1
|
Yang H, Feng HX, Chen J, Zhou L. Strategies for the Synthesis of Mechanically Planar Chiral Rotaxanes. Chemistry 2025; 31:e202500898. [PMID: 40217105 DOI: 10.1002/chem.202500898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/27/2025]
Abstract
Rotaxanes, belonging to the class of classical mechanically interlocked molecules (MIMs), exhibit chiral properties that diverge from those of traditional chiral elements, particularly displaying mechanically planar chirality. Their distinctive spatial structure further augments their chiral significance, thereby imparting them with vast potential for applications in the realm of chiral materials and asymmetric catalysis. In recent years, mechanically planar chiral rotaxanes have garnered increasing attention from researchers. In this review, we summarize the recent advancements in obtaining enantiopure mechanically planar chiral rotaxanes. In this regard, chiral separation techniques, the use of chiral auxiliaries, and asymmetric catalytic synthesis have emerged as potent methodologies for constructing chiral rotaxanes, thereby enabling the synthesis of diverse types of mechanically planar chiral rotaxanes. Additionally, we analyze the current challenges faced in this field and look forward to the future development opportunities that lie ahead.
Collapse
Affiliation(s)
- Hui Yang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Hong-Xia Feng
- Department of Central Laboratory, Xi'an Peihua University, Xi'an, 710125, China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China
| |
Collapse
|
2
|
Ren YK, Li Y, Liang MJ, Ma JW, Niu ZX, Xiao XQ. Self-Assembly and Dynamic Equilibrium of Trinuclear and Tetranuclear Cu(I) Supramolecules Featuring nido-Carborane-Supported N-Heterocyclic Carbene Ligands. Inorg Chem 2025; 64:9727-9734. [PMID: 40340339 DOI: 10.1021/acs.inorgchem.5c00935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
The self-assembly of metallo-supramolecules has attracted considerable attention in recent decades. These discrete architectures are primarily driven by coordination interactions, typically involving M-N/O (Werner-type) or M-C (organometallic) bonding. However, the use of M-π interactions for constructing these multinuclear complexes remains largely unexplored. In this work, we report the self-assembly of trinuclear and tetranuclear copper(I) complexes driven by a combination of M-π and M-C coordination interactions. These multinuclear Cu(I)-NHC complexes were synthesized from the nido-carborane-supported N-heterocyclic carbene (NHC) precursors and Cu(I) ions. In solution, a dynamic equilibrium between the trinuclear and tetranuclear species was observed, as confirmed by the variable-temperature NMR spectrum. Van't Hoff analysis revealed that the equilibrium is endothermic (ΔHeq = 53.6 kJ mol-1) and entropically driven (ΔSeq = 158 J mol-1 K-1). The solid-state structures of both forms were elucidated through single-crystal XRD analysis. Density functional theory calculations showed that the Cu-CNHC bonds in these complexes are relatively weak (∼100 kJ mol-1, approximately one-third of the strength of typical Cu-CNHC bonds). This is attributed to the strong Coulombic attraction between positively charged Cu(I) and negatively charged nido-carborane ligands (M-π interactions), which significantly reduces the bond strength between Cu(I) and neutral NHC moieties (M-C bonding).
Collapse
Affiliation(s)
- Yun-Kang Ren
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Zhejiang Key Laboratory of Organosilicon Material Technology, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318 Yuhangtang Road, Hangzhou 311121, Zhejiang, China
| | - Yiwen Li
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Zhejiang Key Laboratory of Organosilicon Material Technology, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318 Yuhangtang Road, Hangzhou 311121, Zhejiang, China
| | - Mei-Juan Liang
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Zhejiang Key Laboratory of Organosilicon Material Technology, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318 Yuhangtang Road, Hangzhou 311121, Zhejiang, China
| | - Jin-Wen Ma
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Zhejiang Key Laboratory of Organosilicon Material Technology, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318 Yuhangtang Road, Hangzhou 311121, Zhejiang, China
| | - Zi-Xuan Niu
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Zhejiang Key Laboratory of Organosilicon Material Technology, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318 Yuhangtang Road, Hangzhou 311121, Zhejiang, China
| | - Xu-Qiong Xiao
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Zhejiang Key Laboratory of Organosilicon Material Technology, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318 Yuhangtang Road, Hangzhou 311121, Zhejiang, China
| |
Collapse
|
3
|
Shan WL, Si N, Xu MT, Chen ZY, Zhao G, Tang H, Jin GX. One-Step Directed Self-Assembly of Molecular Closed Four-Link Chains and Borromean Links. Angew Chem Int Ed Engl 2025; 64:e202501965. [PMID: 39980201 DOI: 10.1002/anie.202501965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 02/22/2025]
Abstract
Despite substantial advancements in the synthesis of mechanically interlocked molecules (MIMs), the efficient construction of higher order links remains a formidable challenge. Herein, we report the highly efficient one-step directed construction of a series of unprecedented molecular closed four-link chains (84 1 metalla-links), achieved through the synergistic assembly of coordination-driven and aromatic stacking interactions involving binuclear rhodium/iridium precursors and bis-dentate benzothiadiazole derivative ligands. Meanwhile, modulating the substituent positions of the pyridine groups in the ligand resulted in a change in topological structure, leading to the formation of two molecular Borromean links (6 2 3 ${6_2^3 }$ metalla-links). The molecular configurations of the abovementioned metalla-links were clearly identified through mass spectrometry, NMR, and single-crystal X-ray diffraction. Furthermore, structural transformation between the molecular Borromean links and corresponding monocycles was achieved through concentration effects, as validated by solution-state NMR spectroscopy investigations.
Collapse
Affiliation(s)
- Wei-Long Shan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P. R. China
| | - Nian Si
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
| | - Meng-Ting Xu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
| | - Zhi-Yang Chen
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
| | - Gen Zhao
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
| | - Haitong Tang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P. R. China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P. R. China
| |
Collapse
|
4
|
Tang H, Zou Y, Zhang HN, Jin GX. Stereoselective construction of coconformational mechanically helical and topologically chiral [2]catenanes induced by point chirality. Proc Natl Acad Sci U S A 2025; 122:e2426356122. [PMID: 40314977 PMCID: PMC12067221 DOI: 10.1073/pnas.2426356122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/21/2025] [Indexed: 05/03/2025] Open
Abstract
Supported by chiral stationary phase high-performance liquid chromatography HPLC (CSP-HPLC), examples of chiral mechanically interlocked organic molecules, including knots, rotaxanes, and catenanes, have been reported. However, the exploration of stereoselective construction of chiral cationic complexes, particularly those induced by point chirality, has been notably limited due to the constraints posed by the type of chiral chromatographic columns and separation efficiency. To address this, we have developed a construction strategy for generating coconformational mechanically helical and topologically chiral [2]catenanes through the induction of point chirality. In this study, by adjusting the symmetry of the ligand, we have easily realized the efficient construction of high-yield crystalline coconformational mechanically helical and topologically chiral [2]catenanes. Moreover, within the enantiomerically pure chiral environment of molecular self-assembly driven by L-alanine and L-valine residues in bidentate ligands, the coconformational mechanically helical and topologically chiral [2]catenanes exist exclusively as a single enantiomer, thus eliminating the need for laborious CSP-HPLC separation from racemic mixtures. The generation of the opposite enantiomer can be realized by employing unsymmetrical ligands containing corresponding D-alanine and D-valine residues, as confirmed through single-crystal X-ray diffraction, elemental analysis, electrospray-ionization time-of-flight mass spectrometry, solution-state NMR spectroscopy, and circular dichroism spectroscopy.
Collapse
Affiliation(s)
- Haitong Tang
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai200433, People’s Republic of China
| | - Yan Zou
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai200433, People’s Republic of China
| | - Hai-Ning Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai200433, People’s Republic of China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai200433, People’s Republic of China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210093, People’s Republic of China
| |
Collapse
|
5
|
Dang LL, Zheng J, Tian D, Chai YH, Wu TT, Yang JX, Wang P, Zhao Y, Aznarez F, Ma LF. Highly Selective Construction of Unique Cyclic [4]Catenanes Induced by Multiple Noncovalent Interactions. Angew Chem Int Ed Engl 2025; 64:e202422444. [PMID: 39714342 DOI: 10.1002/anie.202422444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
The synthesis of high-ordered mechanically interlocked supramolecular structures is an extremely challenging topic. Only two linear [4]catenanes have been reported so far and there is no defined strategy to obtain cyclic [4]catenane. Herein, two unprecedented cyclic [4]catenanes, 1 and 2, were prepared in high yields. The syntheses rely on the strategic selection of naphthalenediimide (NDI) based Cp*Rh/Ir building blocks E1/E2 (Cp*=pentamethyl-cyclopentadienyl) and nonlinear diimidazole ligand precursor L1, exhibiting large conjugate plane, appropriate coordination angles, and freely rotating imidazole units, thereby enabling multiple π⋅⋅⋅π stacking interactions to maintain the supramolecular structures. The use of other Cp*Rh building blocks E3, E4 or E5 featuring slightly shorter metal-to-metal distances than E1/E2 and different chemical properties led to the formation of a complex 3 and two metallamacrocycles 4 or 5, respectively. The structures of these assemblies were confirmed by X-ray crystallographic analysis, ESI-TOF-MS and NMR spectroscopy. Complex 1, exhibiting a broad-band absorption in the UV/Vis to NIR regions and a remarkable photothermal conversion was thereafter used to build the new 1 membrane. The solar power-induced water steam generation performance of 1 membrane was investigated, reaching a value of 2.37 kg ⋅ m-2 ⋅ h-1, making it suitable for collection of fresh water via desalination and wastewater.
