1
|
Zhang Q, Zheng J, Wang Y, Xu S, Wang W, Xu J, Zhang JR, Li F, Zhu JJ. A Diffusion-Based Synthetic Cell Communication Network Enabled by a Multitasking Deoxyribonucleic Acid Nanomachine. J Am Chem Soc 2025; 147:15806-15813. [PMID: 40275484 DOI: 10.1021/jacs.5c03726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
DNA-mediated synthetic cell communication enabling non-natural signaling and regulatory pathways is highly attractive but relies on direct cell contacts. Here, we report a diffusion-based synthetic cell communication capable of regulating migration behaviors of epithelial cell adhesion molecule (EpCAM)-overexpressed cancer cells in response to apoptosis events at distal sites. This synthetic cell communication network is enabled by a multitasking DNA nanomachine that not only mediates signal production, transmission, and regulation of cell migration but also amplifies signaling ligands in situ in response to specific receiver cells to overcome the signal attenuation during diffusion. Leveraging this diffusion-based synthetic cell communication network, we demonstrate the inhibition of cancer cell migrations in response to distal apoptosis events induced by an anticancer drug. Our system enriches current DNA nanotechnological tools for manipulating cellular interactions and function. It also directs a possible intervening strategy to reduce the invasiveness of cancer cells.
Collapse
Affiliation(s)
- Qianying Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jingyi Zheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yihan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shengshi Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenjing Wang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Junpeng Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing 210093, China
| | - Jian-Rong Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Feng Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Wang M, Nan H, Wang M, Yang S, Liu L, Wang HH, Nie Z. Responsive DNA artificial cells for contact and behavior regulation of mammalian cells. Nat Commun 2025; 16:2410. [PMID: 40069211 PMCID: PMC11897219 DOI: 10.1038/s41467-025-57770-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 03/04/2025] [Indexed: 03/15/2025] Open
Abstract
Artificial cells have emerged as synthetic entities designed to mimic the functionalities of natural cells, but their interactive ability with mammalian cells remains challenging. Herein, we develop a generalizable and modular strategy to engineer DNA-empowered stimulable artificial cells designated to regulate mammalian cells (STARM) via synthetic contact-dependent communication. Constructed through temperature-controlled DNA self-assembly involving liquid-liquid phase separation (LLPS), STARMs feature organized all-DNA cytoplasm-mimic and membrane-mimic compartments. These compartments can integrate functional nucleic acid (FNA) modules and light-responsive gold nanorods (AuNRs) to establish a programmable sense-and-respond mechanism to specific stimuli, such as light or ions, orchestrating diverse biological functions, including tissue formation and cellular signaling. By combining two designer STARMs into a dual-channel system, we achieve orthogonally regulated cellular signaling in multicellular communities. Ultimately, the in vivo therapeutic efficacy of STARM in light-guided muscle regeneration in living animals demonstrates the promising potential of smart artificial cells in regenerative medicine.
Collapse
Affiliation(s)
- Miao Wang
- State Key Laboratory of Chemo and Biosensing, Hunan University, Changsha, PR China
- College of Biology, Hunan University, Changsha, PR China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, PR China
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hexin Nan
- State Key Laboratory of Chemo and Biosensing, Hunan University, Changsha, PR China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, PR China
| | - Meixia Wang
- State Key Laboratory of Chemo and Biosensing, Hunan University, Changsha, PR China
- College of Biology, Hunan University, Changsha, PR China
| | - Sihui Yang
- State Key Laboratory of Chemo and Biosensing, Hunan University, Changsha, PR China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, PR China
| | - Lin Liu
- State Key Laboratory of Chemo and Biosensing, Hunan University, Changsha, PR China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, PR China
| | - Hong-Hui Wang
- State Key Laboratory of Chemo and Biosensing, Hunan University, Changsha, PR China.
- College of Biology, Hunan University, Changsha, PR China.
- Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, PR China.
| | - Zhou Nie
- State Key Laboratory of Chemo and Biosensing, Hunan University, Changsha, PR China.
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, PR China.
- Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, PR China.
| |
Collapse
|
3
|
Xiao F, Shen X, Tang W, Yang D. Emerging Trends in DNA Nanotechnology-Enabled Cell Surface Engineering. JACS AU 2025; 5:550-570. [PMID: 40017777 PMCID: PMC11863167 DOI: 10.1021/jacsau.4c01274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/19/2025] [Accepted: 01/27/2025] [Indexed: 03/01/2025]
Abstract
Cell surface engineering is a rapidly advancing field, pivotal for understanding cellular physiology and driving innovations in biomedical applications. In this regard, DNA nanotechnology offers unprecedented potential for precisely manipulating and functionalizing cell surfaces by virtue of its inherent programmability and versatile functionalities. Herein, this Perspective provides a comprehensive overview of emerging trends in DNA nanotechnology for cell surface engineering, focusing on key DNA nanostructure-based tools, their roles in regulating cellular physiological processes, and their biomedical applications. We first discuss the strategies for integrating DNA molecules onto cell surfaces, including the attachment of oligonucleotides and the higher-order DNA nanostructure. Second, we summarize the impact of DNA-based surface engineering on various cellular processes, such as membrane protein degradation, signaling transduction, intercellular communication, and the construction of artificial cell membrane components. Third, we highlight the biomedical applications of DNA-engineered cell surfaces, including targeted therapies for cancer and inflammation, as well as applications in cell capture/protection and diagnostic detection. Finally, we address the challenges and future directions in DNA nanotechnology-based cell surface engineering. This Perspective aims to provide valuable insights for the rational design of DNA nanotechnology in cell surface engineering, contributing to the development of precise and personalized medicine.
Collapse
Affiliation(s)
- Fan Xiao
- Department
of Respiratory and Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P. R. China
- Department
of Chemistry, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
College of Chemistry and Materials, Fudan
University, Shanghai 200438, P. R. China
| | - Xinghong Shen
- Department
of Chemistry, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
College of Chemistry and Materials, Fudan
University, Shanghai 200438, P. R. China
| | - Wenqi Tang
- Department
of Chemistry, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
College of Chemistry and Materials, Fudan
University, Shanghai 200438, P. R. China
| | - Dayong Yang
- Department
of Chemistry, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
College of Chemistry and Materials, Fudan
University, Shanghai 200438, P. R. China
- Bioinformatics
Center of AMMS, Beijing 100850, P. R. China
| |
Collapse
|
4
|
Xiao M, Li L, Pei H. Cell-Membrane-Anchored DNA Nanoplatform for Programming Cellular Interactions. Methods Mol Biol 2025; 2901:117-130. [PMID: 40175871 DOI: 10.1007/978-1-0716-4394-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Developing simple, yet effective strategies to program cell-cell interactions facilitate the study of fundamental multicellular behavior and the development of cell-based therapeutics. Here we report cell-membrane-anchored DNA nanoplatform for programming cellular interactions. The membrane-anchored framework nucleic acid clustering can be programmed by DNA probabilistic circuits, to modulate the recognition capability of natural killer cells and control their interactions with cancer cells for enhancing efficient cancer cell killing. This work provides insights for precise control over cellular interactions and opens new opportunities for the development of cell-based immunotherapy.
