1
|
Piña J, Aguirre LS, Litwiller LT, Ly HT, Crockett MP, Thomas AA. Development of a Highly Selective Synthesis of 4-Substituted Tetrahydroquinolines: Substrate Scope and Mechanistic Study. Chemistry 2025; 31:e202500353. [PMID: 39899756 DOI: 10.1002/chem.202500353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/05/2025]
Abstract
Herein, we describe a general and selective deprotonation functionalization reaction of tetrahydroquinolines at the 4-position using organolithiums and phosphoramide ligands. In addition to the development of a direct deprotonation alkylation reaction with primary and secondary alkyl halides, a Negishi cross-coupling protocol was realized to afford products with a range of aromatic halides. These methods were applied to the late-stage installation of tetrahydroquinolines into a variety of substrates including pharmaceuticals as well as natural product analogues. The use of thorough mechanistic investigations revealed the aggregation state of the newly formed tetrahydroquinoline anion to be a separated ion pair, which proved critical to optimizing the reaction conditions.
Collapse
Affiliation(s)
- Jeanette Piña
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX, USA, 77843 1
| | - Lupita S Aguirre
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX, USA, 77843 1
| | - Levi T Litwiller
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX, USA, 77843 1
| | - Hai T Ly
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX, USA, 77843 1
| | - Michael P Crockett
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX, USA, 77843 1
| | - Andy A Thomas
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX, USA, 77843 1
| |
Collapse
|
2
|
Gao Y, Zhu Y, Zhao M, Rebek J, Yu Y. Selective Aliphatic Aldimine Formation and Stabilization by a Hydrophobic Capsule in Water. J Am Chem Soc 2025; 147:12989-12995. [PMID: 40177734 DOI: 10.1021/jacs.5c02779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Imines and enamines are useful intermediates in biochemical aldol-type reactions since their acid/base characteristics are accessible near neutrality. However, the generation of aldimines in water is a challenge as the equilibrium favors the components alkyl amines and aldehydes. Here, we report the generation, recognition, and protection of aldimines accomplished by a water-soluble capsule. The capsule provides a well-defined hydrophobic cavity isolating aldimines from the medium by a dry seam of Se-N chalcogen bonds instead of a wet seam of hydrogen bonds in water. A series of diverse aldimines are formed in situ and trapped rapidly (within 45 min at mM concentrations) in D2O with more than 90% yields. The encapsulated aldimines are stable for at least one month under ambient conditions. The aliphatic aldimines are selectively formed in the capsule even though they are less stable than aromatic imines in solution. The aldimines can be released from the capsule containers by competitive guests such as adamantane.
Collapse
Affiliation(s)
- Ya Gao
- Department of Physics, College of Science, Shanghai University, Shanghai 200444, China
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Yujie Zhu
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Mingkai Zhao
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Julius Rebek
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Yang Yu
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
3
|
Zhang D, Wang L, Wu W, Cao D, Tang H. Macrocyclic catalysis mediated by water: opportunities and challenges. Chem Commun (Camb) 2025; 61:599-611. [PMID: 39655486 DOI: 10.1039/d4cc05733c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Nanospaces within enzymes play a crucial role in chemical reactions in biological systems, garnering significant attention from supramolecular chemists. Inspired by the highly efficient catalysis of enzymes, artificial supramolecular hosts have been developed and widely employed in various reactions, paving the way for innovative and selective catalytic processes and offering new insights into enzymatic catalytic mechanisms. In supramolecular macrocycle systems, weak non-covalent interactions are exploited to enhance substrate solubility, increase local concentration, and stabilize the transition state, ultimately accelerating reaction rates and improving product selectivity. In this review, we will focus on the opportunities and challenges associated with the catalysis of chemical reactions by supramolecular macrocycles in the aqueous phase. Key issues to be discussed include limitations in molecular interaction efficiency in aqueous media, product inhibition, and the incompatibility of catalysts or conditions in "one-pot" reactions.
Collapse
Affiliation(s)
- Dejun Zhang
- State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Lingyun Wang
- State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Wanqing Wu
- State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Derong Cao
- State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Hao Tang
- State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
4
|
Syntrivanis L, Tiefenbacher K. Reactivity Inside Molecular Flasks: Acceleration Modes and Types of Selectivity Obtainable. Angew Chem Int Ed Engl 2024; 63:e202412622. [PMID: 39295476 PMCID: PMC11586709 DOI: 10.1002/anie.202412622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 09/21/2024]
Abstract
There is increasing interest in the discovery and application of molecular flasks-supramolecular host structures capable of catalyzing organic reactions. Reminiscent of enzymes due to possessing a host cavity akin to an active site, molecular flasks can exhibit complex catalytic mechanisms and in many cases provide selectivity not achievable in bulk solvent. In this Review, we aim to organize the increasingly diverse examples through a two-part structure. In part one, we provide an overview of the different acceleration modes that operate within molecular flasks, while in part two we showcase, through selected examples, the different types of selectivity that are obtainable through the use of molecular flasks. Particular attention is given to examples that are relevant to current challenges in synthetic organic chemistry. We believe that this structure makes the field more approachable and thus will stimulate the development of novel applications of molecular flasks.
