8-diformyl-1,3,7,9-tetramethyl-10-phenyl-5H-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazabori-nin-4-ium-5-uide) as monomers for the first time, and their unique photosensitive properties endow them excellent simulated oxidase activity under 635 nm laser irradiation that can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). Further findings demonstrate that the presence of uranium (UO22+ ) can coordinate with imines of the oxidation products of TMB, thus modulating the charge transfer process of the colored products accompanied with intensive aggregation and remarkable color fading. This research provides a preparation strategy for COFs with excellent photocatalytic properties and nanozyme activity, and broadens the applications of the simple colorimetric methods for sensitive and selective radionuclide detection.
Collapse
Affiliation(s)
- Li Zhang
- College of Chemistry, Nanchang University, Nanchang, 330031, China
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology (ECUT), Nanchang, 330013, China
- Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, 330031, China
| | - Gui-Ping Yang
- College of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Sai-Jin Xiao
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology (ECUT), Nanchang, 330013, China
| | - Quan-Gen Tan
- College of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Qiong-Qing Zheng
- College of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Ru-Ping Liang
- College of Chemistry, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, 330031, China
| | - Jian-Ding Qiu
- College of Chemistry, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, 330031, China
| |
Collapse
|
22
|
Ghosh R, Paesani F. Topology-Mediated Enhanced Polaron Coherence in Covalent Organic Frameworks. J Phys Chem Lett 2021; 12:9442-9448. [PMID: 34554754 DOI: 10.1021/acs.jpclett.1c02454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We employ the Holstein model for polarons to investigate the relationship among defects, topology, Coulomb trapping, and polaron delocalization in covalent organic frameworks (COFs). We find that intrasheet topological connectivity and π-column density can override disorder-induced deep traps and significantly enhance polaron migration by several orders of magnitude in good agreement with recent experimental observations. The combination of percolation networks and micropores makes trigonal COFs ideally suited for charge transport followed by kagome/tetragonal and hexagonal structures. By comparing the polaron spectral signatures and coherence numbers of large three-dimensional frameworks having a maximum of 180 coupled chromophores, we show that controlling nanoscale defects and the location of the counteranion is critical for the design of new COF-based materials yielding higher mobilities. Our analysis establishes design strategies for enhanced conductivity in COFs that can be readily generalized to other classes of conductive materials such as metal-organic frameworks and perovskites.
Collapse
Affiliation(s)
- Raja Ghosh
- Department of Chemistry and Biochemistry, ‡Materials Science and Engineering, and §San Diego Supercomputer Center, University of California, San Diego, La Jolla, California 92093, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, ‡Materials Science and Engineering, and §San Diego Supercomputer Center, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
23
|
Wang H, Feng B, Zhang Q, Du Q, Bai Q, Li C, Shen Y. Amidinothiourea‐linked covalent organic framework for the adsorption of heavy metal ions. POLYM INT 2021. [DOI: 10.1002/pi.6281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Heping Wang
- Research Centre of New Materials, Ankang Research Centre of Zn Based Materials Science and Technology, School of Chemistry and Chemical Engineering Ankang University Ankang China
| | - Bang Feng
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science Northwest University Xi'an China
| | - Qianwen Zhang
- Research Centre of New Materials, Ankang Research Centre of Zn Based Materials Science and Technology, School of Chemistry and Chemical Engineering Ankang University Ankang China
| | - Qiang Du
- Research Centre of New Materials, Ankang Research Centre of Zn Based Materials Science and Technology, School of Chemistry and Chemical Engineering Ankang University Ankang China
| | - Qiuhong Bai
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science Northwest University Xi'an China
| | - Cong Li
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science Northwest University Xi'an China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science Northwest University Xi'an China
| |
Collapse
|
24
|
1-(4-Formyl-2,6-dimethoxyphenoxy)-4-chlorobut-2-yne. MOLBANK 2021. [DOI: 10.3390/m1252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A reaction of biomass-derived aldehyde synringaldehyde and half an equivalent of 1,4-dichlorobut-2-yne was attempted in order to obtain a bis-aldehyde with an alkyne spacer. The reaction was carried out in a basic media to effect bis O-alkylation, as described in literature for the preparation of structurally similar compounds. Nevertheless, only mono alkylation was observed.
Collapse
|
25
|
Liao C, Liu S. Tuning the physicochemical properties of reticular covalent organic frameworks (COFs) for biomedical applications. J Mater Chem B 2021; 9:6116-6128. [PMID: 34278394 DOI: 10.1039/d1tb01124c] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since the first report by Yaghi's group in 2005, research enthusiasm has been increasingly raised to synthesize diverse crystalline porous materials as -B-O-, -C-N-, -C-C-, and -C-O- linkage-based COFs. Recently, the biomedical applications of COFs have become more and more attractive in biomedical applications, including drug delivery, bioimaging, biosensing, antimicrobial, and therapeutic applications, as these materials bear well-defined crystalline porous structures and well-customized functionalities. However, the clinical translation of these research findings is challenging due to the formidable hindrances for in vivo use, such as low biocompatibility, poor selectivity, and long bio-persistence. Some attempts have raised a promising solution towards these obstacles by tailored engineering the functionalities of COFs. To speed up the clinical translations of COFs, a short review of principles and strategies to tune the physicochemical properties of COFs is timely and necessary. In this review, we summarized the biomedical utilities of COFs and discussed the related key physicochemical properties. To improve the performances of COFs in biomedical uses, we propose approaches for the tailored functionalization of COFs, including large-scale manufacture, standardization in nanomedicines, enhancing targeting efficacy, maintaining predesigned functions upon transformations, and manipulation of multifunctional COFs. We expect that this minireview strengthens the fundamental understandings of property-bioactivity relationships of COFs and provides insights for the rational design of their high-order reticular structures.
Collapse
Affiliation(s)
- Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | | |
Collapse
|
26
|
Liu Q, Wang X, Tan B, Jin S. Transition-metal-free radical homocoupling polymerization to synthesize conjugated poly(phenylene butadiynylene) polymers. Polym Chem 2021. [DOI: 10.1039/d1py00266j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A transition-metal-free radical polymerization method to synthesize conjugated poly(phenylene butadiynylene) polymers with high surface areas and high gas uptake abilities.
Collapse
Affiliation(s)
- Qingmin Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan
| | - Xuepeng Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan
| | - Shangbin Jin
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan
| |
Collapse
|