Collapse
Affiliation(s)
- Mingshu Xiao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Li Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Hao Pei
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
| |
Collapse
|
5
|
Li K, Chen H, Li D, Yang C, Zhang H, Zhu Z. Empowering DNA-Based Information Processing: Computation and Data Storage. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68749-68771. [PMID: 39648356 DOI: 10.1021/acsami.4c13948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Information processing is a critical topic in the digital age, as silicon-based circuits face unprecedented challenges such as data explosion, immense energy consumption, and approaching physical limits. Deoxyribonucleic acid (DNA), naturally selected as a carrier for storing and using genetic information, possesses unique advantages for information processing, which has given rise to the emerging fields of DNA computing and DNA data storage. To meet the growing practical demands, a wide variety of materials and interfaces have been introduced into DNA information processing technologies, leading to significant advancements. This review summarizes the advances in materials and interfaces that facilitate DNA computation and DNA data storage. We begin with a brief overview of the fundamental functions and principles of DNA computation and DNA data storage. Subsequently, we delve into DNA computing systems based on various materials and interfaces, including microbeads, nanomaterials, DNA nanostructures, hydrophilic-hydrophobic compartmentalization, hydrogels, metal-organic frameworks, and microfluidics. We also explore DNA data storage systems, encompassing encapsulation materials, microfluidics techniques, DNA nanostructures, and living cells. Finally, we discuss the current bottlenecks and obstacles in the fields and provide insights into potential future developments.
Collapse
Affiliation(s)
- Kunjie Li
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Heng Chen
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Dayang Li
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Huimin Zhang
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Zhi Zhu
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
6
|
Chen N, Xi J, Du N, Shen R, Zhao R, He W, Peng T, Yang Y, Zhang Y, Yu L, Tan W, Yuan Q. Framework nucleic acid strategy enables closer microbial contact for programming short-range interaction. SCIENCE ADVANCES 2024; 10:eadr4399. [PMID: 39661693 PMCID: PMC11633756 DOI: 10.1126/sciadv.adr4399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/07/2024] [Indexed: 12/13/2024]
Abstract
Programming precise and specific microbial intraspecies or interspecies interaction would be powerful for microbial metabolic regulation, signal pathway mechanism understanding, and therapeutic application. However, it is still of great challenge to develop a simple and universal method to artificially encode the microbial interactions without interfering with the intrinsic cell metabolism. Here, we proposed an extensible and flexible framework nucleic acid strategy for encoding the specific and precise microbial interactions upon self-assembly. With this spatial manipulation tool, we propose the microbial spatial heterogeneity and short-range interaction mechanism that the microbial assembly facilitates the gene expressions of the surface sensors including flagella and pili in Pseudomonas aeruginosa, leading to a more sensitive response to quorum sensing. The microbial interaction programming strategy proposed in this work is expected to provide a powerful and designable nanoplatform for better understanding of distance-dependent bacterial communication networks.
Collapse
Affiliation(s)
- Na Chen
- Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Institute of Molecular Medicine, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Jing Xi
- Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Institute of Molecular Medicine, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Na Du
- Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Institute of Molecular Medicine, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Ruichen Shen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Rui Zhao
- Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Institute of Molecular Medicine, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Wei He
- Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Institute of Molecular Medicine, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Tianhuang Peng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yanbing Yang
- Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Institute of Molecular Medicine, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Yun Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lilei Yu
- Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Institute of Molecular Medicine, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Quan Yuan
- Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Institute of Molecular Medicine, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
7
|
Lai Z, Jin D, Tian Y, Chen X, Han D, Chen H, Wang J, Yang Y. Enhanced Sensitivity of Cell Identification in Complex Environments Using Chirally Inverted L-DNA-Based Logic Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2410642. [PMID: 39401418 PMCID: PMC11615743 DOI: 10.1002/advs.202410642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/16/2024] [Indexed: 12/06/2024]
Abstract
Accurate identification and isolation of target cells are crucial for precision diagnosis and treatment. DNA aptamer-based logic devices provide a distinct advantage in this context, as they can logically analyze multiple cell surface markers with high efficiency. However, the susceptibility of natural DNA (D-DNA) to degradation can compromise the sensitivity and specificity of these devices, potentially leading to false-positive and false-negative results, particularly in complex biological environments. To address this issue, dual- and triple-aptamer-based cell-surface logic devices are designed and developed using mirror-image L-DNA, a chiral molecule of D-DNA with high biostability. These devices allow for simultaneous analysis of multiple cell surface proteins, achieving greater specificity in cell identification and isolation than D-DNA-based logic devices. The L-DNA probes realized 98.7% and 70.5% sensitivities in FBS buffer with dual- and triple-aptamer-based logic devices for target cell identification, while D-DNA probes only showed 27.9% and 0.1%. It is believed that the high stability of L-DNA and the high efficiency of the devices for labeling cell subpopulations will have broad applications in the life sciences, biomedical engineering, and personalized medicine.