Collapse
Affiliation(s)
- Li-Long Dang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934, P. R. China
| | - Jie Zheng
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934, P. R. China
- College of materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, P. R. China
| | - Dan Tian
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Yin-Hang Chai
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934, P. R. China
| | - Tian-Tian Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Jian-Xin Yang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934, P. R. China
| | - Peng Wang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934, P. R. China
| | - Ying Zhao
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934, P. R. China
| | - Francisco Aznarez
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934, P. R. China
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934, P. R. China
- College of materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, P. R. China
| |
Collapse
|
6
|
Woods CZ, Sharma K, Chen C, Yang L, Chen J, Wu YC, Farooqi NS, Zhang J, Julian RR, Hooley RJ. Solvent Effects and Internal Functions Control Molecular Recognition of Neutral Substrates in Functionalized Self-Assembled Cages. J Org Chem 2025; 90:240-249. [PMID: 39680645 DOI: 10.1021/acs.joc.4c02190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
A suite of internally functionalized Fe4L6 cage complexes has been synthesized with lipophilic end groups to allow dissolution in varied solvent mixtures, and the scope of their molecular recognition of a series of neutral, nonpolar guests has been analyzed. The lipophilic end groups confer cage solubility in solvents with a wide range of polarities, from hexafluoroisopropanol (HFIP) to tetrahydrofuran, and the hosts show micromolar affinities for neutral guests, despite having no flat panels enclosing the cavity. These hosts allow interrogation of the effects of an internal functional group on guest binding properties, as well as solvent-based driving forces for recognition. Introducing polar effects to the interior of the cavity enhances guest binding affinity in nonpolar solvents; adding space-filling aliphatic groups reduces affinity in all cases. While high dielectric solvents such as acetonitrile strongly favor guest binding, "low dielectric, high polarity" solvents such as HFIP strongly occupy the cavity and prevent guest recognition. Analysis of the cage optical transitions shows that the guests interact with the central ligand cores and reside in close proximity to the internal functions. These results have implications for supramolecular catalysis: balancing directed host:guest interactions (e.g., H-bonds) with entropic effects from solvent displacement is essential for reactions in these (and related) biomimetic hosts.
Collapse
Affiliation(s)
- Connor Z Woods
- Department of Chemistry and the UCR Center for Catalysis, University of California-Riverside, Riverside, California 92521, United States
| | - Komal Sharma
- Department of Chemistry and the UCR Center for Catalysis, University of California-Riverside, Riverside, California 92521, United States
| | - Chengwei Chen
- Department of Chemistry and the UCR Center for Catalysis, University of California-Riverside, Riverside, California 92521, United States
| | - Lei Yang
- Department of Chemistry and the UCR Center for Catalysis, University of California-Riverside, Riverside, California 92521, United States
| | - Junyi Chen
- Department of Chemistry and the UCR Center for Catalysis, University of California-Riverside, Riverside, California 92521, United States
| | - Yu-Chen Wu
- Department of Chemistry and the UCR Center for Catalysis, University of California-Riverside, Riverside, California 92521, United States
| | - Naira S Farooqi
- Department of Chemistry and the UCR Center for Catalysis, University of California-Riverside, Riverside, California 92521, United States
| | - Jingsong Zhang
- Department of Chemistry and the UCR Center for Catalysis, University of California-Riverside, Riverside, California 92521, United States
| | - Ryan R Julian
- Department of Chemistry and the UCR Center for Catalysis, University of California-Riverside, Riverside, California 92521, United States
| | - Richard J Hooley
- Department of Chemistry and the UCR Center for Catalysis, University of California-Riverside, Riverside, California 92521, United States
| |
Collapse
|
7
|
Liu LC, Liao YL, Ma HR, Shi HT, Yu WB. Using Rigidity and Conjugation of Subunits to Modulate Supramolecular Topologies Constructed by Half-Sandwich Fragments. Chem Asian J 2024; 19:e202400959. [PMID: 39251401 DOI: 10.1002/asia.202400959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/11/2024]
Abstract
The synthesis of supramolecular compounds with a high degree of controllability and the targeted modulation of their topological transitions pose significant challenges in situ. In this study, we have successfully constructed an array of discrete structures based on a series of bidentate pyridyl ligands (L1, L2, and L3), which were subsequently ligated with half-sandwiched (Cp*Ir fragments) building blocks. Our further investigations elucidate a strategy for coordinating the relative lengths of the bidentate ligands with the building blocks, achieving specific concentrations that drive the transformation of tetranuclear metal macrocycles into Borromean rings. Notably, the distinct characteristics of the three pyridyl ligands markedly influence the efficiency of synthesis and the topological conversion of the supramolecular macrocycles. Detailed structural analyses reveal that π-π stacking interactions, the electron-donating capabilities of the ligands, and hydrogen-bonding interactions are pivotal in stabilizing these molecular macrocycles and in facilitating their transformation to Borromean rings. The analyses underscore the importance of the electron-rich effect induced by the sulfur atoms in the ligands and the regulation and modulation of the pyridine functional group in contributing to the structural stability and altered characteristics of the macrocycles.
Collapse
Affiliation(s)
- Liang-Chen Liu
- Institutes of Molecular Engineering and Applied Chemistry, Analysis and Testing Central Facility, Anhui University of Technology, Ma'anshan, 243002, P. R. China
| | - Yu-Luan Liao
- Institutes of Molecular Engineering and Applied Chemistry, Analysis and Testing Central Facility, Anhui University of Technology, Ma'anshan, 243002, P. R. China
| | - Hui-Rong Ma
- Institutes of Molecular Engineering and Applied Chemistry, Analysis and Testing Central Facility, Anhui University of Technology, Ma'anshan, 243002, P. R. China
| | - Hua-Tian Shi
- Institutes of Molecular Engineering and Applied Chemistry, Analysis and Testing Central Facility, Anhui University of Technology, Ma'anshan, 243002, P. R. China
| | - Wei-Bin Yu
- Institutes of Molecular Engineering and Applied Chemistry, Analysis and Testing Central Facility, Anhui University of Technology, Ma'anshan, 243002, P. R. China
| |
Collapse
|
8
|
Arun A, Tay HM, Beer PD. Mechanically interlocked host systems for ion-pair recognition. Chem Commun (Camb) 2024; 60:11849-11863. [PMID: 39300837 DOI: 10.1039/d4cc03916e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The ever-increasing interest directed towards the construction of host architectures capable of the strong and selective recognition of various ionic species of biological, medical and environmental importance has identified mechanically interlocked molecules (MIMs), such as rotaxanes and catenanes, as potent host systems, owing to their unique three-dimensional topologically preorganised cavity recognition environments. Ion-pair receptors are steadily gaining prominence over monotopic receptor analogues due to their enhanced binding strength and selectivity, demonstrated primarily through acyclic and macrocyclic heteroditopic host systems. Exploiting the mechanical bond for ion-pair recognition through the strategic design of neutral heteroditopic MIMs offers exciting opportunities to accomplish potent and effective binding while mitigating competing interactions from the bulk solvent and counter-ions. This review details the design and ion-pair recognition capabilities of rotaxanes and catenanes employing hydrogen bonding (HB) and halogen bonding (XB) motifs, providing valuable insight into the burgeoning field and inspiration for future research.
Collapse
Affiliation(s)
- Arya Arun
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK.
- Department of Chemistry, University of Oxford, Rodney Porter Building, Sibthorp Road, Oxford OX1 3QU, UK
| | - Hui Min Tay
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK.
| | - Paul D Beer
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK.
| |
Collapse
|
9
|
Huang YZ, Yang R, Zhang L, Chen ZN. Phosphorescent metallaknots of Au(I)-bis(acetylide) strands directed by Cu(I) π-coordination. Proc Natl Acad Sci U S A 2024; 121:e2403721121. [PMID: 39298486 PMCID: PMC11441568 DOI: 10.1073/pnas.2403721121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/25/2024] [Indexed: 09/21/2024] Open
Abstract
Knots containing metal atoms as part of their continuous strand backbone are termed as metallaknots. While several metallaknots have been synthesized through one-pot self-assembly, the designed synthesis of metallaknots by controlling the arrangement of entanglements and strands connectivity remains unexplored. Here, we report the synthesis of metallaknots composed with Au(I)-bis(acetylide) linkages and templated by Cu(I) ions. Varying the ratio of the building blocks results in the switchable formation of two trefoil knots with different stoichiometries and symmetries (C2 or D3) and an entangled metalla-complex. While the entangled complex formed serendipitously, the strand ends can be subsequently linked through coordinative closure to generate a 41 metallaknot in a highly designable fashion. The comparable structural characteristics of resulting metalla-complexes allow us to probe the correlations between their topologies and photophysical properties, showing the backbone rigidity of knots endows complexes with excellent phosphorescent properties. This strategy, in conjunction with the coordinative closure approach, provides a straightforward route for the formation of highly phosphorescent metallaknots that were previously challenging to access.
Collapse
Affiliation(s)
- Ya-Zi Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou350002, P. R. China
- Fujian College, University of Chinese Academy of Sciences, Beijing100039, P. R. China
| | - Raorao Yang
- Frontiers Science Center of Molecular Intelligent Synthesis, East China Normal University, Shanghai200062, P. R. China
| | - Liang Zhang
- Frontiers Science Center of Molecular Intelligent Synthesis, East China Normal University, Shanghai200062, P. R. China
| | - Zhong-Ning Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou350002, P. R. China
- Fujian College, University of Chinese Academy of Sciences, Beijing100039, P. R. China
| |
Collapse
|
10
|
Tay HM, Docker A, Hua C, Beer PD. Selective sodium halide over potassium halide binding and extraction by a heteroditopic halogen bonding [2]catenane. Chem Sci 2024; 15:13074-13081. [PMID: 39148789 PMCID: PMC11322978 DOI: 10.1039/d4sc03381g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
The synthesis and ion-pair binding properties of a heteroditopic [2]catenane receptor exhibiting highly potent and selective recognition of sodium halide salts are described. The receptor design consists of a bidentate halogen bonding donor motif for anion binding, as well as a di(ethylene glycol)-derived cation binding pocket which dramatically enhances metal cation affinity over previously reported homo[2]catenane analogues. 1H NMR cation, anion and ion-pair binding studies reveal significant positive cooperativity between the cation and anion binding events in which cation pre-complexation to the catenane subsequently 'switches-on' anion binding. Notably, the heteroditopic catenane displayed impressive selectivity for sodium halide recognition over the corresponding potassium halides. We further demonstrate that the catenane is capable of extracting solid alkali metal salts into organic media. Crucially, the observed solution phase binding selectivity for sodium halides translates to superior functional extraction capabilities of these salts relative to potassium halides, overcoming the comparatively higher lattice enthalpies NaX > KX dictated by the smaller alkali metal sodium cation. This is further exemplified in competitive solid-liquid experiments which revealed the exclusive extraction of sodium halide salts from solid mixtures of sodium and potassium halide salts.