Collapse
Affiliation(s)
| | - Konrad Tiefenbacher
- Department of ChemistryUniversity of BaselBaselSwitzerland
- Department of Biosystems Science and EngineeringETHZurichBaselSwitzerland
| |
Collapse
|
5
|
Xu C, Chen Y, Zhao S, Li D, Tang X, Zhang H, Huang J, Guo Z, Liu W. Mechanical Regulation of Polymer Gels. Chem Rev 2024; 124:10435-10508. [PMID: 39284130 DOI: 10.1021/acs.chemrev.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The mechanical properties of polymer gels devote to emerging devices and machines in fields such as biomedical engineering, flexible bioelectronics, biomimetic actuators, and energy harvesters. Coupling network architectures and interactions has been explored to regulate supportive mechanical characteristics of polymer gels; however, systematic reviews correlating mechanics to interaction forces at the molecular and structural levels remain absent in the field. This review highlights the molecular engineering and structural engineering of polymer gel mechanics and a comprehensive mechanistic understanding of mechanical regulation. Molecular engineering alters molecular architecture and manipulates functional groups/moieties at the molecular level, introducing various interactions and permanent or reversible dynamic bonds as the dissipative energy. Molecular engineering usually uses monomers, cross-linkers, chains, and other additives. Structural engineering utilizes casting methods, solvent phase regulation, mechanochemistry, macromolecule chemical reactions, and biomanufacturing technology to construct and tailor the topological network structures, or heterogeneous modulus compositions. We envision that the perfect combination of molecular and structural engineering may provide a fresh view to extend exciting new perspectives of this burgeoning field. This review also summarizes recent representative applications of polymer gels with excellent mechanical properties. Conclusions and perspectives are also provided from five aspects of concise summary, mechanical mechanism, biofabrication methods, upgraded applications, and synergistic methodology.
Collapse
Affiliation(s)
- Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China
| | - Siyang Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deke Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- School of materials engineering, Lanzhou Institute of Technology, Lanzhou 730000, China
| | - Xing Tang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Haili Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
6
|
Brown RO, Demapan D, Cui Q. Complete Computational Reaction Mechanism for Foldamer-Catalyzed Aldol Condensation. ACS Catal 2024; 14:7624-7638. [PMID: 39584021 PMCID: PMC11581291 DOI: 10.1021/acscatal.4c00937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Foldamers, small synthetic peptides made of α and β-amino acids, have been found to be efficient catalysts for carbon-carbon bond-forming aldol reactions; of particular interest is their ability to catalyze macrocycle ring closure reactions. These catalysts feature a pair of amine groups that are aligned by the helical conformation and act in concert. Kinetic measurements show that the rate of the reaction depends on the identity of the amine side chains present. However, such kinetic analyses and other characterization techniques (e.g. mass spectrometry) can provide only limited information regarding the overall mechanism and rate-determining step of foldamer catalysis. We use semi-empirical density functional tight binding quantum mechanics molecular mechanics metadynamics simulations to determine the free energy and barrier for all elementary steps involved in the ring closure aldol reactions. We have performed calculations for 44 elementary reaction steps to identify key trends regarding amine identity, and provide insight into the intermediates and rate-limiting step of the catalytic cycle. From our results and other known aldol catalysts, we propose foldamer mutants which simulations predict to be better catalysts.
Collapse
Affiliation(s)
| | - Darren Demapan
- Department of Chemistry, Boston University, Boston, MA 02215
| | - Qiang Cui
- Department of Chemistry, Boston University, Boston, MA 02215
- Department of Physics, Boston University, Boston, MA 02215
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
| |
Collapse
|
7
|
Wang H, Wang Y, Xu W, Zhang H, Lv J, Wang X, Zheng Z, Zhao Y, Yu L, Yuan Q, Yu L, Zheng B, Gao L. Host-Guest-Interaction Enhanced Nitric Oxide Photo-Generation within a Pillar[5]arene Cavity for Antibacterial Gas Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54266-54279. [PMID: 37969079 DOI: 10.1021/acsami.3c10862] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Supramolecular macrocycles with intrinsic cavities have been widely explored as containers to fabricate versatile functional materials via specific host-guest recognitions. However, relatively few studies have focused on the modulation of guest reactivity within a macrocyclic cavity. Here, we demonstrate the confinement effect of pillar[5]arene with an electron-rich and precise cavity that can dramatically enhance guest photoactivity and nitric oxide (NO) generation upon visible light irradiation. Mechanism studies reveal that it is achieved through increasing the ground state nitro-aromatic torsion angle, suppressing the intersystem crossing relaxation path of the S1 state, and accelerating the isomerization reaction path of guest molecules. This NO-generating system displays broad-spectrum antibacterial, biofilm inhibition, and dispersal activities. Moreover, it can accelerate the healing of methicillin-resistant Staphylococcus aureus (MRSA)-infected wounds in vivo.
Collapse
Affiliation(s)
- Haojie Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Yuan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Wenhua Xu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Haixin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Jinmeng Lv
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Xue Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Zhi Zheng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Yanxia Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Le Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Leixiao Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Bo Zheng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Lingyan Gao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| |
Collapse
|
8
|
Liu Q, Zuo M, Wang K, Hu XY. A cavitand-based supramolecular artificial light-harvesting system with sequential energy transfer for photocatalysis. Chem Commun (Camb) 2023; 59:13707-13710. [PMID: 37905993 DOI: 10.1039/d3cc04040b] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
A novel artificial light-harvesting system, featuring sequential energy transfer processes, has been successfully constructed, which demonstrated white light emission through a precise adjustment of the donor-acceptor ratio. To better mimic natural photosynthesis, the system is employed as a nanoreactor for the photocatalysis of a cross-dehydrogenative coupling (CDC) reaction in aqueous solution.
Collapse
Affiliation(s)
- Qian Liu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| | - Minzan Zuo
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| | - Kaiya Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| | - Xiao-Yu Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| |
Collapse
|
9
|
Schmid D, Li TR, Goldfuss B, Tiefenbacher K. Exploring the Glycosylation Reaction Inside the Resorcin[4]arene Capsule. J Org Chem 2023; 88:14515-14526. [PMID: 37796244 DOI: 10.1021/acs.joc.3c01547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
In the past decade, there has been an increased interest in applying supramolecular capsule and cage catalysis to the current challenges in synthetic organic chemistry. In this context, we recently reported the resorcin[4]arene capsule-catalyzed conversion of α-glycosyl halides into β-glycosides with high selectivity. Interestingly, this methodology enabled the formation of a wide range of β-pyranosides as well as β-furanosides, although these two donor classes exhibit different reactivities and usually require different reaction conditions and catalysts. Evidence was provided that a proton wire plays a key role in this reaction by enabling dual activation of the glycosyl donor and acceptor. Here, we describe a detailed investigation of several aspects of this reactivity. Besides a mechanistic study, we elucidated the size limitation, the origin of catalytic turnover, and the electrophile scope of nonglycosylic halides. Moreover, a screening of the sensitivity to changes in the reaction conditions provides guidelines to facilitate reproducibility. Furthermore, we demonstrate the compatibility with environmentally benign solvent alternatives, including the renewable solvent limonene.