Collapse
Affiliation(s)
- Zixi Lai
- Shanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200092China
- Institute of Molecular Medicine (IMM) and Department of UrologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Di Jin
- Institute of Molecular Medicine (IMM) and Department of UrologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Yuan Tian
- Institute of Molecular Medicine (IMM) and Department of UrologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Xiaoxing Chen
- Institute of Molecular Medicine (IMM) and Department of UrologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Da Han
- Institute of Molecular Medicine (IMM) and Department of UrologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Haige Chen
- Institute of Molecular Medicine (IMM) and Department of UrologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Junyan Wang
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Yang Yang
- Shanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200092China
- Central LaboratoryShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433China
- School of Materials Science and EngineeringTongji UniversityShanghai201804China
| |
Collapse
|
8
|
Cao L, Yang X, Li Y, Yang Y, Liu Q, Bottini M, Jin Y, Wang B, Zhang J, Liang XJ. Near-Infrared Light-Activatable DNA Tentacles for Efficient Inhibition of Tumor Metastasis by Bio-Orthogonal Cell Assembly. ACS NANO 2024; 18:18046-18057. [PMID: 38937261 DOI: 10.1021/acsnano.4c05216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Tumor metastasis remains a major challenge in cancer management. Among various treatment strategies, immune cell-based cancer therapy holds a great potential for inhibiting metastasis. However, its wide application in cancer therapy is restricted by complex preparations, as well as inadequate homing and controllability. Herein, we present a groundbreaking approach for bioorthogonally manipulating tumor-NK (natural killer) cell assembly to inhibit tumor metastasis. Multiple dibenzocyclootyne (DBCO) groups decorated long single-stranded DNA were tail-modified on core-shell upconversion nanoparticles (CSUCNPs) and condensed by photosensitive chemical linker (PC-Linker) DNA to shield most of the DBCO groups. On the one hand, the light-triggered DNA scaffolds formed a cross-linked network by click chemistry, effectively impeding tumor cell migration. On the other hand, the efficient cellular assembly facilitated the effective communication between tumor cells and NK-92 cells, leading to enhanced immune response against tumors and further suppression of tumor metastasis. These features make our strategy highly applicable to a wide range of metastatic cancers.
Collapse
Affiliation(s)
- Lingzhi Cao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Xinjian Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Yimei Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Yang Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Qiulin Liu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Massimo Bottini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
- Sanford Burnham Prebys, La Jolla,California 92037, United States
| | - Yi Jin
- College of Basic Medical Science, Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Bei Wang
- College of Basic Medical Science, Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, PR China
| |
Collapse
|
9
|
Zhao T, Fang Y, Wang X, Wang L, Chu Y, Wang W. Biomarker-triggered, spatiotemporal controlled DNA nanodevice simultaneous assembly and disassembly. NANOSCALE 2024; 16:11290-11295. [PMID: 38787656 DOI: 10.1039/d4nr01745e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Despite many advances in the use of DNA nanodevices as assembly or disassembly modules to build various complex structures, the simultaneous assembly and disassembly of DNA structures in living cells remains a challenge. In this study, we present a modular engineering approach for assembling and disassembling DNA nanodevices in response to endogenous biomarkers. As a result of pairwise prehybridization of original DNA strands, the DNA nanodevice is initially inert. In an effort to bind one of the paired strands and release its complement, nucleolin competes. Assembly of the DNA nanodevice is initiated when the released complement binds to it, and disassembly is initiated when APE1 shears the assembled binding site of the DNA nanodevice. Spatial-temporal logic control is achieved through our approach during the assembly and disassembly of DNA nanodevices. Furthermore, by means of this assembly and disassembly procedure, the sequential detection and imaging of two tumor markers can be achieved, thereby effectively reducing false-positive signal results and accelerating the detection time. This study emphasizes the simultaneous assembly and disassembly of DNA nanodevices controlled by biomarkers in a simple and versatile manner; it has the potential to expand the application scope of DNA nanotechnology and offers an idea for the implementation of precision medicine testing.
Collapse
Affiliation(s)
- Tingting Zhao
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R. China.
| | - Yi Fang
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R. China.
| | - Xuyang Wang
- Biomedical Science College, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, P. R. China
| | - Lei Wang
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R. China.
| | - Yujuan Chu
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R. China.
| | - Wenxiao Wang
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R. China.
| |
Collapse
|
10
|
Zhang Q, Zhang Y, Wu L, Wang D, Zhuo Y, Lu Y, Liu Y, Wang Z, Qiu L, Tan W. DNA Reaction Circuits to Establish Designated Biological Functions in Multicellular Community. NANO LETTERS 2024; 24:5808-5815. [PMID: 38710049 DOI: 10.1021/acs.nanolett.4c00980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
In multicellular organisms, individual cells are coordinated through complex communication networks to accomplish various physiological tasks. Aiming to establish new biological functions in the multicellular community, we used DNA as the building block to develop a cascade of nongenetic reaction circuits to establish a dynamic cell-cell communication network. Utilizing membrane-anchored amphiphilic DNA tetrahedra (TDN) as the nanoscaffold, reaction circuits were incorporated into three unrelated cells in order to uniquely regulate their sense-and-response behaviors. As a proof-of-concept, this step enabled these cells to simulate significant biological events involved in T cell-mediated anticancer immunity. Such events included cancer-associated antigen recognition and the presentation of antigen-presenting cells (APCs), APC-facilitated T cell activation and dissociation, and T cell-mediated cancer targeting and killing. By combining the excellent programmability and molecular recognition ability of DNA, our cell-surface reaction circuits hold promise for mimicking and manipulating many biological processes.
Collapse
Affiliation(s)
- Qiang Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yue Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Limei Wu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Dan Wang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yuting Zhuo
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yao Lu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yue Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Zhimin Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Liping Qiu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
11
|
Zhang X, Liu X, Zhang X, Cui S, Yao Y, Wang B, Zhang Q. Arbitrary Digital DNA Computing: A Programmable Molecular Perceptron Driven by Lambda Exonuclease for Lighting up Concatenated Circuits. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38688864 DOI: 10.1021/acsami.4c03486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
DNA circuits, as a type of biochemical system, have the capability to synchronize the perception of molecular information with a chemical reaction response and directly process the molecular characteristic information in biological activities, making them a crucial area in molecular digital computing and smart bioanalytical applications. Instead of cascading logic gates, the traditional research approach achieves multiple logic operations which limits the scalability of DNA circuits and increases the development costs. Based on the interface reaction mechanism of Lambda exonuclease, the molecular perceptron proposed in this study, with the need for only adjusting weight and bias parameters to alter the corresponding logic expressions, enhances the versatility of the molecular circuits. We also establish a mathematical model and an improved heuristic algorithm for solving weights and bias parameters for arbitrary logic operations. The simulation and FRET experiment results of a series of logic operations demonstrate the universality of molecular perceptron. We hope the proposed molecular perceptron can introduce a new design paradigm for molecular circuits, fostering innovation and development in biomedical research related to biosensing, targeted therapy, and nanomachines.