Collapse
Affiliation(s)
- Hui Min Tay
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Andrew Docker
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford Mansfield Road Oxford OX1 3TA UK
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Carol Hua
- School of Chemistry, The University of Melbourne Parkville Victoria 3010 Australia
| | - Paul D Beer
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
11
|
Bao SJ, Zou Y, Zhang HN, Jin GX. The codriven assembly of molecular metalla-links ([Formula: see text], [Formula: see text]) and metalla-knots ([Formula: see text], [Formula: see text]) via coordination and noncovalent interactions. Proc Natl Acad Sci U S A 2024; 121:e2407570121. [PMID: 38941275 PMCID: PMC11228484 DOI: 10.1073/pnas.2407570121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/03/2024] [Indexed: 06/30/2024] Open
Abstract
Although mechanically interlocked molecules (MIMs) display unique properties and functions associated with their intricate connectivity, limited assembly strategies are available for their synthesis. Herein, we presented a synergistic assembly strategy based on coordination and noncovalent interactions (π-π stacking and CH⋯π interactions) to selectively synthesize molecular closed three-link chains ([Formula: see text] links), highly entangled figure-eight knots ([Formula: see text] knots), trefoil knot ([Formula: see text] knot), and Borromean ring ([Formula: see text] link). [Formula: see text] links can be created by the strategic assembly of nonlinear multicurved ligands incorporating a furan or phenyl group with the long binuclear half-sandwich organometallic Cp*RhIII (Cp* = η5-pentamethylcyclopentadienyl) clip. However, utilizing much shorter binuclear Cp*RhIII units for union with the 2,6-naphthyl-containing ligand led to a [Formula: see text] knot because of the increased π-π stacking interactions between four consecutive stacked layers and CH⋯π interactions. Weakening such π-π stacking interactions resulted in a [Formula: see text] knot. The universality of this synergistic assembly strategy for building [Formula: see text] knots was verified by utilizing a 1,5-naphthyl-containing ligand. Quantitative conversion between the [Formula: see text] knot and the simple macrocycle species was accomplished by adjusting the concentrations monitored by NMR spectroscopy and electrospray ionization mass spectrometry (ESI-MS). Furthermore, increasing the stiff π-conjugated area of the binuclear unit afforded molecular Borromean ring, and this topology is a topological isomer of the [Formula: see text] link. These artificial metalla-links and metalla-knots were confirmed by single-crystal X-ray diffraction, NMR and ESI-MS. The results offer a potent strategy for building higher-order MIMs and emphasize the critical role that noncovalent interactions play in creating sophisticated topologies.
Collapse
Affiliation(s)
- Shu-Jin Bao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai200433, People’s Republic of China
| | - Yan Zou
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai200433, People’s Republic of China
| | - Hai-Ning Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai200433, People’s Republic of China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai200433, People’s Republic of China
| |
Collapse
|
12
|
Tang H, Zhang HN, Gao X, Zou Y, Jin GX. The Topological Transformation of Trefoil Knots to Solomon Links via Diels-Alder Click Reaction. J Am Chem Soc 2024; 146:16020-16027. [PMID: 38815259 DOI: 10.1021/jacs.4c03019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The quest for more efficient, user-friendly, and less wasteful topological transformations remains a significant challenge in the realm of postassembly modifications. In this article, high yields of two molecular trefoil knots (Rh-1, Ir-1) were obtained using ligand 3,6-bis(3-(pyridin-4-yl)phenyl)-1,2,4,5-tetrazine (L1) with reactive tetrazine units and binuclear half-sandwich organometallic units [Cp*2M2(μ-TPPHZ)(OTf)2](OTf)2 (Rh-B, M = RhIII; Ir-B, M = IrIII). 2,5-Norbornadiene was used as an inducer of the Diels-Alder click reaction to modulate rapidly and efficiently the transformation of Trefoil knots to Solomon links. However, the key to achieving this topological structural change is the subtle increase in site steric of the pyridazine fragments (L2), which allows the molecular structures to spread and bend in three-dimensional space, as confirmed by single-crystal X-ray diffraction, ESI-TOF/MS, elementary analysis and detailed solution-state NMR techniques.
Collapse
Affiliation(s)
- Haitong Tang
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| | - Hai-Ning Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| | - Xiang Gao
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| | - Yan Zou
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| |
Collapse
|
13
|
Shan WL, Hou HH, Si N, Wang CX, Yuan G, Gao X, Jin GX. Selective Construction and Structural Transformation of Homogeneous Linear Metalla[4]catenane and Metalla[2]catenane Assemblies. Angew Chem Int Ed Engl 2024; 63:e202402198. [PMID: 38319045 DOI: 10.1002/anie.202402198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/07/2024]
Abstract
Although the synthesis of mechanically interlocked molecules has been extensively researched, selectively constructing homogeneous linear [4]catenanes remains a formidable challenge. Here, we selectively constructed a homogeneous linear metalla[4]catenane in a one-step process through the coordination-driven self-assembly of a bidentate benzothiadiazole derivative ligand and a binuclear half-sandwich rhodium precursor. The formation of metalla[4]catenanes was facilitated by cooperative interactions between strong sandwich-type π-π stacking and non-classical hydrogen bonds between the components. Moreover, by modulating the aromatic substituents on the binuclear precursor, two homogeneous metalla[2]catenanes were obtained. The molecular structures of these metallacatenanes were unambiguously characterized by single-crystal X-ray diffraction analysis. Additionally, reversible structural transformation between metal-catenanes and the corresponding metallarectangles could be achieved by altering their concentration, as confirmed by mass spectrometry and NMR spectroscopy studies.
Collapse
Affiliation(s)
- Wei-Long Shan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P. R. China
| | - Huan-Huan Hou
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
| | - Nian Si
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
| | - Cai-Xia Wang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
| | - Guozan Yuan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
| | - Xiang Gao
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P. R. China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P. R. China
| |
Collapse
|
14
|
Hao Q, Zhang Y, Zheng J, Guo K, Xu D. Highly branched and ultrathin Au nanodendrites for reduction catalysis. J Colloid Interface Sci 2024; 658:879-888. [PMID: 38157612 DOI: 10.1016/j.jcis.2023.12.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Two-dimensional (2D) materials have garnered significant attention due to their distinctive physicochemical properties, with 2D noble metal nanodendrites being particularly intriguing in terms of their properties and functional prospects. However, the synthesis of ultrathin and highly branched gold nanodendrites (AuNDs) still poses challenges. In this study, we successfully achieved the synthesis of highly branched 2D AuNDs with a thickness of 4 nm by employing a carboxyl-functionalized C22-tailed surfactant along with the co-directing agent 2-mercaptonicotinic acid (2-MNA). The careful selection of specific thiol molecules such as 2-MNA is crucial for controlling the degree of branching and promoting the formation of ultrathin nanodendrites. Furthermore, we extended this method to synthesize alloy nanodendrites (AuAg NDs and AuCoAg NDs) using a similar approach. Due to their highly branched and ultrathin two-dimensional morphology, these prepared AuNDs exhibit excellent catalytic performance in the model reaction for 4-NP reduction. This thiol-induced synthesis strategy for AuNDs opens up new possibilities for designing other Au nanomaterials with an ultrathin morphology/structure.
Collapse
Affiliation(s)
- Qiaoqiao Hao
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Yan Zhang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Jinyu Zheng
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Ke Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, Jiangsu 210023, China.
| | - Dongdong Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
15
|
Yang X, Liu W, Liu X, Sun Y, Wang X, Shao Y, Liu W. Construction of Multifunctional Luminescent Lanthanide MOFs for Luminescent Sensing of Temperature, Trifluoroacetic Acid Vapor and Explosives. Inorg Chem 2024; 63:3921-3930. [PMID: 38335732 DOI: 10.1021/acs.inorgchem.3c04380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Metal-organic frameworks (MOFs) with multifunctional and tunable optical properties have unique advantages in the field of sensing, and the structure and properties of MOFs are significantly influenced by the ligands. In this study, a Y-type tricarboxylic acid ligand containing amide bonds was synthesized through functional guidance, and three isomorphic and heterogeneous three-dimensional MOFs (Eu-MOF, Tb-MOF, and Gd-MOF) were obtained by solvothermal reaction. Further studies revealed that both the Tb-MOF and Eu-MOF could selectively detect picric acid (PA). The luminescence quenching of the two MOFs by PA was attributed to competing absorption and photoelectron energy transfer mechanisms. In addition, due to the energy transfer between Tb and Rhodamine B, Rhodamine B was encapsulated into Tb-MOF. The obtained material exhibited a linear relationship between the temperature parameters I544/I584 and temperature within the range of 280-400 K, the correlation coefficient (R2) reached an impressive value of 0.999, and the absolute sensitivity of the sample used for temperature sensing was 1.534% K-1. What is more, the material exhibited a good response to trifluoroacetic acid vapor, which suggests the potential of the material for temperature sensing and detection of trifluoroacetic acid vapor. The designed and investigated strategy can also serve as a reference for further research on excellent multifunctional sensors.