Collapse
Affiliation(s)
- Dario Schmid
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Tian-Ren Li
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Bernd Goldfuss
- Institut für Organische Chemie, Universität zu Köln, Greinstrasse 4, 50939 Köln, Germany
| | - Konrad Tiefenbacher
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 24, 4058 Basel, Switzerland
| |
Collapse
|
10
|
Weinert C, Ćoćić D, Puchta R, van Eldik R. Selective Noble Gas Inclusion in Pentagon-Dodecahedral X 20-Cages. Molecules 2023; 28:5676. [PMID: 37570645 PMCID: PMC10420277 DOI: 10.3390/molecules28155676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 08/13/2023] Open
Abstract
Using DFT-based computational chemistry calculations (ωB97XD/def2-tzvp//ωB97XD/def2-svp/svpfit + ZPE(ωB97XD/def2-svp/svpfit)), binding energies of noble gases encapsulated in a series of dodecahedrane molecules (general formula: X20H20 where X = C, Si, Ge, Sn and Pb, and X20 where X = N, P, As, Sb and Bi) were calculated to learn about the noble gas selectivity. Based on calculated binding energies, the Sn20H20 cage can best accommodate noble gases with a medium size radius (Ar and Kr), while the Pb20H20 dodecahedrane cage is best suited for noble gases with the larger radii (Xe and Rn). On the other hand, from the elements of the V main group of the periodic table, the Bi20 cage has shown the best results to selectively encapsulate Ar and Kr, with the amounts of energy being released being -5.24 kcal/mol and -6.13 kcal/mol, respectively. By monitoring the geometric changes of all here-reported host cages upon encapsulating the noble gas guest, the host has shown minor to no flexibility, testifying to the high rigidity of the dodecahedrane structure which was further reflected in very high encapsulating energies.
Collapse
Affiliation(s)
- Christopher Weinert
- Fakultät Angewandte Mathematik, Physik und Allgemeinwissenschaften, Technische Hochschule Nuremberg Georg Simon Ohm, Keßlerplatz 12, 90489 Nuremberg, Germany
| | - Dušan Ćoćić
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, P.O. Box 60, 34000 Kragujevac, Serbia
| | - Ralph Puchta
- Fakultät Angewandte Mathematik, Physik und Allgemeinwissenschaften, Technische Hochschule Nuremberg Georg Simon Ohm, Keßlerplatz 12, 90489 Nuremberg, Germany
- Inorganic Chemistry, Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Egerlandstr. 1, 91058 Erlangen, Germany
- Central Institute for Scientific Computing (CISC), University of Erlangen-Nuremberg, Martensstr. 5a, 91058 Erlangen, Germany
- Computer Chemistry Center, Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Nägelsbachstr. 25, 91052 Erlangen, Germany
| | - Rudi van Eldik
- Inorganic Chemistry, Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Egerlandstr. 1, 91058 Erlangen, Germany
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| |
Collapse
|
11
|
Némethová I, Schmid D, Tiefenbacher K. Supramolecular Capsule Catalysis Enables the Exploration of Terpenoid Chemical Space Untapped by Nature. Angew Chem Int Ed Engl 2023; 62:e202218625. [PMID: 36727480 DOI: 10.1002/anie.202218625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023]
Abstract
Terpenes represent the largest and the most diverse class of natural compounds. This is remarkable as the whole variety is accessed from just a handful of highly conserved linear precursors. Modification of the cyclization precursors would enable a dramatic expansion of the accessible chemical space. However, natural enzymes do not enable us to tap into this potential, as they do not tolerate larger deviations from the prototypical substrate structure. Herein we report that supramolecular capsule catalysis enables facile access to diverse and novel terpenoid skeletons that formally can be traced back to C3-phenyl, benzyl, and homoprenyl derivatives of farnesol. Novel skeletons related to the presilphiperfolane core structure, as well as novel neoclovene derivatives were accessed efficiently in only four synthetic steps. Importantly, the products obtained carry functional groups that may be readily derivatized further.
Collapse
Affiliation(s)
- Ivana Némethová
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Dario Schmid
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Konrad Tiefenbacher
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland.,Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| |
Collapse
|
12
|
Li TR, Piccini G, Tiefenbacher K. Supramolecular Capsule-Catalyzed Highly β-Selective Furanosylation Independent of the S N1/S N2 Reaction Pathway. J Am Chem Soc 2023; 145:4294-4303. [PMID: 36751707 DOI: 10.1021/jacs.2c13641] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The resorcin[4]arene capsule was found to catalyze β-selective furanosylation reactions for a variety of different furanosyl donors: α-d- and α-l-arabinosyl-, α-l-fucosyl-, α-d-ribosyl-, α-d-xylosyl-, and even α-d-lyxosyl fluorides. The scope is only limited by the inherently finite volume inside the closed capsular catalyst. The catalyst is readily available on a multi-100 g scale and can be recycled for at least seven rounds without significant loss in activity, yield, and selectivity. The mechanistic investigations indicated that the furanosylation mechanism is shifted toward an SN1 reaction on the mechanistic continuum between the prototypical SN1 and SN2 substitution types, as compared to the pyranosylation reaction inside the same catalyst. This is especially true for the lyxosyl donor, as indicated by the nucleophile reaction order of 0.26, and supported by metadynamics calculations. The mechanistic shift toward SN1 is of high interest as it indicates that this catalyst not only enables β-selective furanosylations and pyranoslyations independently of the substrate configuration but in addition also independently of the operating mechanism. To our knowledge, there is no alternative catalyst available that displays such properties.