Collapse
Affiliation(s)
- Xun Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xin Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaokang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shuang Cui
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yao Yao
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Bin Wang
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Dalian 116622, China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
12
|
Wang Y, Xiong Y, Shi K, Effah CY, Song L, He L, Liu J. DNA nanostructures for exploring cell-cell communication. Chem Soc Rev 2024; 53:4020-4044. [PMID: 38444346 DOI: 10.1039/d3cs00944k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The process of coordinating between the same or multiple types of cells to jointly execute various instructions in a controlled and carefully regulated environment is a very appealing field. In order to provide clearer insight into the role of cell-cell interactions and the cellular communication of this process in their local communities, several interdisciplinary approaches have been employed to enhance the core understanding of this phenomenon. DNA nanostructures have emerged in recent years as one of the most promising tools in exploring cell-cell communication and interactions due to their programmability and addressability. Herein, this review is dedicated to offering a new perspective on using DNA nanostructures to explore the progress of cell-cell communication. After briefly outlining the anchoring strategy of DNA nanostructures on cell membranes and the subsequent dynamic regulation of DNA nanostructures, this paper highlights the significant contribution of DNA nanostructures in monitoring cell-cell communication and regulating its interactions. Finally, we provide a quick overview of the current challenges and potential directions for the application of DNA nanostructures in cellular communication and interactions.
Collapse
Affiliation(s)
- Ya Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Yamin Xiong
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Kangqi Shi
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Clement Yaw Effah
- The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou 450003, China
| | - Lulu Song
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Leiliang He
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| |
Collapse
|
13
|
Xiang Y, Liu J, Chen J, Xiao M, Pei H, Li L. MoS 2-Based Sensor Array for Accurate Identification of Cancer Cells with Ensemble-Modified Aptamers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15861-15869. [PMID: 38508220 DOI: 10.1021/acsami.3c19159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
In this work, we present an array-based chemical nose sensor that utilizes a set of ensemble-modified aptamer (EMAmer) probes to sense subtle physicochemical changes on the cell surface for cancer cell identification. The EMAmer probes are engineered by domain-selective incorporation of different types and/or copies of positively charged functional groups into DNA scaffolds, and their differential interactions with cancer cells can be transduced through competitive adsorption of fluorophore-labeled EMAmer probes loaded on MoS2 nanosheets. We demonstrate that this MoS2-EMAmer-based sensor array enables rapid and effective discrimination among six types of cancer cells and their mixtures with a concentration of 104 cells within 60 min, achieving a 94.4% accuracy in identifying blinded unknown cell samples. The established MoS2-EMAmer sensing platform is anticipated to show significant promise in the advancement of cancer diagnostics.
Collapse
Affiliation(s)
- Ying Xiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Jingjing Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Jing Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| |
Collapse
|
14
|
Wang Z, Xie X, Jin K, Xia D, Zhu J, Zhang J. Amplified and Specific Staining of Protein Dimerization on Cell Membrane Catalyzed by Responsively Installed DNA Nanomachines for Cancer Diagnosis. Adv Healthc Mater 2024; 13:e2303398. [PMID: 38183379 DOI: 10.1002/adhm.202303398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/27/2023] [Indexed: 01/08/2024]
Abstract
In situ staining of protein dimerization on cell membrane has an important significance in accurate diagnosis during perioperative period, yet facile integration of specific recognition function and local signal conversion/amplification abilities on membrane surface remains a great challenge. Herein, a two-stage catalytic strategy is developed by installing DNA nanomachines and employing. Specifically, dual-aptamer-assisted DNA scaffold perform a "bispecific recognition-then-computing" operation and the output signal initiate a membrane-anchored biocatalysis for self-assembly of DNA catalytic converters, that is, G-quadruplex nanowire/hemin DNAzyme. Then, localized-deposition of chromogenic polydopamine is chemically catalyzed by horseradish peroxidase-mimicking DNAzyme and guided by supramolecular interactions between conjugate rigid plane of G-tetrad and polydopamine oligomer. The catalytic products exhibit nanofiber morphology with a diameter of 80-120 nm and a length of 1-10 µm, and one-to-one localize on DNA scaffold for amplified and specific staining of protein dimers. The bispecific staining leads to a higher (≈3.4-fold) signal intensity than traditional immunohistochemistry, which is beneficial for direct visualization. Moreover, an efficient discrimination ability of the bispecific staining strategy is observed in co-culture model staining. This study provides a novel catalytic method for controlling deposition of chromogens and paves a new avenue to sensitively stain of protein-protein interactions in disease diagnosis.
Collapse
Affiliation(s)
- Zhenqiang Wang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, No. 183 Xinqiao Road, Chongqing, 400037, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No.174 Shazheng Road, Chongqing, 400044, China
| | - Xiyue Xie
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No.174 Shazheng Road, Chongqing, 400044, China
| | - Kaifei Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No.174 Shazheng Road, Chongqing, 400044, China
| | - Daqing Xia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No.174 Shazheng Road, Chongqing, 400044, China
| | - Jing Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No.174 Shazheng Road, Chongqing, 400044, China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No.174 Shazheng Road, Chongqing, 400044, China
| |
Collapse
|
15
|
Kosara S, Singh R, Bhatia D. Structural DNA nanotechnology at the nexus of next-generation bio-applications: challenges and perspectives. NANOSCALE ADVANCES 2024; 6:386-401. [PMID: 38235105 PMCID: PMC10790967 DOI: 10.1039/d3na00692a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024]
Abstract
DNA nanotechnology has significantly progressed in the last four decades, creating nucleic acid structures widely used in various biological applications. The structural flexibility, programmability, and multiform customization of DNA-based nanostructures make them ideal for creating structures of all sizes and shapes and multivalent drug delivery systems. Since then, DNA nanotechnology has advanced significantly, and numerous DNA nanostructures have been used in biology and other scientific disciplines. Despite the progress made in DNA nanotechnology, challenges still need to be addressed before DNA nanostructures can be widely used in biological interfaces. We can open the door for upcoming uses of DNA nanoparticles by tackling these issues and looking into new avenues. The historical development of various DNA nanomaterials has been thoroughly examined in this review, along with the underlying theoretical underpinnings, a summary of their applications in various fields, and an examination of the current roadblocks and potential future directions.