Collapse
Affiliation(s)
- Xiaoshan Yang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotope, College of Chemistry and Chemical Engineering, Lanzhou University, 730000 Lanzhou, China
| | - Wei Liu
- Frontiers Science Center for Rare Isotope, School of Nuclear Science and Technology, Institute of National Nuclear Industry, Lanzhou University, 730000 Lanzhou, China
| | - Xueguang Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotope, College of Chemistry and Chemical Engineering, Lanzhou University, 730000 Lanzhou, China
| | - Yiliang Sun
- Frontiers Science Center for Rare Isotope, School of Nuclear Science and Technology, Institute of National Nuclear Industry, Lanzhou University, 730000 Lanzhou, China
| | - Xiaoyan Wang
- Frontiers Science Center for Rare Isotope, School of Nuclear Science and Technology, Institute of National Nuclear Industry, Lanzhou University, 730000 Lanzhou, China
| | - Yongliang Shao
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotope, College of Chemistry and Chemical Engineering, Lanzhou University, 730000 Lanzhou, China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotope, College of Chemistry and Chemical Engineering, Lanzhou University, 730000 Lanzhou, China
| |
Collapse
|
16
|
Li Y, Jiang H, Zhang W, Zhao X, Sun M, Cui Y, Liu Y. Hetero- and Homointerlocked Metal-Organic Cages. J Am Chem Soc 2024; 146:3147-3159. [PMID: 38279915 DOI: 10.1021/jacs.3c10734] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Interlocked molecular assemblies constitute a captivating ensemble of chemical topologies, comprising two or more separate components that exhibit remarkably intricate structures. The interlocked molecular assemblies are typically identical, and heterointerlocked systems that comprise structurally distinct assemblies remain unexplored. Here, we demonstrate that metal-templated synthesis can be exploited to afford not only a homointerlocked cage but also a heterointerlocked cage. Treatment of a carboxylated 2,9-dimethyl-1,10-phenanthroline (dmp) or Cu(I) bis-dmp linker with a Ni4-p-tert-butylsulfonylcalix[4]arene cluster affords noninterlocked octahedron and quadruply interlocked double cages consisting of two identical tetragonal pyramids, respectively. In contrast, when a mixture of dmp and Cu(I) bis-dmp linkers is used, a quadruply heterointerlocked cage is produced, consisting of a tetragonal pyramid and an octahedron. With photoredox-active [Cu(dmp)2]+ in the structures, both interlocked cages exhibit remarkable performance as photocatalysts for atom transfer radical addition (ATRA) reactions of trifluoromethanesulfonyl chloride with alkenes or oxo-azidations of vinyl arenes. These interlocked structures serve the dual purpose of stabilizing photocatalytically active components against deactivation and encapsulating substrates within the cavity, resulting in yields comparable to or even surpassing those of their molecular counterparts. This work thus provides a new strategy that combines metal templating and nontemplating approaches to design new types of interlocked assemblies with intriguing architectures and properties.
Collapse
Affiliation(s)
- Yingguo Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenqiang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangxiang Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meng Sun
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
17
|
Garci A, Abid S, David AHG, Jones LO, Azad CS, Ovalle M, Brown PJ, Stern CL, Zhao X, Malaisrie L, Schatz GC, Young RM, Wasielewski MR, Stoddart JF. Exciplex Emission and Förster Resonance Energy Transfer in Polycyclic Aromatic Hydrocarbon-Based Bischromophoric Cyclophanes and Homo[2]catenanes. J Am Chem Soc 2023; 145:18391-18401. [PMID: 37565777 DOI: 10.1021/jacs.3c04213] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Energy transfer and exciplex emission are not only crucial photophysical processes in many living organisms but also important for the development of smart photonic materials. We report, herein, the rationally designed synthesis and characterization of two highly charged bischromophoric homo[2]catenanes and one cyclophane incorporating a combination of polycyclic aromatic hydrocarbons, i.e., anthracene, pyrene, and perylene, which are intrinsically capable of supporting energy transfer and exciplex formation. The possible coconformations of the homo[2]catenanes, on account of their dynamic behavior, have been probed by Density Functional Theory calculations. The unique photophysical properties of these exotic molecules have been explored by steady-state and time-resolved absorption and fluorescence spectroscopies. The tetracationic pyrene-perylene cyclophane system exhibits emission emanating from a highly efficient Förster resonance energy transfer (FRET) mechanism which occurs in 48 ps, while the octacationic homo[2]catenane displays a weak exciplex photoluminescence following extremely fast (<0.3 ps) exciplex formation. The in-depth fundamental understanding of these photophysical processes involved in the fluorescence of bischromophoric cyclophanes and homo[2]catenanes paves the way for their use in future bioapplications and photonic devices.
Collapse
Affiliation(s)
- Amine Garci
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Seifallah Abid
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Arthur H G David
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Leighton O Jones
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chandra S Azad
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Marco Ovalle
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Paige J Brown
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xingang Zhao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Luke Malaisrie
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - George C Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ryan M Young
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
18
|
Chen Q, Li Z, Lei Y, Chen Y, Tang H, Wu G, Sun B, Wei Y, Jiao T, Zhang S, Huang F, Wang L, Li H. The sharp structural switch of covalent cages mediated by subtle variation of directing groups. Nat Commun 2023; 14:4627. [PMID: 37532710 PMCID: PMC10397198 DOI: 10.1038/s41467-023-40255-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023] Open
Abstract
It is considered a more formidable task to precisely control the self-assembled products containing purely covalent components, due to a lack of intrinsic templates such as transition metals to suppress entropy loss during self-assembly. Here, we attempt to tackle this challenge by using directing groups. That is, the self-assembly products of condensing a 1:2 mixture of a tetraformyl and a biamine can be precisely controlled by slightly changing the substituent groups in the aldehyde precursor. This is because different directing groups provide hydrogen bonds with different modes to the adjacent imine units, so that the building blocks are endowed with totally different conformations. Each conformation favors the formation of a specific product that is thus produced selectively, including chiral and achiral cages. These results of using a specific directing group to favor a target product pave the way for accomplishing atom economy in synthesizing purely covalent molecules without relying on toxic transition metal templates.
Collapse
Affiliation(s)
- Qiong Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Zhaoyong Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
- Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310058, PR China
| | - Ye Lei
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Yixin Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Hua Tang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Guangcheng Wu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Bin Sun
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, PR China
| | - Yuxi Wei
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Tianyu Jiao
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Songna Zhang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, PR China.
| | - Feihe Huang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, PR China.
| | - Linjun Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China.
- Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310058, PR China.
| | - Hao Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, PR China.
| |
Collapse
|
19
|
Zhang HN, Feng HJ, Lin YJ, Jin GX. Cation-Templated Assembly of 6 13 and 6 23 Metalla-Links. J Am Chem Soc 2023; 145:4746-4756. [PMID: 36716227 DOI: 10.1021/jacs.2c13416] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Facilitated by multiple stacking interactions between components, two kinds of metalla-links containing molecular Borromean rings (623 links) and head-to-tail cyclic [3]catenanes (613 links), as isomers, were constructed in high yield by introducing tri-μ-methoxyl-dinuclear complexes [(Cp*M)2(μ-OCH3)3][OTf] (M = RhIII or IrIII, Cp* = η5-pentamethylcyclopentadienyl, OTf = triflate) as unusual cationic guests during coordination-driven assembly. The topology of these intricate structures was controlled by strategically selecting two dipyridyl ligands that differ in their coordination orientations, as evidenced by X-ray crystallography and electrospray ionization-time-of-flight/mass spectrometry analysis. The behavior of the abovementioned metalla-links in solution was monitored and further studied by the detailed NMR techniques.
Collapse
Affiliation(s)
- Hai-Ning Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Hui-Jun Feng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Yue-Jian Lin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
20
|
Fang S, Sun W, Lin C, Huang F, Li H. Self-Assembled Cage for In Situ Detecting Silver Cation in Water. Inorg Chem 2023; 62:1776-1780. [PMID: 35015534 DOI: 10.1021/acs.inorgchem.1c03825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Here, a capsule-shaped cage comprising three monocationic arms was efficiently self-assembled by condensing a triscationic trisaldehyde and a trisamino linkage in water. Multivalence endows the cage with thermodynamic stability in water. Despite its triscationic nature, the cage is able to use its trisimino residue to coordinate a silver cation. As a comparison, other cations lead to cage decomposition or no coordination. The cage and Ag+-coordinated complex were both characterized and confirmed by NMR spectroscopy, mass spectrometry, and theoretical calculations. The metal-ligand complex exhibits a pale-yellow color that can be detectable by the naked eye. The Ag+-coordinated complex undergoes decoordination upon the addition of NaCl, during which the cage containing imine bonds remains intact. Such stability implies that the cage might be potentially employed in silver detection and mining.
Collapse
Affiliation(s)
- Shuai Fang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Wengang Sun
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Chuhao Lin
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Hao Li
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| |
Collapse
|
21
|
Tay HM, Tse YC, Docker A, Gateley C, Thompson AL, Kuhn H, Zhang Z, Beer PD. Halogen-Bonding Heteroditopic [2]Catenanes for Recognition of Alkali Metal/Halide Ion Pairs. Angew Chem Int Ed Engl 2023; 62:e202214785. [PMID: 36440816 PMCID: PMC10108176 DOI: 10.1002/anie.202214785] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 11/29/2022]
Abstract
The first examples of halogen bonding (XB) heteroditopic homo[2]catenanes were prepared by discrete Na+ template-directed assembly of oligo(ethylene glycol) units derived from XB donor-containing macrocycles and acyclic bis-azide precursors, followed by a CuI -mediated azide-alkyne cycloaddition macrocyclisation reaction. Extensive 1 H NMR spectroscopic studies show the [2]catenane hosts exhibit positive cooperative ion-pair recognition behaviour, wherein XB-mediated halide recognition is enhanced by alkali metal cation pre-complexation. Notably, subtle changes in the catenanes' oligo(ethylene glycol) chain length dramatically alters their ion-binding affinity, stoichiometry, complexation mode, and conformational dynamics. Solution-phase and single-crystal X-ray diffraction studies provide evidence for competing host-separated and direct-contact ion-pair binding modes. We further demonstrate the [2]catenanes are capable of extracting solid alkali-metal halide salts into organic media.