Collapse
Affiliation(s)
- Tian-Ren Li
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
- NCCR Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - GiovanniMaria Piccini
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Konrad Tiefenbacher
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
- NCCR Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|
13
|
Spatola E, Frateloreto F, Del Giudice D, Olivo G, Di Stefano S. Cyclization Reactions in Confined Space. Curr Opin Colloid Interface Sci 2023. [DOI: 10.1016/j.cocis.2023.101680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
14
|
Pfeuffer‐Rooschüz J, Heim S, Prescimone A, Tiefenbacher K. Megalo-Cavitands: Synthesis of Acridane[4]arenes and Formation of Large, Deep Cavitands for Selective C70 Uptake. Angew Chem Int Ed Engl 2022; 61:e202209885. [PMID: 35924716 PMCID: PMC9826223 DOI: 10.1002/anie.202209885] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 01/11/2023]
Abstract
Deep cavitands, concave molecular containers, represent an important supramolecular host class that has been explored for a variety of applications ranging from sensing, switching, purification and adsorption to catalysis. A major limitation in the field has been the cavitand volume that is restricted by the size of the structural platform utilized (diameter approx. 7 Å). We here report the synthesis of a novel, unprecedentedly large structural platform, named acridane[4]arene (diameter approx. 14 Å), suitable for the construction of cavitands with volumes of up to 814 Å3 . These megalo-cavitands serve as size-selective hosts for fullerenes with mM to sub-μM binding affinity for C60 and C70 . Furthermore, the selective binding of fullerene C70 in the presence of C60 was demonstrated.
Collapse
Affiliation(s)
| | - Salome Heim
- Department of ChemistryUniversity of BaselMattenstrasse 24a4002BaselSwitzerland
| | | | - Konrad Tiefenbacher
- Department of ChemistryUniversity of BaselMattenstrasse 24a4002BaselSwitzerland
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 264058BaselSwitzerland
| |
Collapse
|
15
|
Li J, Jin H, Shang Z, Wang J, Tian D, Ding Y, Hu A. Synthesis of cycloparaphenylene under spatial nanoconfinement. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Montà-González G, Sancenón F, Martínez-Máñez R, Martí-Centelles V. Purely Covalent Molecular Cages and Containers for Guest Encapsulation. Chem Rev 2022; 122:13636-13708. [PMID: 35867555 PMCID: PMC9413269 DOI: 10.1021/acs.chemrev.2c00198] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cage compounds offer unique binding pockets similar to enzyme-binding sites, which can be customized in terms of size, shape, and functional groups to point toward the cavity and many other parameters. Different synthetic strategies have been developed to create a toolkit of methods that allow preparing tailor-made organic cages for a number of distinct applications, such as gas separation, molecular recognition, molecular encapsulation, hosts for catalysis, etc. These examples show the versatility and high selectivity that can be achieved using cages, which is impossible by employing other molecular systems. This review explores the progress made in the field of fully organic molecular cages and containers by focusing on the properties of the cavity and their application to encapsulate guests.
Collapse
Affiliation(s)
- Giovanni Montà-González
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM) Universitat
Politècnica de València, Universitat de València. Camino de Vera, s/n 46022, Valencia, Spain
| | - Félix Sancenón
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM) Universitat
Politècnica de València, Universitat de València. Camino de Vera, s/n 46022, Valencia, Spain,CIBER
de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain,Centro
de Investigación Príncipe Felipe, Unidad Mixta UPV-CIPF
de Investigación de Mecanismos de Enfermedades y Nanomedicina,
Valencia, Universitat Politècnica
de València, 46012 Valencia, Spain,Instituto
de Investigación Sanitaria la Fe, Unidad Mixta de Investigación
en Nanomedicina y Sensores, Universitat
Politènica de València, 46026 València, Spain,Departamento
de Química, Universitat Politècnica
de València, 46022 Valencia, Spain
| | - Ramón Martínez-Máñez
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM) Universitat
Politècnica de València, Universitat de València. Camino de Vera, s/n 46022, Valencia, Spain,CIBER
de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain,Centro
de Investigación Príncipe Felipe, Unidad Mixta UPV-CIPF
de Investigación de Mecanismos de Enfermedades y Nanomedicina,
Valencia, Universitat Politècnica
de València, 46012 Valencia, Spain,Instituto
de Investigación Sanitaria la Fe, Unidad Mixta de Investigación
en Nanomedicina y Sensores, Universitat
Politènica de València, 46026 València, Spain,Departamento
de Química, Universitat Politècnica
de València, 46022 Valencia, Spain,R.M.-M.: email,
| | - Vicente Martí-Centelles
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM) Universitat
Politècnica de València, Universitat de València. Camino de Vera, s/n 46022, Valencia, Spain,V.M.-C.:
email,
| |
Collapse
|
17
|
Pfeuffer-Rooschüz J, Heim S, Prescimone A, Tiefenbacher K. Megalo‐Cavitands: Synthesis of Acridane[4]arenes and Formation of Large, Deep Cavitands for Selective C70 Uptake. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Salome Heim
- University of Basel: Universitat Basel Department of Chemistry SWITZERLAND
| | | | | |
Collapse
|
18
|
Penty S, Zwijnenburg MA, Orton GRF, Stachelek P, Pal R, Xie Y, Griffin SL, Barendt TA. The Pink Box: Exclusive Homochiral Aromatic Stacking in a Bis-perylene Diimide Macrocycle. J Am Chem Soc 2022; 144:12290-12298. [PMID: 35763425 PMCID: PMC9348826 DOI: 10.1021/jacs.2c03531] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work showcases chiral complementarity in aromatic stacking interactions as an effective tool to optimize the chiroptical and electrochemical properties of perylene diimides (PDIs). PDIs are a notable class of robust dye molecules and their rich photo- and electrochemistry and potential chirality make them ideal organic building blocks for chiral optoelectronic materials. By exploiting the new bay connectivity of twisted PDIs, a dynamic bis-PDI macrocycle (the "Pink Box") is realized in which homochiral PDI-PDI π-π stacking interactions are switched on exclusively. Using a range of experimental and computational techniques, we uncover three important implications of the macrocycle's chiral complementarity for PDI optoelectronics. First, the homochiral intramolecular π-π interactions anchor the twisted PDI units, yielding enantiomers with half-lives extended over 400-fold, from minutes to days (in solution) or years (in the solid state). Second, homochiral H-type aggregation affords the macrocycle red-shifted circularly polarized luminescence and one of the highest dissymmetry factors of any small organic molecule in solution (glum = 10-2 at 675 nm). Finally, excellent through-space PDI-PDI π-orbital overlap stabilizes PDI reduced states, akin to covalent functionalization with electron-withdrawing groups.