Collapse
Affiliation(s)
- Sanjay Kosara
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar Palaj Gujarat 382355 India
| | - Ramesh Singh
- Department of Mechanical Engineering, Colorado State University Fort Collins CO USA
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar Palaj Gujarat 382355 India
| |
Collapse
|
16
|
Almeida‐Pinto J, Lagarto MR, Lavrador P, Mano JF, Gaspar VM. Cell Surface Engineering Tools for Programming Living Assemblies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304040. [PMID: 37823678 PMCID: PMC10700290 DOI: 10.1002/advs.202304040] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/10/2023] [Indexed: 10/13/2023]
Abstract
Breakthroughs in precision cell surface engineering tools are supporting the rapid development of programmable living assemblies with valuable features for tackling complex biological problems. Herein, the authors overview the most recent technological advances in chemically- and biologically-driven toolboxes for engineering mammalian cell surfaces and triggering their assembly into living architectures. A particular focus is given to surface engineering technologies for enabling biomimetic cell-cell social interactions and multicellular cell-sorting events. Further advancements in cell surface modification technologies may expand the currently available bioengineering toolset and unlock a new generation of personalized cell therapeutics with clinically relevant biofunctionalities. The combination of state-of-the-art cell surface modifications with advanced biofabrication technologies is envisioned to contribute toward generating living materials with increasing tissue/organ-mimetic bioactivities and therapeutic potential.
Collapse
Affiliation(s)
- José Almeida‐Pinto
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - Matilde R. Lagarto
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - Pedro Lavrador
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - João F. Mano
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - Vítor M. Gaspar
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| |
Collapse
|
17
|
Wang K, Wei Y, Xie X, Li Q, Liu X, Wang L, Li J, Wu J, Fan C. DNA-Programmed Stem Cell Niches via Orthogonal Extracellular Vesicle-Cell Communications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302323. [PMID: 37463346 DOI: 10.1002/adma.202302323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
Extracellular vesicles (EVs) are natural carriers for intercellular transfer of bioactive molecules, which are harnessed for wide biomedical applications. However, a facile yet general approach to engineering interspecies EV-cell communications is still lacking. Here, the use of DNA to encode the heterogeneous interfaces of EVs and cells in a manner free of covalent or genetic modifications is reported, which enables orthogonal EV-cell interkingdom interactions in complex environments. Cholesterol-modified DNA strands and tetrahedral DNA frameworks are employed with complementary sequences to serve as artificial ligands and receptors docking on EVs and living cells, respectively, which can mediate specific yet efficient cellular internalization of EVs via Watson-Crick base pairing. It is shown that based on this system, human cells can adopt EVs derived from the mouse, watermelon, and Escherichia coli. By implementing several EV-cell circuits, it shows that this DNA-programmed system allows orthogonal EV-cell communications in complex environments. This study further demonstrates efficient delivery of EVs with bioactive contents derived from feeder cells toward monkey female germline stem cells (FGSCs), which enables self-renewal and stemness maintenance of the FGSCs without feeder cells. This system may provide a universal platform to customize intercellular exchanges of materials and signals across species and kingdoms.
Collapse
Affiliation(s)
- Kaizhe Wang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of BioMedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, China
| | - Yuhan Wei
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaodong Xie
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lihua Wang
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Jiang Li
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Ji Wu
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
18
|
Cui T, Zhang Y, Qin G, Wei Y, Yang J, Huang Y, Ren J, Qu X. A neutrophil mimicking metal-porphyrin-based nanodevice loaded with porcine pancreatic elastase for cancer therapy. Nat Commun 2023; 14:1974. [PMID: 37031242 PMCID: PMC10082843 DOI: 10.1038/s41467-023-37580-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 03/23/2023] [Indexed: 04/10/2023] Open
Abstract
Precise discrimination and eradication of cancer cells by immune cells independent of antigen recognition is promising for solid tumor therapeutics, yet remains a tremendous challenge. Inspired by neutrophils, here we design and construct a tumor discrimination nanodevice based on the differential histone H1 isoform expression. In this nanodevice, neutrophil membrane camouflage and glutathione (GSH)-unlocking effect on Fe-porphyrin metal-organic framework structure ensures selectivity to cancer cells. The released porcine pancreatic elastase (PPE) simulates neutrophils' action to induce histone H1 release-dependent selective cancer cell killing. Meanwhile, nuclear localization signal (NLS) peptide-tagged porphyrin (porphyrin-NLS) acts as in-situ singlet oxygen (1O2) generator to amplify histone H1 nucleo-cytoplasmic translocation by inducing DNA double-strand breaks (DSBs) under laser irradiation, further promoting elimination of cancer cells. The overexpressed histone H1 isoform in cancer cells improves selectivity of our nanodevice to cancer cells. In vivo studies demonstrate that our design can not only inhibit primary tumor growth, but also induce adaptive T-cell response-mediated abscopal effect to against distal tumors.
Collapse
Affiliation(s)
- Tingting Cui
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yu Zhang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Geng Qin
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yue Wei
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jie Yang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ying Huang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jinsong Ren
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
| |
Collapse
|
19
|
Yu L, Ma Z, He Q. Dynamic DNA Nanostructures for Cell Manipulation. ACS Biomater Sci Eng 2023; 9:562-576. [PMID: 36592368 DOI: 10.1021/acsbiomaterials.2c01204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dynamic DNA nanostructures are DNA nanostructures with reconfigurable elements that can undergo structural transformations in response to specific stimuli. Thus, anchoring dynamic DNA nanostructures on cell membranes is an attractive and promising strategy for well-controlled cell manipulation. Here, we review the latest progress in dynamic DNA nanostructures for cell manipulation. Commonly used mechanisms for dynamic DNA nanostructures are first introduced. Subsequently, we summarize the anchoring strategies for dynamic DNA nanostructures on cell membranes and list possible applications (including programming cell membrane receptors, controlling ligand activity and drug delivery, capturing and releasing cells, and assembling cells into clusters). Finally, insights into the remaining challenges are presented.
Collapse
Affiliation(s)
- Lu Yu
- Department of Endocrinology and Metabolism, The First People's Hospital of Changde City, Renmin Middle Road 818, Changde, Hunan 415000, P. R. China
| | - Zongrui Ma
- Department of Ophthalmology, The First People's Hospital of Changde City, Renmin Middle Road 818, Changde, Hunan 415000, P. R. China
| | - Qunye He
- School of Pharmacy, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200000, P. R. China
| |
Collapse
|
20
|
Tang J, Liang A, Yao C, Yang D. Assembly of Rolling Circle Amplification-Produced Ultralong Single-Stranded DNA to Construct Biofunctional DNA Materials. Chemistry 2023; 29:e202202673. [PMID: 36263767 DOI: 10.1002/chem.202202673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
Abstract
The Review by Yang, Yao and colleagues (DOI: 10.1002/chem.202202673) describes recent developments in biofunctional DNA hydrogels and DNA nanocomplexes based on rolling circle amplification (RCA) and introduces assembly strategies and functionalization methods of the ultralong single-strand DNA produced by RCA to construct biofunctional materials.