Collapse
Affiliation(s)
- Hui Min Tay
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Yuen Cheong Tse
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
- Department of ChemistryThe University of Hong KongPokfulam RoadHong KongP. R. China
| | - Andrew Docker
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Christian Gateley
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Amber L. Thompson
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Heike Kuhn
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Zongyao Zhang
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Paul D. Beer
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
22
|
Guo ST, Cui PF, Liu XR, Jin GX. Synthesis of Carborane-Backbone Metallacycles for Highly Selective Capture of n-Pentane. J Am Chem Soc 2022; 144:22221-22228. [PMID: 36442076 DOI: 10.1021/jacs.2c10201] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The specific recognition and separation of alkanes with similar molecular structures and close boiling points face significant scientific challenges and industrial demands. Here, rectangular carborane-based metallacycles were designed to selectively encapsulate n-pentane from n-pentane, iso-pentane, and cyclo-pentane mixtures in a simple-to-operate and more energy-efficient way. Metallacycle 1, bearing 1,2-di(4-pyridyl) ethylene, can selectively separate n-pentane from these three-component mixtures with a purity of 97%. The selectivity is ascribed to the capture of the preferred guest with matching size, C-H···π interactions, and potential B-Hδ-···Hδ+-C interactions. Besides, the removal of n-pentane gives rise to original guest-free carborane-based metallacycles, which can be recycled without losing performance. Considering the variety of substituted carborane derivatives, metal ions, and organic linkers, these new carborane-based supramolecular coordination complexes (SCCs) may be broadly applicable to other challenging recognition and separation systems with good performance.
Collapse
Affiliation(s)
- Shu-Ting Guo
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| | - Peng-Fei Cui
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| | - Xin-Ran Liu
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
23
|
Kawano S, Harada T, Sasaki A, Tanaka K. Kinetically‐Locked Metallomacrocycle for Host‐Guest Chemistry with Bulky Anions. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shin‐ichiro Kawano
- Department of Chemistry, Graduate School of Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Takahiro Harada
- Department of Chemistry, Graduate School of Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Ako Sasaki
- Department of Chemistry, Graduate School of Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Kentaro Tanaka
- Department of Chemistry, Graduate School of Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| |
Collapse
|
24
|
Shi H, Luo S, Ma H, Yu W, Wei X. Tuning the Properties of Metal‐Organic Cages through Platinum Nanoparticle Encapsulation. ChemistrySelect 2022. [DOI: 10.1002/slct.202202940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hua‐Tian Shi
- Analysis and Testing Central Facility Institutes of Molecular Engineering and Applied Chemistry Anhui University of Technology Ma'anshan 243002 P. R. China
| | - Shi‐Ting Luo
- Analysis and Testing Central Facility Institutes of Molecular Engineering and Applied Chemistry Anhui University of Technology Ma'anshan 243002 P. R. China
| | - Hui‐Rong Ma
- Analysis and Testing Central Facility Institutes of Molecular Engineering and Applied Chemistry Anhui University of Technology Ma'anshan 243002 P. R. China
| | - Weibin Yu
- Analysis and Testing Central Facility Institutes of Molecular Engineering and Applied Chemistry Anhui University of Technology Ma'anshan 243002 P. R. China
| | - Xianwen Wei
- Analysis and Testing Central Facility Institutes of Molecular Engineering and Applied Chemistry Anhui University of Technology Ma'anshan 243002 P. R. China
| |
Collapse
|
25
|
Ashbridge Z, Fielden SDP, Leigh DA, Pirvu L, Schaufelberger F, Zhang L. Knotting matters: orderly molecular entanglements. Chem Soc Rev 2022; 51:7779-7809. [PMID: 35979715 PMCID: PMC9486172 DOI: 10.1039/d2cs00323f] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Indexed: 11/29/2022]
Abstract
Entangling strands in a well-ordered manner can produce useful effects, from shoelaces and fishing nets to brown paper packages tied up with strings. At the nanoscale, non-crystalline polymer chains of sufficient length and flexibility randomly form tangled mixtures containing open knots of different sizes, shapes and complexity. However, discrete molecular knots of precise topology can also be obtained by controlling the number, sequence and stereochemistry of strand crossings: orderly molecular entanglements. During the last decade, substantial progress in the nascent field of molecular nanotopology has been made, with general synthetic strategies and new knotting motifs introduced, along with insights into the properties and functions of ordered tangle sequences. Conformational restrictions imparted by knotting can induce allostery, strong and selective anion binding, catalytic activity, lead to effective chiral expression across length scales, binding modes in conformations efficacious for drug delivery, and facilitate mechanical function at the molecular level. As complex molecular topologies become increasingly synthetically accessible they have the potential to play a significant role in molecular and materials design strategies. We highlight particular examples of molecular knots to illustrate why these are a few of our favourite things.
Collapse
Affiliation(s)
- Zoe Ashbridge
- Department of Chemistry, The University of Manchester, Manchester, UK
| | | | - David A Leigh
- Department of Chemistry, The University of Manchester, Manchester, UK
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, China
| | - Lucian Pirvu
- Department of Chemistry, The University of Manchester, Manchester, UK
| | | | - Liang Zhang
- Department of Chemistry, The University of Manchester, Manchester, UK
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, China
| |
Collapse
|
26
|
Dang LL, Li TT, Zhang TT, Zhao Y, Chen T, Gao X, Ma LF, Jin GX. Highly selective synthesis and near-infrared photothermal conversion of metalla-Borromean ring and [2]catenane assemblies. Chem Sci 2022; 13:5130-5140. [PMID: 35655550 PMCID: PMC9093202 DOI: 10.1039/d2sc00437b] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/04/2022] [Indexed: 12/17/2022] Open
Abstract
Although the selective synthesis of complicated supramolecular architectures has seen significant progress in recent years, the exploration of the properties of these complexes remains a fascinating challenge. Herein, a series of new supramolecular topologies, metalla[2]catenanes and Borromean ring assemblies, were constructed based on appropriate Cp*Rh building blocks and two rigid alkynyl pyridine ligands (L1, L2) via coordination-driven self-assembly. Interestingly, minor differences between the two rigid alkynyl pyridine ligands with/without organic substituents led to products with dramatically different topologies. Careful structural analysis showed that π–π stacking interactions play a crucial role in stabilizing these [2]catenanes and Borromean ring assemblies, while also promoting nonradiative transitions and triggering photothermal conversion in both the solution and the solid states. These results were showcased through comparative studies of the NIR photothermal conversion efficiencies of the Borromean ring assemblies, [2]catenanes and metallarectangles, which exhibited a wide range of photothermal conversion efficiencies (12.64–72.21%). The influence of the different Cp*Rh building blocks on the NIR photothermal conversion efficiencies of their assemblies was investigated. Good photothermal conversion properties of the assemblies were also found in the solid state. This study provides a new strategy to construct valuable half-sandwich-based NIR photothermal conversion materials while also providing promising candidates for the further development of materials science. The selective synthesis of three kinds of supermolecular topologies, molecular Borromean ring, [2]catenane and metallarectangle based on two alkynyl ligands is presented. Remarkably, the NIR photothermal conversion efficiency was found to improve as the π–π stacking increases.![]()
Collapse
Affiliation(s)
- Li-Long Dang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory Luoyang 471934 P. R. China.,Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University Shanghai 200438 P. R. China
| | - Ting-Ting Li
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory Luoyang 471934 P. R. China.,College of Chemistry and Bioengineering (Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials), Guilin University of Technology Guilin 541004 P. R. China
| | - Ting-Ting Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory Luoyang 471934 P. R. China
| | - Ying Zhao
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory Luoyang 471934 P. R. China
| | - Tian Chen
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory Luoyang 471934 P. R. China
| | - Xiang Gao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University Shanghai 200438 P. R. China
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory Luoyang 471934 P. R. China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University Shanghai 200438 P. R. China
| |
Collapse
|
27
|
Tan Y, Wang ZK, Lang FF, Yu HM, Cao C, Ni CY, Wang MY, Song YL, Lang JP. Construction of cluster-based supramolecular wire and rectangle. Dalton Trans 2022; 51:6358-6365. [PMID: 35383821 DOI: 10.1039/d2dt00344a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reactions of [Et4N][Tp*WS3(CuCl)3] (1) (Tp* = hydridotris(3,5-dimethylpyrazol-1-yl)borate) with 2 equiv. of AgOTf (OTf- = trifluoromethanesulfonate) and 1 equiv. of several bidentate pyridine ligands including 2,5-bis(pyridine-4-yl)thiazolo[5,4-d]thiazole (L1), 2,7-di(pyridin-4-yl)-9H-fluorene (L2), 2,7-di(pyridin-4-yl)-9H-carbazole (L3), and 2,7-di(pyridin-4-yl)-9H-fluoren-9-one (L4) afforded four W/Cu/S cluster-based supramolecular compounds [(Tp*WS3Cu2Cl)2(L1)] (2), {[(Tp*WS3Cu3)2(μ-Cl)2(μ4-Cl)]2(L2)2}(OTf)2 (3), {[(Tp*WS3Cu3)2(μ-Cl)2(μ4-Cl)]2(L3)2}(OTf)2 (4) and {[(Tp*WS3Cu3)2(μ-Cl)2(μ4-Cl)]2(L4)2}(OTf)2 (5). Compounds 2-5 were characterized by elemental analysis, IR, UV-vis, 1H NMR, and single-crystal X-ray diffraction analysis. The neutral cluster 2 behaves as a supramolecular wire constructed by L1 bridging two butterfly-shaped [Tp*WS3Cu2Cl] cores. The cluster cations of 3-5 contain two [(Tp*WS3Cu3)2(μ-Cl)2(μ4-Cl)]+ cores linked by two L2, L3, or L4 ligands, which finally formed a cationic supramolecular rectangle. The third-order nonlinear-optical (NLO) properties of 3-5 in DMF were also investigated by Z-scan techniques and their NLO responses were enhanced compared to those of their precursor 1.