Collapse
Affiliation(s)
- Samuel
E. Penty
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Martijn A. Zwijnenburg
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Georgia R. F. Orton
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Patrycja Stachelek
- Department
of Chemistry, University of Durham, South Road, Durham DH1 3LE, United
Kingdom
| | - Robert Pal
- Department
of Chemistry, University of Durham, South Road, Durham DH1 3LE, United
Kingdom
| | - Yujie Xie
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Sarah L. Griffin
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Timothy A. Barendt
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
19
|
Doubly chiral pseudopeptidic macrobicyclic molecular cages: Water-assisted dynamic covalent self-assembly and chiral self-sorting. Chem 2022. [DOI: 10.1016/j.chempr.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Sokolova D, Piccini G, Tiefenbacher K. Enantioselective Tail-to-Head Terpene Cyclizations by Optically Active Hexameric Resorcin[4]arene Capsule Derivatives. Angew Chem Int Ed Engl 2022; 61:e202203384. [PMID: 35324038 PMCID: PMC9323437 DOI: 10.1002/anie.202203384] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 01/01/2023]
Abstract
Molecular capsules enable the conversion of substrates inside a closed cavity, mimicking to some extent enzymatic catalysis. Chirality transfer from the molecular capsule onto the encapsulated substrate has been only studied in a few cases. Here we demonstrate that chirality transfer is possible inside a rather large molecular container of approximately 1400 Å3 . Specifically, we present 1) the first examples of optically active hexameric resorcin[4]arene capsules, 2) their ability to enantioselectively catalyze tail-to-head terpene cyclizations, and 3) the surprisingly high sensitivity of enantioselectivity on the structural modifications.
Collapse
Affiliation(s)
- Daria Sokolova
- Department of ChemistryUniversity of BaselMattenstrasse 24a4058BaselSwitzerland
| | - GiovanniMaria Piccini
- Facoltà di Informatica, Istituto EuleroUniversità della Svizzera Italiana (USI)LuganoSwitzerland
| | - Konrad Tiefenbacher
- Department of ChemistryUniversity of BaselMattenstrasse 24a4058BaselSwitzerland
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 264058BaselSwitzerland
| |
Collapse
|
21
|
Takezawa H, Fujii Y, Murase T, Fujita M. Electrophilic Spirocyclization of a 2‐Biphenylacetylene via Conformational Fixing within a Hollow‐Cage Host. Angew Chem Int Ed Engl 2022; 61:e202203970. [DOI: 10.1002/anie.202203970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Indexed: 02/04/2023]
Affiliation(s)
- Hiroki Takezawa
- Department of Applied Chemistry School of Engineering The University of Tokyo Mitsui Link Lab Kashiwanoha 1, FS CREATION 6-6-2 Kashiwanoha, Kashiwa Chiba 227-0882 Japan
| | - Yuya Fujii
- Department of Applied Chemistry School of Engineering The University of Tokyo Mitsui Link Lab Kashiwanoha 1, FS CREATION 6-6-2 Kashiwanoha, Kashiwa Chiba 227-0882 Japan
| | - Takashi Murase
- Faculty of Science Yamagata University 1-4-12 Kojirakawa-machi, Yamagata-shi Yamagata 990-8560 Japan
| | - Makoto Fujita
- Department of Applied Chemistry School of Engineering The University of Tokyo Mitsui Link Lab Kashiwanoha 1, FS CREATION 6-6-2 Kashiwanoha, Kashiwa Chiba 227-0882 Japan
- Division of Advanced Molecular Science Institute for Molecular Science (IMS) 5-1 Higashiyama, Myodaiji, Okazaki Aichi 444-8787 Japan
| |
Collapse
|
22
|
Zhu Y, Zhao M, Rebek J, Yu Y. Recent Advances in the Applications of Water-soluble Resorcinarene-based Deep Cavitands. ChemistryOpen 2022; 11:e202200026. [PMID: 35701378 PMCID: PMC9197774 DOI: 10.1002/open.202200026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/04/2022] [Indexed: 11/08/2022] Open
Abstract
We review here the use of container molecules known as cavitands for performing organic reactions in water. Central to these endeavors are binding forces found in water, and among the strongest of these is the hydrophobic effect. We describe how the hydrophobic effect can be used to drive organic molecule guests into the confined space of cavitand hosts. Other forces participating in guest binding include cation-π interactions, chalcogen bonding and even hydrogen bonding to water involved in the host structure. The reactions of guests take advantage of their contortions in the limited space of the cavitands which enhance macrocyclic and site-selective processes. The cavitands are applied to the removal of organic pollutants from water and to the separation of isomeric guests. Progress is described on maneuvering the containers from stoichiometric participation to roles as catalysts.