Collapse
Affiliation(s)
- Jianpu Tang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Aiqi Liang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Chi Yao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
21
|
Xiong M, Kong G, Liu Q, Liu L, Yin Y, Liu Y, Yuan H, Zhang XB, Tan W. DNA-Templated Anchoring of Proteins for Programmable Cell Functionalization and Immunological Response. NANO LETTERS 2023; 23:183-191. [PMID: 36577045 DOI: 10.1021/acs.nanolett.2c03928] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Membrane protein engineering exhibits great potential for cell functionalization. Although genetic strategies are sophisticated for membrane protein engineering, there still exist some issues, including transgene insertional mutagenesis, laborious, complicated procedures, and low tunability. Herein, we report a DNA-templated anchoring of exogenous proteins on living cell membranes to realize programmable functionalization of living cells. Using DNA as a scaffold, the model cell membranes are readily modified with proteins, on which the density and ratio of proteins as well as their interactions can be precisely controlled through predictable DNA hybridization. Then, the natural killer (NK) cells were engineered to gain the ability to eliminate the immune checkpoint signaling at the NK-tumor synapse, which remarkably promoted NK cell activation in immunotherapy. Given the versatile functions of exogenous proteins and flexible designs of programmable DNA, this method has the potential to facilitate membrane-protein-based cell engineering and therapy.
Collapse
Affiliation(s)
- Mengyi Xiong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha, Hunan 410082, China
| | - Gezhi Kong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha, Hunan 410082, China
| | - Qin Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha, Hunan 410082, China
| | - Lu Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha, Hunan 410082, China
| | - Yao Yin
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha, Hunan 410082, China
| | - Ying Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha, Hunan 410082, China
| | - Hui Yuan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha, Hunan 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha, Hunan 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
22
|
DNA computational device-based smart biosensors. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
23
|
Li L, Liu S, Zhang C, Guo Z, Shao S, Deng X, Liu Q. Recent Advances in DNA-Based Cell Surface Engineering for Biological Applications. Chemistry 2022; 28:e202202070. [PMID: 35977912 DOI: 10.1002/chem.202202070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Indexed: 12/14/2022]
Abstract
Due to its excellent programmability and biocompatibility, DNA molecule has unique advantages in cell surface engineering. Recent progresses provide a reliable and feasible way to engineer cell surfaces with diverse DNA molecules and DNA nanostructures. The abundant form of DNA nanostructures has greatly expanded the toolbox of DNA-based cell surface engineering and gave rise to a variety of novel and fascinating applications. In this review, we summarize recent advances in DNA-based cell surface engineering and its biological applications. We first introduce some widely used methods of immobilizing DNA molecules on cell surfaces and their application features. Then we discuss the approaches of employing DNA nanostructures and dynamic DNA nanotechnology as elements for creating functional cell surfaces. Finally, we review the extensive biological applications of DNA-based cell surface engineering and discuss the challenges and prospects of DNA-based cell surface engineering.
Collapse
Affiliation(s)
- Lexun Li
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology, Hunan University Changsha, Hunan, 410082, People's Republic of China
| | - Shuang Liu
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology, Hunan University Changsha, Hunan, 410082, People's Republic of China
| | - Chunjuan Zhang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology, Hunan University Changsha, Hunan, 410082, People's Republic of China
| | - Zhenzhen Guo
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology, Hunan University Changsha, Hunan, 410082, People's Republic of China
| | - Shuxuan Shao
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology, Hunan University Changsha, Hunan, 410082, People's Republic of China
| | - Xiaodan Deng
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology, Hunan University Changsha, Hunan, 410082, People's Republic of China
| | - Qiaoling Liu
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology, Hunan University Changsha, Hunan, 410082, People's Republic of China
| |
Collapse
|
24
|
Sun Y, Sun J, Xiao M, Lai W, Li L, Fan C, Pei H. DNA origami-based artificial antigen-presenting cells for adoptive T cell therapy. SCIENCE ADVANCES 2022; 8:eadd1106. [PMID: 36459554 PMCID: PMC10936057 DOI: 10.1126/sciadv.add1106] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 10/17/2022] [Indexed: 06/17/2023]
Abstract
Nanosized artificial antigen-presenting cells (aAPCs) with efficient signal presentation hold great promise for in vivo adoptive cell therapy. Here, we used DNA origami nanostructures as two-dimensional scaffolds to regulate the spatial presentation of activating ligands at nanoscale to construct high-effective aAPCs. The DNA origami-based aAPC comprises costimulatory ligands anti-CD28 antibody anchored at three vertices and T cell receptor (TCR) ligands peptide-major histocompatibility complex (pMHC) anchored at three edges with varying density. The DNA origami scaffold enables quantitative analysis of ligand-receptor interactions in T cell activation at the single-particle, single-molecule resolution. The pMHC-TCR-binding dwell time is increased from 9.9 to 12.1 s with increasing pMHC density, driving functional T cell responses. In addition, both in vitro and in vivo assays demonstrate that the optimized DNA origami-based aAPCs show effective tumor growth inhibiting capability in adoptive immunotherapy. These results provide important insights into the rational design of molecular vaccines for cancer immunotherapy.
Collapse
Affiliation(s)
- Yueyang Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jiajia Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
25
|
Liu J, Li M, Zuo X. DNA Nanotechnology-Empowered Live Cell Measurements. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204711. [PMID: 36124715 DOI: 10.1002/smll.202204711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The systematic analysis and precise manipulation of a variety of biomolecules should lead to unprecedented findings in fundamental biology. However, conventional technology cannot meet the current requirements. Despite this, there has been progress as DNA nanotechnology has evolved to generate DNA nanostructures and circuits over the past four decades. Many potential applications of DNA nanotechnology for live cell measurements have begun to emerge owing to the biocompatibility, nanometer addressability, and stimulus responsiveness of DNA. In this review, the DNA nanotechnology-empowered live cell measurements which are currently available are summarized. The stability of the DNA nanostructures, in a cellular microenvironment, which is crucial for accomplishing precise live cell measurements, is first summarized. Thereafter, measurements in the extracellular and intracellular microenvironment, in live cells, are introduced. Finally, the challenges that are innate to, and the further developments that are possible in this nascent field are discussed.