Collapse
Affiliation(s)
- Yi Tan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Zhi-Kang Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China.
| | - Fei-Fan Lang
- Department of Chemistry, University of Sheffield, Sheffield, UK
| | - Hui-Min Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China.
| | - Chen Cao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China.
| | - Chun-Yan Ni
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China.
| | - Meng-Yi Wang
- School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, People's Republic of China
| | - Ying-Lin Song
- School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, People's Republic of China
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| |
Collapse
|
28
|
Ferrer M, Gallen A, Martínez M, Rocamora M, Puttreddy R, Rissanen K. Homo- and heterometallic chiral dynamic architectures from allyl-palladium(II) building blocks. Dalton Trans 2022; 51:5913-5928. [PMID: 35348142 DOI: 10.1039/d1dt03706d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
New chiral tetranuclear square-like homo- and heterometallamacrocycles containing allyl-palladium and either {Pd(P-P)*} or {Pt(P-P)*} optically pure moieties (P-P* = (2S,3S)-O-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphanyl)butane ((S,S)-DIOP) and (2S,4S)-2,4-bis(diphenylphosphanyl)pentane ((S,S)-BDPP)) have been obtained by the self-assembly of [Pd(η3-2-Me-C3H4)(4-PPh2py)2]+ and [M(P-P)*(H2O)2]2+ building blocks in a 1 : 1 molar ratio. The supramolecular assemblies thus prepared [{Pd(η3-2-Me-C3H4)}2(4-PPh2py)4{M(P-P)*}2](CF3SO3)6 (M = Pd, Pt) have been fully characterised by multinuclear NMR spectroscopy and MS spectrometry. The structures display remarkable differences on their dynamic behaviour in solution that depend on the lability and thermodynamic strength of M-py bonds. The structural characteristics of the new metallamacrocyles obtained have also been unambiguously established by XRD analysis. The architectures have been assayed as catalytic precursors in the asymmetric allylic alkylation reaction.
Collapse
Affiliation(s)
- Montserrat Ferrer
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, E-08028, Barcelona, Spain. .,Institut de Nanociència i Nanotecnologia (IN2UB). Universitat de Barcelona, 08028 Barcelona, Spain
| | - Albert Gallen
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, E-08028, Barcelona, Spain.
| | - Manuel Martínez
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, E-08028, Barcelona, Spain. .,Institut de Nanociència i Nanotecnologia (IN2UB). Universitat de Barcelona, 08028 Barcelona, Spain
| | - Mercè Rocamora
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, E-08028, Barcelona, Spain.
| | - Rakesh Puttreddy
- Department of Chemistry, University of Jyväskylä, POB 35, 40014 Jyväskylä, Finland
| | - Kari Rissanen
- Department of Chemistry, University of Jyväskylä, POB 35, 40014 Jyväskylä, Finland
| |
Collapse
|
29
|
Cui Z, Gao X, Lin YJ, Jin GX. Stereoselective Self-Assembly of Complex Chiral Radial [5]Catenanes Using Half-Sandwich Rhodium/Iridium Building Blocks. J Am Chem Soc 2022; 144:2379-2386. [PMID: 35080385 DOI: 10.1021/jacs.1c13168] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Herein, we have successfully achieved the stereoselective synthesis of two chiral radial [5]catenanes in a single step through the self-assembly of bidentate ligands containing l-alanine residues and binuclear half-sandwich organometallic rhodium(III)/iridium(III) clips. Remarkably, these two chiral radial [5]catenanes exhibit complex stereochemical structures as revealed by single-crystal X-ray diffraction. The eight binuclear units and eight bidentate ligands in their solid-state structures all exhibit a single planar chirality, and the interlocking between molecular macrocycles exhibits a single co-conformational mechanical helical chirality. This indicates that the introduction of the point chirality in the ligands enables the efficient stereoselective construction of mechanically interlocked molecules. Furthermore, by using ligands containing d-alanine residues, radial [5]catenanes with the opposite planar chirality and opposite co-conformational mechanical helical chirality have also been obtained.
Collapse
Affiliation(s)
- Zheng Cui
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Xiang Gao
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Yue-Jian Lin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
30
|
Jia W, Li X, Zhi X, Zhong R. Mechanochemical synthesis of half‐sandwich iridium/rhodium complexes with 8‐hydroxyquinoline derivatives ligands. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wei‐Guo Jia
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science Anhui Normal University Wuhu China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Science Fuzhou China
| | - Xiao‐Dong Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science Anhui Normal University Wuhu China
| | - Xue‐Ting Zhi
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science Anhui Normal University Wuhu China
| | - Rui Zhong
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science Anhui Normal University Wuhu China
| |
Collapse
|
31
|
Zha GJ, Ji W, Qi ZH, Qiu WJ, Li AM, Zhu DR, Jing S. Microenvironment modulation of cuprous cluster enables inert aryl chlorides activation in single-molecule metallaphotoredox amination. J Catal 2022. [DOI: 10.1016/j.jcat.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Dang LL, Li TT, Cui Z, Sui D, Ma LF, Jin GX. Selective construction and stability studies of a molecular trefoil knot and Solomon link. Dalton Trans 2021; 50:16984-16989. [PMID: 34612256 DOI: 10.1039/d1dt02755g] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Two novel compounds, a molecular trefoil knot and a Solomon link, were constructed successfully through the cooperation of multiple π-π stacking interactions. A reversible transformation between the trefoil knot and the corresponding [2 + 2] macrocycle could be achieved by solvent- and guest-induced effects. However, the Solomon link maintains its stability in different concentrations, solvents and guest molecules. Single-crystal X-ray crystallographic data, NMR spectroscopic experiments and ESI-MS support the synthesis and structural assignments. These synthesis methods open the door to the further development of smart materials, which will push the advancement of rational design of biomaterials.
Collapse
Affiliation(s)
- Li-Long Dang
- College of Chemistry and Chemical Engineering, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Ting-Ting Li
- College of Chemistry and Chemical Engineering, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, P. R. China. .,College of Chemistry and Bioengineering (Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials), Guilin University of Technology, Guilin 541004, P. R. China
| | - Zheng Cui
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China.
| | - Dong Sui
- College of Chemistry and Chemical Engineering, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China.
| |
Collapse
|
33
|
Luo S, Qiu F, Shi H, Yu W. Design, Characterizations and Host‐Guest Properties of a New Metal‐Organic Cage Based on Half‐Sandwich Rhodium Moieties. ChemistrySelect 2021. [DOI: 10.1002/slct.202103116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shi‐Ting Luo
- Analysis and Testing Central Facility Institutes of Molecular Engineering and Applied Chemistry Anhui University of Technology Ma'anshan 243002 P. R. China
| | - Feng‐Yi Qiu
- Analysis and Testing Central Facility Institutes of Molecular Engineering and Applied Chemistry Anhui University of Technology Ma'anshan 243002 P. R. China
| | - Hua‐Tian Shi
- Analysis and Testing Central Facility Institutes of Molecular Engineering and Applied Chemistry Anhui University of Technology Ma'anshan 243002 P. R. China
| | - Weibin Yu
- Analysis and Testing Central Facility Institutes of Molecular Engineering and Applied Chemistry Anhui University of Technology Ma'anshan 243002 P. R. China
| |
Collapse
|
34
|
Ma L, An Y, Zhang Y, Li Y, Zhang L, Han Y. Post‐assembly modification of discrete poly‐NHC‐derived organometallic assemblies. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Li‐Li Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science Northwest University Xi'an China
| | - Yuan‐Yuan An
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science Northwest University Xi'an China
| | - Ya‐Wen Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science Northwest University Xi'an China
| | - Yang Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science Northwest University Xi'an China
| | - Le Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science Northwest University Xi'an China
| | - Ying‐Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science Northwest University Xi'an China
| |
Collapse
|
35
|
Wang ZC, Li XZ, Liu JH, Zhou LP, Guo XQ, Cheng XY, Sun QF. Coordination-Assembly of Lanthanide Supramolecular Hydrogels with Luminescent Multi-stimulus Response. Inorg Chem 2021; 60:18192-18198. [PMID: 34747597 DOI: 10.1021/acs.inorgchem.1c02827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Luminescent supramolecular hydrogels have shown extensive potential for a variety of applications due to their unique optical properties and biocompatibility. Coordination self-assembly provides a promising strategy for the preparation of supramolecular hydrogels. In this contribution, a series of luminescent lanthanide (Ln) supramolecular hydrogels HG-Ln2nL3n1/2 are synthesized by coordination self-assembly of Ln ions and V shaped bis-tetradentate ligands (H4L1 and H4L2) with different bent angles (∠B). Two rigid conjugated ligands H4L1 and H4L2 with bent angles (∠B ≈ 150°) featuring a 2,6-pyridine bitetrazolate chelating moiety were designed and synthesized, which generated hydrogels via the deprotonation self-assembly with lanthanide ions. Characteristic Eu3+ and Yb3+ emissions were realized in the corresponding hydrogels, with intriguing multi-stimulus response behaviors. The luminescence of the HG-Eu2nL3n1 hydrogel can be enhanced or quenched when stimulated by diverse metal ions, attributed to the replacement of the coordinated lanthanide ions and changes in the intersystem crossing efficiency of the ligand. Furthermore, pH-responsive emission of the HG-Eu2nL3n1 hydrogel has also been observed. Our work provides potential strategies for the design of next-generation smart responsive hydrogel materials with variable structures.
Collapse
Affiliation(s)
- Zi-Cheng Wang
- College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
| | - Xiao-Zhen Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
| | - Jia-Hui Liu
- College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
| | - Xiao-Qing Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
| | - Xiu-Yan Cheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
| | - Qing-Fu Sun
- College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
| |
Collapse
|
36
|
Golding TM, Mbaba M, Smith GS. Modular synthesis of antimalarial quinoline-based PGM metallarectangles. Dalton Trans 2021; 50:15274-15286. [PMID: 34633398 DOI: 10.1039/d1dt02842a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new ditopic, quinoline-based ligand L (7-chloro-4-(pyridin-4-yl)quinoline) was synthesized via a Suzuki cross-coupling reaction. The ligand was utilized to synthesize the corresponding half-sandwich iridium(III) and ruthenium(II) binuclear complexes (1c and 1d) and the subsequent metallarectangles (2c, 2d, 3c, and 3d), via [2 + 2] coordination-driven self-assembly. Single-crystal X-ray diffraction confirmed the proposed molecular structure of the binuclear complex [{IrCl2(Cp*)}2(μ-L)] (1c) and DFT calculations were used to predict the optimized geometry of the rectangular nature of [{Ir(μ-Cl)(Cp*)}4(μ-L)2](CF3SO3)4 (2c). All of the metallarectangles were isolated as their triflate salts and characterized using various spectroscopic (1H, 13C{1H}, DOSY NMR, and IR spectroscopy) and analytical techniques (ESI-MS). The synthesized compounds were screened against the NF54 chloroquine-sensitive (CQS) and K1 chloroquine-resistant (CQR) strains of Plasmodium falciparum. Incorporation of the ubiquitous quinoline core and metal complexation significantly enhanced the in vitro biological activity, with an increase in the nuclearity correlating with an increase in the resultant antiplasmodial activity. This was observed across both parasitic strains, alluding to the potential of supramolecular metallarectangles to act as antiplasmodial agents. Inhibition of haemozoin formation was considered a potential mechanism of action and selected metallarectangles exhibit β-haematin inhibition activity with near comparable activity to chloroquine.