Collapse
Affiliation(s)
- Yu‐Jie Zhu
- Supramolecular Chemistry & Catalysis and Department of ChemistryCollege of ScienceShanghai UniversityShanghai200444China
| | - Ming‐Kai Zhao
- Supramolecular Chemistry & Catalysis and Department of ChemistryCollege of ScienceShanghai UniversityShanghai200444China
| | - Julius Rebek
- Supramolecular Chemistry & Catalysis and Department of ChemistryCollege of ScienceShanghai UniversityShanghai200444China
| | - Yang Yu
- Supramolecular Chemistry & Catalysis and Department of ChemistryCollege of ScienceShanghai UniversityShanghai200444China
| |
Collapse
|
23
|
Takezawa H, Fujii Y, Murase T, Fujita M. Electrophilic Spirocyclization of a 2‐Biphenylacetylene via Conformational Fixing within a Hollow‐Cage Host. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hiroki Takezawa
- Department of Applied Chemistry School of Engineering The University of Tokyo Mitsui Link Lab Kashiwanoha 1, FS CREATION 6-6-2 Kashiwanoha, Kashiwa Chiba 227-0882 Japan
| | - Yuya Fujii
- Department of Applied Chemistry School of Engineering The University of Tokyo Mitsui Link Lab Kashiwanoha 1, FS CREATION 6-6-2 Kashiwanoha, Kashiwa Chiba 227-0882 Japan
| | - Takashi Murase
- Faculty of Science Yamagata University 1-4-12 Kojirakawa-machi, Yamagata-shi Yamagata 990-8560 Japan
| | - Makoto Fujita
- Department of Applied Chemistry School of Engineering The University of Tokyo Mitsui Link Lab Kashiwanoha 1, FS CREATION 6-6-2 Kashiwanoha, Kashiwa Chiba 227-0882 Japan
- Division of Advanced Molecular Science Institute for Molecular Science (IMS) 5-1 Higashiyama, Myodaiji, Okazaki Aichi 444-8787 Japan
| |
Collapse
|
24
|
Modifying electron injection kinetics for selective photoreduction of nitroarenes into cyclic and asymmetric azo compounds. Nat Commun 2022; 13:1940. [PMID: 35410425 PMCID: PMC9001638 DOI: 10.1038/s41467-022-29559-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/15/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractModifying the reactivity of substrates by encapsulation is essential for microenvironment catalysts. Herein, we report an alternative strategy that modifies the entry behaviour of reactants into the microenvironment and substrate inclusion thermodynamics related to the capsule to control the electron injection kinetics and the selectivity of products from the nitroarenes photoreduction. The strategy includes the orchestration of capsule openings to control the electron injection kinetics of electron donors, and the capsule’s pocket to encapsulate more than one nitroarene molecules, facilitating a condensation reaction between the in situ formed azanol and nitroso species to produce azo product. The conceptual microenvironment catalyst endows selective conversion of asymmetric azo products from different nitroarenes, wherein, the estimated diameter and inclusion Gibbs free energy of substrates are used to control and predict the selectivity of products. Inhibition experiments confirm a typical enzymatic conversion, paving a new avenue for rational design of photocatalysts toward green chemistry.
Collapse
|
25
|
Hayashi T, Ohishi Y, Chiba J, Inouye M. Synthesis of Rigid Macrocyclic Phenols and Their Catalytic Applications in Diels‐Alder reactions. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Tomoya Hayashi
- Toyama University - Sugitani Campus: Toyama Daigaku - Sugitani Campus Graduate School of Pharmaceutical Sciences JAPAN
| | - Yuki Ohishi
- University of Toyama Graduate School of Pharmaceutical Sciences Sugitini 2630 930-0194 Toyama JAPAN
| | - Junya Chiba
- Toyama University - Sugitani Campus: Toyama Daigaku - Sugitani Campus Graduate School of Pharmaceutical Sciences JAPAN
| | - Masahiko Inouye
- Toyama University - Sugitani Campus: Toyama Daigaku - Sugitani Campus Graduate School of Pharmaceutical Sciences JAPAN
| |
Collapse
|
26
|
Abstract
The intrinsic nature of macrocyclic molecules to preferentially absorb a specific solute has been opening up supramolecular chemistry. Nevertheless, the determinant factor with molecular perspectives in promoting host-guest complexations remains inconclusive, due to the lack of rigorous thermodynamic examination on the guest solubility inside the host. Here, we quantify the solute-solvent energetic and entropic contributions between the end states and on the docking route during inclusion of noble gases in cucurbit[5]uril, cucurbit[6]uril, and α-cyclodextrin, using molecular dynamics simulations in combination with the potential distribution theorem. Results show that in all of the pairs examined both the solute-solvent energy and entropy favor the inclusion, while the former is rather dominant. The frequency of interior drying, which pertains to the entropic contribution, differs between the hosts and is controlled by the existence of lid water at portal and the flexibility of host framework. Moreover, the hosts exhibit various types of absorption manners, involving non-, single-, and double-free-energy barriers.
Collapse
Affiliation(s)
- Yifeng Yao
- Department of Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
| | - Xuan Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
| | - Kenji Mochizuki
- Department of Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
| |
Collapse
|
27
|
Sokolova D, Piccini G, Tiefenbacher K. Enantioselective Tail‐to‐Head Terpene Cyclizations by Optically Active Hexameric Resorcin[4]arene Capsule Derivatives. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Daria Sokolova
- University of Basel: Universitat Basel Chemistry SWITZERLAND
| | - GiovanniMaria Piccini
- Università della Svizzera Italiana: Universita della Svizzera Italiana Informatica SWITZERLAND
| | | |
Collapse
|
28
|
Wang R, Rebek J, Yu Y. Organic radical reactions confined to containers in supramolecular systems. Chem Commun (Camb) 2022; 58:1828-1833. [PMID: 35084001 DOI: 10.1039/d1cc06851b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Radical chemistry and host-guest chemistry have each developed rapidly over the past decades and their intersection offers an attractive opportunity for modern applications. Radicals can be introduced into the frameworks of supramolecular hosts or radicals can be guests, generated in and confined to host containers. In this highlight we outline research achievements in both approaches, photoinduced and external reagent-initiated radicals in the host. Specific topics include rearrangement and fragmentation reactions, hydrocarbon oxidation and alkyl halide reductions of molecules confined to various supramolecular complexes. Applications to challenging problems in chemical synthesis are suggested.