Collapse
Affiliation(s)
- Jiangbo Liu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Min Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
26
|
Gong H, Dai Q, Peng P. Cell-Membrane-Anchored DNA Logic-Gated Nanoassemblies for In Situ Extracellular Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43026-43034. [PMID: 36053489 DOI: 10.1021/acsami.2c13735] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Extracellular K+ and adenosine triphosphate (ATP) levels are significantly elevated in the tumor microenvironment (TME) and can be used as biomarkers for early cancer detection and tumor localization. Most reported TME sensors only respond to single abnormal factors, resulting in a lack of accuracy and specificity for the detection of complex environments. Thus, precisely locating the TME remains challenging. In this work, we aimed to develop an intelligent DNA nanoassembly controlled by a "YES-AND" logic circuit using a bimolecular G-quadruplex (G4) and ATP aptamer as logical control units. As a proof of concept, in the presence of K+ (input 1) and ATP (input 2), the YES-AND Boolean operator returned a true value and the output was the fluorescence resonance energy transfer (FRET) signal, indicating high sensitivity and selectivity. After being anchored to living cell surfaces, this logic nanosensor imaged extracellular K+ and ATP present at abnormal levels in situ. Owing to diverse disease markers in the TME, this novel logic sensor might hold great promise for the targeted delivery of intelligent anticancer drugs and Boolean logic-controlled treatment.
Collapse
Affiliation(s)
- Hangsheng Gong
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Qian Dai
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Pai Peng
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| |
Collapse
|
27
|
Gong X, He S, Li R, Chen Y, Tan K, Wan Y, Liu X, Wang F. Monitoring and modulating a catalytic hybridization circuit for self-adaptive bioorthogonal DNA assembly. Chem Sci 2022; 13:10428-10436. [PMID: 36277649 PMCID: PMC9473505 DOI: 10.1039/d2sc03757b] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022] Open
Abstract
Constructing artificial domino nanoarchitectures, especially dynamic DNA circuits associated with the actuation of biological functions inside live cells, represents a versatile and powerful strategy to regulate the behaviors and fate of various living entities. However, the stepwise operation of conventional DNA circuits always relies on freely diffusing reactants, which substantially slows down their operation rate and efficiency. Herein, a self-adaptive localized catalytic circuit (LCC) is developed to execute the self-sustained bioorthogonal assembly of DNA nanosponges within a crowded intracellular environment. The LCC-generated DNA scaffolds are utilized as versatile templates for realizing the proximity confinement of LCC reactants. Single-molecule-detecting fluorescence correlation spectroscopy (FCS) is used to explore the reaction acceleration of the catalytic circuit. This self-adaptive DNA circuit facilitates the bioorthogonal assembly of highly branched DNA networks for robust and accurate monitoring of miRNA targets. Based on its intriguing and modular design, the LCC system provides a pivotal molecular toolbox for future applications in early disease diagnosis.
Collapse
Affiliation(s)
- Xue Gong
- College of Chemistry and Molecular Sciences, Wuhan University 430072 Wuhan P. R. China
| | - Shizhen He
- College of Chemistry and Molecular Sciences, Wuhan University 430072 Wuhan P. R. China
| | - Ruomeng Li
- College of Chemistry and Molecular Sciences, Wuhan University 430072 Wuhan P. R. China
| | - Yingying Chen
- College of Chemistry and Molecular Sciences, Wuhan University 430072 Wuhan P. R. China
| | - Kaiyue Tan
- College of Chemistry and Molecular Sciences, Wuhan University 430072 Wuhan P. R. China
| | - Yeqing Wan
- College of Chemistry and Molecular Sciences, Wuhan University 430072 Wuhan P. R. China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences, Wuhan University 430072 Wuhan P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University 430072 Wuhan P. R. China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences Wuhan 430072 China
| |
Collapse
|
28
|
Kankanamalage DVDW, Tran JHT, Beltrami N, Meng K, Zhou X, Pathak P, Isaacs L, Burin AL, Ali MF, Jayawickramarajah J. DNA Strand Displacement Driven by Host-Guest Interactions. J Am Chem Soc 2022; 144:16502-16511. [PMID: 36063395 PMCID: PMC9479067 DOI: 10.1021/jacs.2c05726] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Base-pair-driven toehold-mediated strand displacement (BP-TMSD) is a fundamental concept employed for constructing DNA machines and networks with a gamut of applications─from theranostics to computational devices. To broaden the toolbox of dynamic DNA chemistry, herein, we introduce a synthetic surrogate termed host-guest-driven toehold-mediated strand displacement (HG-TMSD) that utilizes bioorthogonal, cucurbit[7]uril (CB[7]) interactions with guest-linked input sequences. Since control of the strand-displacement process is salient, we demonstrate how HG-TMSD can be finely modulated via changes to the structure of the input sequence (including synthetic guest head-group and/or linker length). Further, for a given input sequence, competing small-molecule guests can serve as effective regulators (with fine and coarse control) of HG-TMSD. To show integration into functional devices, we have incorporated HG-TMSD into machines that control enzyme activity and layered reactions that detect specific microRNA.