Collapse
Affiliation(s)
- Taryn M Golding
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa.
| | - Mziyanda Mbaba
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa.
| | - Gregory S Smith
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa.
| |
Collapse
|
37
|
Gao X, Cui Z, Shen YR, Liu D, Lin YJ, Jin GX. Synthesis and Near-Infrared Photothermal Conversion of Discrete Supramolecular Topologies Featuring Half-Sandwich [Cp*Rh] Units. J Am Chem Soc 2021; 143:17833-17842. [PMID: 34641681 DOI: 10.1021/jacs.1c09333] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although a large number of novel supramolecular topologies featuring half-sandwich [Cp*Rh] units have been reported, investigations into the properties of these architectures are astoundingly rare. In addition, the bidentate ligands employed to prepare these species have remained relatively homogeneous (i.e., symmetrical bis(pyri-4-dyl) ligands). To address these paucities in the field, the novel unsymmetrical ligand L2 and the rarely reported pyri-3-dyl ligand L3, all bearing aromatic phenazine groups (an N-heterocyclic analog of anthracene), were synthesized in addition to the common symmetrical pyri-4-dyl L1. [3]Catenane, [2]catenane, and Borromean rings assemblies were constructed successfully by the self-assembly of L1 with different building blocks. Afterward, ligand L2 was applied to prepare two novel molecular-tweezer-like compounds. Lastly, a twisted [2]catenane (relative to the [2]catenane constructed using L1) and a sandwiched metallarectangle were obtained using L3. π-π stacking interactions were observed to play a significant role in stabilizing these topologies, which also promoted nonradiative migration and triggered photothermal conversion in both the solution and the solid state. In the solution state, a clear rule of thumb was derived whereby the NIR photothermal conversion efficiency increased as the π-π stacking increased, and a very high photothermal conversion efficiency (35.5-62.4%) was observed. In addition, this family of half-sandwich-based assemblies also exhibited good photothermal conversion properties in the crystalline and noncrystal powder states. This research provides a novel method to synthesize excellent NIR photothermal conversion materials featuring half-sandwich [Cp*Rh] units and points to potential applications in the near future.
Collapse
Affiliation(s)
- Xiang Gao
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Zheng Cui
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Yue-Rong Shen
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Dong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Yue-Jian Lin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| |
Collapse
|
38
|
Inomata Y, Sawada T, Fujita M. Metal-Peptide Nonafoil Knots and Decafoil Supercoils. J Am Chem Soc 2021; 143:16734-16739. [PMID: 34601872 DOI: 10.1021/jacs.1c08094] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite the frequent occurrence of knotted frameworks in protein structures, the latent potential of peptide strands to form entangled structures is rarely discussed in peptide chemistry. Here we report the construction of highly entangled molecular topologies from Ag(I) ions and tripeptide ligands. The efficient entanglement of metal-peptide strands and the wide scope for design of the amino acid side chains in these ligands enabled the construction of metal-peptide 91 torus knots and 1012 torus links. Moreover, steric control of the peptide side chain induced ring opening and twisting of the torus framework, which resulted in an infinite toroidal supercoil nanostructure.
Collapse
Affiliation(s)
- Yuuki Inomata
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomohisa Sawada
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,JST PRESTO, https://www.jst.go.jp/kisoken/presto/en/index.html
| | - Makoto Fujita
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Division of Advanced Molecular Science, Institute for Molecular Science (IMS), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
39
|
Shen Y, Gao X, Cui Z, Jin G. Rational Design and Synthesis of Interlocked [2]Catenanes Featuring
Half‐Sandwich
Cp*Rh/Ir Units and
Pyrene‐Based
Ligands
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yue‐Rong Shen
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200438 China
| | - Xiang Gao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200438 China
| | - Zheng Cui
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200438 China
| | - Guo‐Xin Jin
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200438 China
| |
Collapse
|
40
|
Chen CY, Xu HC, Ho TH, Hsu CJ, Lai CC, Liu YH, Peng SM, Chiu SH. Complementarity of 2,6-Dimethanolpyridine and Di(ethylene glycol) in the Complexation of Na + Ions: Attaching Multiple Copies of [2]Catenane Branches to Isophthalaldehyde-Containing Cores. J Org Chem 2021; 86:13491-13502. [PMID: 34514788 DOI: 10.1021/acs.joc.1c01580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study we found that 2,6-dimethanolpyridine displays good complementarity toward di(ethylene glycol) for the complexation of Na+ ions, allowing us to use this recognition system for the efficient synthesis of hetero[2]catenanes; indeed, it allowed us to attach multiple copies of [2]catenanes to branched systems presenting multiple isophthalaldehyde units. When we attempted to form a catenane from a preformed macrocycle featuring only a single di(ethylene glycol) unit, reacting it with a di(ethylene glycol) derivative presenting two amino termini, isophthalaldehyde, and templating Na+ ions [i.e., with the aim of using di(ethylene glycol)·Na+·di(ethylene glycol) recognition to template the formation of the interlocked imino macrocycle], the yields of the hetero[2]catenane and homo[2]catenane, comprising two imino macrocyclic units, were both poor (14% and 7%, respectively). In contrast, when one or two 2,6-dimethanolpyridine units were present in the preformed macrocycles, their reactions with the same diamine, dialdehyde, and Na+ ions provided the hetero[2]catenanes with high selectivity and efficiency (44% and 64% yields, respectively), with minimal formation of the competing homo[2]catenane. The high complementary of the 2,6-dimethanolpyridine·Na+·di(ethylene glycol) ligand pair allowed us to synthesize [2]catenane dimers and trimers directly from corresponding isophthalaldehyde-presenting cores, with yields, after subsequent reduction and methylation, of 42% and 31%, respectively.
Collapse
Affiliation(s)
- Ching-Yu Chen
- Department of Chemistry, National Taiwan University, 10617 Taipei, Taiwan
| | - Han-Chen Xu
- Department of Chemistry, National Taiwan University, 10617 Taipei, Taiwan
| | - Tsung-Hsien Ho
- Department of Chemistry, National Taiwan University, 10617 Taipei, Taiwan
| | - Chun-Ju Hsu
- Department of Chemistry, National Taiwan University, 10617 Taipei, Taiwan
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, 40225 Taichung, Taiwan.,Department of Medical Genetics, China Medical University Hospital, 40447 Taichung, Taiwan
| | - Yi-Hung Liu
- Department of Chemistry, National Taiwan University, 10617 Taipei, Taiwan
| | - Shie-Ming Peng
- Department of Chemistry, National Taiwan University, 10617 Taipei, Taiwan
| | - Sheng-Hsien Chiu
- Department of Chemistry, National Taiwan University, 10617 Taipei, Taiwan
| |
Collapse
|
41
|
Wang QLS, Lin YJ, Jin GX. Same knot, longer rope: altering ligand geometry provides control over nuclearity in self-assembled trefoil knots. Chem Commun (Camb) 2021; 57:9772-9775. [PMID: 34486610 DOI: 10.1039/d1cc03699h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Taking advantage of the accumulation of a number of noncovalent intramolecular interactions, octanuclear and hexanuclear trefoil knots are self-assembled based on half-sandwich rhodium fragments. The selective synthesis of either the octanuclear or hexanuclear knot can be controlled by altering different dipyridyl arms.
Collapse
Affiliation(s)
- Qi-Li-Sha Wang
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China.
| | - Yue-Jian Lin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China.
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China.
| |
Collapse
|
42
|
Affiliation(s)
- Arthur H. G. David
- Department of Chemistry Northwestern University Evanston Illinois 60208 United States
| | - J. Fraser Stoddart
- Department of Chemistry Northwestern University Evanston Illinois 60208 United States
- School of Chemistry University of New South Wales Sydney NSW 2052 Australia
- Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310021 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 China
| |
Collapse
|
43
|
O'Keeffe M, Treacy MMJ. Piecewise-linear embeddings of knots and links with rotoinversion symmetry. Acta Crystallogr A Found Adv 2021; 77:392-398. [PMID: 34473094 DOI: 10.1107/s2053273321006136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/11/2021] [Indexed: 11/10/2022] Open
Abstract
This article describes the simplest members of an infinite family of knots and links that have achiral piecewise-linear embeddings in which linear segments (sticks) meet at corners. The structures described are all corner- and stick-2-transitive - the smallest possible for achiral knots.