Collapse
Affiliation(s)
- Rui Wang
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China.
| | - Julius Rebek
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China. .,Skaggs Institute for Chemical Biology and Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yang Yu
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China.
| |
Collapse
|
29
|
Liang R, Bu D, Su X, Wei X, Orentas E, Rebek J, Shi Q. Organic pollutants in water-soluble cavitands and capsules: contortions of molecules in nanospace. Org Chem Front 2022. [DOI: 10.1039/d2qo00139j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on the binding properties of deep cavitand for various industrial pollutants in water. Depending on the guest type, monomeric cavitands, dimeric capsules or both acted as receptors and...
Collapse
|
30
|
Zhang Q, He H, Gao S. Total Synthesis of Streptovertidione and Bioinspired Transformation to Streptovertidine A and Formicapyridine A. Chem Commun (Camb) 2022; 58:4239-4242. [DOI: 10.1039/d2cc00947a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report herein a concise total synthesis of streptovertidione, and its transformation to streptovertidine A and formicapyridine A through a bioinspired pyridination. This stratage features: 1) a one-pot Ti(O-iPr)4-mediated photoenolization/Diels-Alder...
Collapse
|
31
|
Yang JM, Chen YQ, Yu Y, Ballester P, Rebek J. Rigidified Cavitand Hosts in Water: Bent Guests, Shape Selectivity, and Encapsulation. J Am Chem Soc 2021; 143:19517-19524. [PMID: 34762414 DOI: 10.1021/jacs.1c09226] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report the synthesis and characterization of two water-soluble container compounds (cavitand hosts) with rigidified open ends. One cavitand uses four (CH2)4's as spacers to bridge the adjacent walls, while another cavitand uses four CH2CH2OCH2CH2's bridges and features a wider open end. The spacers preorganize the deep cavitands into vase-like, receptive shapes and prevent their unfolding to the unreceptive kite-like conformation. Cycloalkane guests (C6-C8) and small n-alkanes (C5-C7) form 1:1 complexes with the cavitands and move freely in the cavitands' spaces. Hydrophilic compounds 1,4-dioxane, tetrahydrofuran, tetrahydropyran, pyridine, and 1-methylimidazole also showed good binding affinity to the new cavitands. Longer alkanes (C11-C14) and n-alcohols (C11-C16) are taken up with a -CH3 group fixed at the bottom of the cavity and the groups near the rim in compressed conformations. The methylene bridges appear to divide the cavitand into a narrow hydrophobic compartment and a broader space with exposure to the aqueous medium. Longer alkane guests (C15-C18), N,N-dimethyldioctylammonium, and dioctylamine induce the formation of capsules (2:1 host:guest complexes). The new cavitands showed selectivity for p/m-cresol isomers and xylene isomers. The cavitand with CH2CH2OCH2CH2 bridges bound long-chain α,ω-diols (C13-C15) and diamines in folded, U-shaped conformations with polar functions exposed to the aqueous medium. It was used to separate o-xylene from its isomers by using simple extraction procedures.
Collapse
Affiliation(s)
- Ji-Min Yang
- Skaggs Institute for Chemical Biology and Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yong-Qing Chen
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| | - Yang Yu
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| | - Pablo Ballester
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), 43007 Tarragona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - Julius Rebek
- Skaggs Institute for Chemical Biology and Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
32
|
Shi Q, Wang X, Liu B, Qiao P, Li J, Wang L. Macrocyclic host molecules with aromatic building blocks: the state of the art and progress. Chem Commun (Camb) 2021; 57:12379-12405. [PMID: 34726202 DOI: 10.1039/d1cc04400a] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Macrocyclic host molecules play the central role in host-guest chemistry and supramolecular chemistry. The highly structural symmetry of macrocyclic host molecules can meet people's pursuit of aesthetics in molecular design, and generally means a balance of design, synthesis, properties and applications. For macrocyclic host molecules with highly symmetrical structures, building blocks, which could be described as repeat units as well, are the most fundamental elements for molecular design. The structural features and recognition ability of macrocyclic host molecules are determined by the building blocks and their connection patterns. Using different building blocks, different macrocyclic host molecules could be designed and synthesized. With decades of developments of host-guest chemistry and supramolecular chemistry, diverse macrocyclic host molecules with different building blocks have been designed and synthesized. Aromatic building blocks are a big family among the various building blocks used in constructing macrocyclic host molecules. In this feature article, the recent developments of macrocyclic host molecules with aromatic building blocks were summarized and discussed.
Collapse
Affiliation(s)
- Qiang Shi
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. .,Key Laboratory of Light Conversion Materials and Technology of Shandong Academy of Sciences, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xuping Wang
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. .,Key Laboratory of Light Conversion Materials and Technology of Shandong Academy of Sciences, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Bing Liu
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. .,Key Laboratory of Light Conversion Materials and Technology of Shandong Academy of Sciences, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Panyu Qiao
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. .,Key Laboratory of Light Conversion Materials and Technology of Shandong Academy of Sciences, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Jing Li
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. .,Shandong Provincial Key Laboratory of High Strength Lightweight Metallic Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Leyong Wang
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. .,Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
33
|
Horin I, Shalev O, Cohen Y. Aggregation Mode, Host-Guest Chemistry in Water, and Extraction Capability of an Uncharged, Water-Soluble, Liquid Pillar[5]arene Derivative. ChemistryOpen 2021; 10:1111-1115. [PMID: 34730286 PMCID: PMC8564886 DOI: 10.1002/open.202100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/10/2021] [Indexed: 11/05/2022] Open
Abstract
An uncharged, water-soluble per-ethylene-glycol pillar[5]arene derivative (1) was synthesized and its aggregation mode, host-guest chemistry in water and extraction ability was explored. Compound 1 is a liquid at room temperature; in water, limited self-aggregation occurred at high concentrations as deduced from diffusion NMR and dynamic light scattering. Compound 1 forms pseudo-rotaxane-like 1 : 1 host-guest complexes with 1,ω-di-substituted alkanes with association constants on the order of 103 -104 m-1 . Interestingly, NMR experiments showed that the guest location relative to the host ring system differs among the different complexes. In proof-of-concept experiments, compound 1 was shown to extract structurally related organic compounds from benzene into water with significant selectivity. Compound 1, which is a liquid at room temperature and has only limited interactions with its side arms, can, in principle, be regarded as a complement to or as a kind of type I porous liquid.
Collapse
Affiliation(s)
- Inbar Horin
- School of Chemistry, Sackler Faculty of Exact SciencesTel Aviv University Ramat Aviv69978Tel AvivIsrael
| | - Ori Shalev
- School of Chemistry, Sackler Faculty of Exact SciencesTel Aviv University Ramat Aviv69978Tel AvivIsrael
| | - Yoram Cohen
- School of Chemistry, Sackler Faculty of Exact SciencesTel Aviv University Ramat Aviv69978Tel AvivIsrael
| |
Collapse
|
34
|
Ziegler F, Kraus H, Benedikter MJ, Wang D, Bruckner JR, Nowakowski M, Weißer K, Solodenko H, Schmitz G, Bauer M, Hansen N, Buchmeiser MR. Confinement Effects for Efficient Macrocyclization Reactions with Supported Cationic Molybdenum Imido Alkylidene N-Heterocyclic Carbene Complexes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Felix Ziegler
- Institute of Polymer Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart D-70569, Germany
| | - Hamzeh Kraus
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, Stuttgart D-70569, Germany
| | - Mathis J. Benedikter
- Institute of Polymer Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart D-70569, Germany
| | - Dongren Wang
- Institute of Polymer Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart D-70569, Germany
| | - Johanna R. Bruckner
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart D-70569, Germany
| | - Michal Nowakowski
- Department of Chemistry and Center for Sustainable Systems Design (CSSD), University of Paderborn, Warburger Str. 100, Paderborn D-33098, Germany
| | - Kilian Weißer
- Institute of Polymer Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart D-70569, Germany
| | - Helena Solodenko
- Institute for Materials Science, University of Stuttgart, Heisenbergstraße 3, Stuttgart 70569, Germany
| | - Guido Schmitz
- Institute for Materials Science, University of Stuttgart, Heisenbergstraße 3, Stuttgart 70569, Germany
| | - Matthias Bauer
- Department of Chemistry and Center for Sustainable Systems Design (CSSD), University of Paderborn, Warburger Str. 100, Paderborn D-33098, Germany
| | - Niels Hansen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, Stuttgart D-70569, Germany
| | - Michael R. Buchmeiser
- Institute of Polymer Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart D-70569, Germany
| |
Collapse
|
35
|
Yao W, Wang K, Ismaiel YA, Wang R, Cai X, Teeler M, Gibb BC. Electrostatic Potential Field Effects on Amine Macrocyclizations within Yoctoliter Spaces: Supramolecular Electron Withdrawing/Donating Groups. J Phys Chem B 2021; 125:9333-9340. [PMID: 34355901 PMCID: PMC8383300 DOI: 10.1021/acs.jpcb.1c05238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
central role of Coulombic interactions in enzyme catalysis
has inspired multiple approaches to sculpting electrostatic potential
fields (EPFs) for controlling chemical reactivity, including ion gradients
in water microdroplets, the tips of STMs, and precisely engineered
crystals. These are powerful tools because EPFs can affect all reactions,
even those whose mechanisms do not involve formal charges. For some
time now, supramolecular chemists have become increasingly proficient
in using encapsulation to control stoichiometric and catalytic reactions.
However, the field has not taken advantage of the broad range of nanocontainers
available to systematically explore how EPFs can affect reactions
within their inner-spaces. With that idea in mind, previously, we
reported on how positively and negatively charged supramolecular capsules
can modulate the acidity and reactivity of thiol guests bound within
their inner, yoctoliter spaces (Cai, X.; Kataria, R.; Gibb, B. C. J. Am. Chem. Soc. 2020, 142, 8291–8298; Wang, K.; Cai, X.; Yao, W.; Tang, D.; Kataria,
R.; Ashbaugh, H. S.; Byers, L. D.; Gibb, B. C. J. Am. Chem.
Soc.2019, 141, 6740–6747).
Building on this, we report here on the cyclization of 14-bromotetradecan-1-amine
inside these yoctoliter containers. We examine the rate and activation
thermodynamics of cyclization (Eyring analysis), both in the absence
and presence of exogenous salts whose complementary ion can bind to
the outside of the capsule and hence attenuate its EPF. We find the
cyclization rates and activation thermodynamics in the two capsules
to be similar, but that for either capsule attenuation of the EPF
slows the reaction down considerably. We conclude the capsules behave
in a manner akin to covalently attached electron donating/withdrawing
groups in a substrate, with each capsule enforcing their own deviations
from the idealized SN2 mechanism by moving electron density
and charge in the activated complex and TS, and that the idealized
SN2 mechanism inside the theoretical neutral host is relatively
difficult because of the lack of solvation of the TS.
Collapse
Affiliation(s)
- Wei Yao
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Kaiyu Wang
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Yahya A Ismaiel
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Ruiqing Wang
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Xiaoyang Cai
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Mary Teeler
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Bruce C Gibb
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
36
|
Mao L, Zhou M, Niu YF, Zhao XL, Shi X. Aryl carbazole-based macrocycles: synthesis, their remarkably stable radical cations and host–guest complexation with fullerenes. Org Chem Front 2021. [DOI: 10.1039/d1qo00686j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Herein, we have designed and synthesized a series of aryl carbazole-based macrocycles and their stable radical cation species and interesting fullerene recognition were systematically investigated.
Collapse
Affiliation(s)
- Lijun Mao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Manfei Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Yan-Fei Niu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Xiao-Li Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Xueliang Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|