Collapse
Affiliation(s)
- Michael O'Keeffe
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Michael M J Treacy
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
44
|
Kumar U, Ramakrishna B, Varghese J, Vidhyapriya P, Sakthivel N, Manimaran B. Self-Assembled Manganese(I)-Based Selenolato-Bridged Tetranuclear Metallorectangles: Host-Guest Interaction, Anticancer, and CO-Releasing Studies. Inorg Chem 2021; 60:13284-13298. [PMID: 34357751 DOI: 10.1021/acs.inorgchem.1c01636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Supramolecular one-step self-assembly of dimanganese decacarbonyl, diaryl diselenide, and linear dipyridyl ligands (L = pyrazine (pz), 4,4'-bipyridine (bpy), and trans-1,2-bis(4-pyridyl)ethylene (bpe)) has resulted in the formation of selenolato-bridged manganese(I)-based metallorectangles. The synthesis of tetranuclear Mn(I)-based metallorectangles [{(CO)3Mn(μ-SeR)2Mn(CO)3}2(μ-L)2] (1-6) was facilitated by the oxidative addition of diaryl diselenide to dimanganese decacarbonyl with the simultaneous coordination of linear bidentate pyridyl linker in an orthogonal fashion. Formation of metallorectangles 1-6 was ascertained using IR, UV-vis, NMR spectroscopic techniques, and elemental analyses. The molecular mass of compounds 2, 4, and 6 were determined by ESI-mass spectrometry. Solid-state structural elucidation of 2, 3, and 6 by single-crystal X-ray diffraction methods revealed a rectangular framework wherein selenolato-bridges and pyridyl ligands define the shorter and longer edges, respectively. Also, the guest binding capability of metallorectangles 3 and 5 with different aromatic guests was studied using UV-vis absorption and emission spectrophotometric titration methods that affirmed strong host-guest binding interactions. The formation of the host-guest complex between metallorectangle 3 and pyrene has been explicitly corroborated by the single-crystal X-ray structure of 3•pyrene. Moreover, select metallorectangles 1-4 and 6 were studied to explore their anticancer activity, while CO-releasing ability of metallorectangle 2 was further appraised using equine heart myoglobin assay.
Collapse
Affiliation(s)
- Udit Kumar
- Department of Chemistry, Pondicherry University, Puducherry 605014, India
| | - Buthanapalli Ramakrishna
- Division of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Chennai Campus, Vandalur-Kelambakkam Road, Tamil Nadu 600127, India
| | - Jisna Varghese
- Department of Chemistry, Pondicherry University, Puducherry 605014, India
| | | | - Natarajan Sakthivel
- Department of Biotechnology, Pondicherry University, Puducherry 605014, India
| | - Bala Manimaran
- Department of Chemistry, Pondicherry University, Puducherry 605014, India
| |
Collapse
|
45
|
Zhang HN, Lin YJ, Jin GX. Selective Construction of Trefoil knots and a Molecular Borromean Ring Induced by Steric Hindrance of Thioether Ligands. Chem Asian J 2021; 16:1918-1924. [PMID: 33960138 DOI: 10.1002/asia.202100450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/05/2021] [Indexed: 11/08/2022]
Abstract
Two Cp*-RhIII based trefoil knots were obtained in high yield under ambient conditions via the coordination-driven self-assembly of semi-rigid thioether dipyridyl ligand 1,4-bis[(pyridin-4-ylthio)methyl]benzene (L1 ), ligand chloranilic acid (H2 -CA) and 6,11-dihydroxytetracene-5,12-dione (H2 -TtDo) with Cp*RhIII metal corner units, respectively. Furthermore, using the bulkier 4,4'-{[(2,5-dimethyl-1,4-phenylene)bis(methylene)]bis(sulfanediyl)}dipyridine (L2 ) in the place of ligand L1 in the construction process resulted in the formation of a teranuclear metallacycle and a template-free Borromean ring in high yields thanks to significantly altered intermolecular forces between the constituent ligands induced by the sterically-hindering methyl groups of L2 , as demonstrated via a detailed X-ray crystallographic analysis and NMR spectroscopy.
Collapse
Affiliation(s)
- Hai-Ning Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Yue-Jian Lin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
46
|
Shi WJ, Liu D, Li X, Bai S, Wang YY, Han YF. Supramolecular Coordination Cages Based on N-Heterocyclic Carbene-Gold(I) Ligands and Their Precursors: Self-Assembly, Structural Transformation and Guest-Binding Properties. Chemistry 2021; 27:7853-7861. [PMID: 33780062 DOI: 10.1002/chem.202100710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Indexed: 01/11/2023]
Abstract
The incorporation of functional groups into the cavity of discrete supramolecular coordination cages (SCCs) will bring unique functions and applications. Here, three dicarboxylate ligands (H2 L1Cl, H2 L2Cl and H2 L3Cl) containing N-heterocyclic carbene (NHC) precursors as linkers were introduced to construct SCCs by combining with two C3 -symmertic (CpZr)3 (μ3 -O)(μ2 -OH)3 clusters as three-connect vertices, resulted in a series of rugby-like V2 E3 (V=vertex, E=edge) type homoleptic cages (SCC-1, SCC-2 and SCC-3). However, V4 E6 -type tetrahedral cages (SCC-4 and SCC-5), incorporating six Au-NHC moieties, were obtained when the corresponding NHC-gold(I) functionalized ligands (H2 L1Au , H2 L2Au ) were applied. For the first time, we present a trackable CpZr-involved cage to cage conversion to generate a heteroleptic V2 E3 cage (SCC-6) from two homoleptic cages (SCC-2 and SCC-5) with different geometries of V2 E3 and V4 E6 . The heteroleptic assembly SCC-6 can also be formed upon a subcomponent displacement strategy. The structural transformation and reassembly processes were detected and monitored by 1 H NMR spectroscopy and electrospray-ionization mass spectrometry. The formation of heteroleptic assembly was further supported by single crystal X-ray diffraction analysis. Moreover, homoleptic cage SCC-2 possesses a trigonal bipyramidal cationic cavity allowing the encapsulation of a series of sulfonate anionic guests.
Collapse
Affiliation(s)
- Wen-Jie Shi
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Dan Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Xin Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Sha Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| |
Collapse
|
47
|
Tessarolo J, Lee H, Sakuda E, Umakoshi K, Clever GH. Integrative Assembly of Heteroleptic Tetrahedra Controlled by Backbone Steric Bulk. J Am Chem Soc 2021; 143:6339-6344. [PMID: 33900773 PMCID: PMC8154538 DOI: 10.1021/jacs.1c01931] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 12/20/2022]
Abstract
A bent fluorenone-based dipyridyl ligand LA reacts with PdII cations to a solvent-dependent dynamic library of [PdnL2n] assemblies, constituted by a [Pd3LA6] ring and a [Pd4LA8] tetrahedron as major components, and a [Pd6LA12] octahedron as minor component. Introduction of backbone steric hindrance in ligand LB allows exclusive formation of the [Pd6LB12] octahedron. Combining equimolar amounts of both ligands results in integrative self-sorting to give an unprecedented [Pd4LA4LB4] heteroleptic tetrahedron. Key to the non-statistical assembly outcome is exploiting the structural peculiarity of the [Pd4L8] tetrahedral topology, where the four lean ligands occupy two doubly bridged edges and the bulky ligands span the four remaining, singly bridged edges. Hence, the system finds a compromise between the entropic drive to form an assembly smaller than the octahedron and the enthalpic prohibition of pairing two bulky ligands on the same edge of the triangular ring. The emission of luminescent LA is maintained in both homoleptic [Pd3LA6] and heteroleptic [Pd4LA4LB4].
Collapse
Affiliation(s)
- Jacopo Tessarolo
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Haeri Lee
- Department
of Chemistry, Hannam University, 1646, Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Eri Sakuda
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
- Division
of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Keisuke Umakoshi
- Division
of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Guido H. Clever
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| |
Collapse
|
48
|
Guo XQ, Zhou LP, Hu SJ, Cai LX, Cheng PM, Sun QF. Hexameric Lanthanide-Organic Capsules with Tertiary Structure and Emergent Functions. J Am Chem Soc 2021; 143:6202-6210. [PMID: 33871254 DOI: 10.1021/jacs.1c01168] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biological macromolecules always function through a collective behavior of the aggregated constituents, which usually are self-assembled together via noncovalent interactions. Likewise, artificial supramolecular assemblies, whose properties and functions are mainly derived from their primary and secondary structures, may also aggregate into high-order architectures with emergent functions not available on the individual components. Here we report the first example of an insulin-like hexamerization of lanthanide triple helicates toward a 4 nm diameter hexameric capsule via consecutive metal-directed and anion-directed assembly processes. Hierarchical chiral-sorting self-assembly endows hexamers with aggregation-induced stability and emission enhancement. Furthermore, emergent guest-encapsulation function and enantioselectivity toward terpene drugs have been realized in the late-formed central cavity of the hexamers. This study not only provides a feasible strategy for constructing sophisticated and multifunctional lanthanide-organic materials but also sheds some light on the self-assembly processes in nature.
Collapse
Affiliation(s)
- Xiao-Qing Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Shao-Jun Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Li-Xuan Cai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Pei-Ming Cheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
49
|
Yu W, Qiu FY, Luo ST, Shi HT, Yuan G, Wei X. Coordination assembly and host–guest chemistry of a triply interlocked [2]catenane. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00174d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Triply catenated systems composed of two or more discrete coordination-metal cages through mechanical bonds exhibit excellent host–guest behaviors, which can be potentially applied in drug delivery systems.
Collapse
Affiliation(s)
- Weibin Yu
- Analysis and Testing Central Facility
- Institutes of Molecular Engineering and Applied Chemistry
- Anhui University of Technology
- Ma'anshan 243002
- P. R. China
| | - Feng-Yi Qiu
- Analysis and Testing Central Facility
- Institutes of Molecular Engineering and Applied Chemistry
- Anhui University of Technology
- Ma'anshan 243002
- P. R. China
| | - Shi-Ting Luo
- Analysis and Testing Central Facility
- Institutes of Molecular Engineering and Applied Chemistry
- Anhui University of Technology
- Ma'anshan 243002
- P. R. China
| | - Hua-Tian Shi
- Analysis and Testing Central Facility
- Institutes of Molecular Engineering and Applied Chemistry
- Anhui University of Technology
- Ma'anshan 243002
- P. R. China
| | - Guozan Yuan
- Analysis and Testing Central Facility
- Institutes of Molecular Engineering and Applied Chemistry
- Anhui University of Technology
- Ma'anshan 243002
- P. R. China
| | - Xianwen Wei
- Analysis and Testing Central Facility
- Institutes of Molecular Engineering and Applied Chemistry
- Anhui University of Technology
- Ma'anshan 243002
- P. R. China
| |
Collapse
|