Collapse
Affiliation(s)
| | - Jennifer H T Tran
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, Louisiana 70125, United States
| | - Noah Beltrami
- Department of Chemistry, Tulane University, 2015 Percival Stern Hall, New Orleans, Louisiana 70118, United States
| | - Kun Meng
- Department of Chemistry, Tulane University, 2015 Percival Stern Hall, New Orleans, Louisiana 70118, United States
| | - Xiao Zhou
- Department of Chemistry, Tulane University, 2015 Percival Stern Hall, New Orleans, Louisiana 70118, United States
| | - Pravin Pathak
- Department of Chemistry, Tulane University, 2015 Percival Stern Hall, New Orleans, Louisiana 70118, United States
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Alexander L Burin
- Department of Chemistry, Tulane University, 2015 Percival Stern Hall, New Orleans, Louisiana 70118, United States
| | - Mehnaaz F Ali
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, Louisiana 70125, United States
| | | |
Collapse
|
29
|
Tang R, Fu Y, Gong B, Fan Y, Wang H, Huang Y, Nie Z, Wei P. A Chimeric Conjugate of Antibody and Programmable DNA Nanoassembly Smartly Activates T Cells for Precise Cancer Cell Targeting. Angew Chem Int Ed Engl 2022; 61:e202205902. [DOI: 10.1002/anie.202205902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Rui Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Hunan University Changsha 410082 P. R. China
| | - Yu‐Hao Fu
- Center for Quantitative Biology and Peking-Tsinghua Joint Center for Life Sciences Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 China
- Center for Cell and Gene Circuit Design CAS Key Laboratory of Quantitative Engineering Biology Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Bo Gong
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Hunan University Changsha 410082 P. R. China
| | - Ying‐Ying Fan
- Center for Quantitative Biology and Peking-Tsinghua Joint Center for Life Sciences Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 China
- Center for Cell and Gene Circuit Design CAS Key Laboratory of Quantitative Engineering Biology Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Hong‐Hui Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Hunan University Changsha 410082 P. R. China
| | - Yan Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Hunan University Changsha 410082 P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Hunan University Changsha 410082 P. R. China
| | - Ping Wei
- Center for Quantitative Biology and Peking-Tsinghua Joint Center for Life Sciences Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 China
- Center for Cell and Gene Circuit Design CAS Key Laboratory of Quantitative Engineering Biology Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| |
Collapse
|
30
|
Versatile tools of synthetic biology applied to drug discovery and production. Future Med Chem 2022; 14:1325-1340. [PMID: 35975897 DOI: 10.4155/fmc-2022-0063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although synthetic biology is an emerging research field, which has come to prominence within the last decade, it already has many practical applications. Its applications cover the areas of pharmaceutical biotechnology and drug discovery, bringing essential novel methods and strategies such as metabolic engineering, reprogramming the cell fate, drug production in genetically modified organisms, molecular glues, functional nucleic acids and genome editing. This review discusses the main avenues for synthetic biology application in pharmaceutical biotechnology. The authors believe that synthetic biology will reshape drug development and drug production to a similar extent as the advances in organic chemical synthesis in the 20th century. Therefore, synthetic biology already plays an essential role in pharmaceutical, biotechnology, which is the main focus of this review.
Collapse
|
31
|
Xiao M, Lai W, Yao X, Pei H, Fan C, Li L. Programming Receptor Clustering with DNA Probabilistic Circuits for Enhanced Natural Killer Cell Recognition. Angew Chem Int Ed Engl 2022; 61:e202203800. [DOI: 10.1002/anie.202203800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Xiaowei Yao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering Institute of Molecular Medicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| |
Collapse
|
32
|
Cui H, Zhang T, Kong Y, Xing H, Wei B. Controllable assembly of synthetic constructs with programmable ternary DNA interaction. Nucleic Acids Res 2022; 50:7188-7196. [PMID: 35713533 PMCID: PMC9262601 DOI: 10.1093/nar/gkac478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/28/2022] [Accepted: 06/15/2022] [Indexed: 12/24/2022] Open
Abstract
Compared with the dual binding components in a binary interaction, the third component of a ternary interaction often serves as modulator or regulator in biochemical processes. Here, we presented a programmable ternary interaction strategy based on the natural DNA triplex structure. With the DNA triplex-based ternary interaction, we have successfully demonstrated controllable hierarchical assemblies from nanometer scale synthetic DNA nanostructure units to micrometer scale live bacteria. A selective signaling system responsive to orthogonal nucleic acid signals via ternary interaction was also demonstrated. This assembly method could further enrich the diversified design schemes of DNA nanotechnology.
Collapse
Affiliation(s)
- Huangchen Cui
- School of Life Sciences, Tsinghua University-Peking University Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Tianqing Zhang
- School of Life Sciences, Tsinghua University-Peking University Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Yuhan Kong
- Institute of Chemical Biology and Nanomedicine; State Key Laboratory of Chemo/Biosensing and Chemometrics; Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology; College of Chemistry and Chemical Engineering; Hunan University, Changsha 410082, China
| | - Hang Xing
- Institute of Chemical Biology and Nanomedicine; State Key Laboratory of Chemo/Biosensing and Chemometrics; Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology; College of Chemistry and Chemical Engineering; Hunan University, Changsha 410082, China
| | - Bryan Wei
- School of Life Sciences, Tsinghua University-Peking University Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
33
|
Chen Q, Wang X, Chen J, Xiang Y, Xiao M, Pei H, Li L. Multiple-Aptamer-Integrated DNA-Origami-Based Chemical Nose Sensors for Accurate Identification of Cancer Cells. Anal Chem 2022; 94:10192-10197. [PMID: 35786864 DOI: 10.1021/acs.analchem.2c01646] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Developing simple, rapid, and accurate methods for cancer cell identification could facilitate early cancer diagnosis and tumor metastasis research. Herein, we develop a novel chemical nose sensor that employs the collective recognition abilities of a set of multiple-aptamer-integrated DNA origami (MADO) probes for discriminative identification of cancer cells. By controlling the types and/or copies of aptamers assembled on the DNA origami nanostructure, we constructed five MADO probes with differential binding affinities (ranging from 3.08 to 78.92 nM) to five types of cells (HeLa, MDA-MB-468, MCF-7, HepG2, and MCF-10A). We demonstrate the utility of the MADO-based chemical nose sensor in the identification of blinded unknown cell samples with a 95% accuracy. This sensing platform holds great potential for applications in medical diagnostics.
Collapse
Affiliation(s)
- Qiaoji Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Xiwei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Jing Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Ying Xiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| |
Collapse
|
34
|
|
35
|
Tang R, Fu YH, Gong B, Fan YY, Wang HH, Huang Y, Nie Z, Wei P. A Chimeric Conjugate of Antibody and Programmable DNA Nanoassembly Smartly Activates T cell for Precise Cancer Cell Targeting. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rui Tang
- Hunan University State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology CHINA
| | - Yu-Hao Fu
- Peking University Center for Quantitative Biology and Peking-Tsinghua Joint Center for Life Sciences, Academy for Advanced Interdisciplinary Studies CHINA
| | - Bo Gong
- Hunan University Sensing and Chemometrics, College of Chemistry and Chemical Engineerin CHINA
| | - Ying-Ying Fan
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology CHINA
| | - Hong-Hui Wang
- Hunan University State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, CHINA
| | - Yan Huang
- Hunan University State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, CHINA
| | - Zhou Nie
- Hunan University College of Chemistry and Chemical Engineering Yuelushan, Changsha, Hunan, 410082, P.R.China 410082 Changsha CHINA
| | - Ping Wei
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology CHINA
| |
Collapse
|
36
|
Han W, He M, Zhang Y, Zhou J, Li Z, Liu X, Sun X, Yin X, Yao D, Liang H. Cadherin-dependent adhesion modulated 3D cell-assembly. J Mater Chem B 2022; 10:4959-4966. [PMID: 35730726 DOI: 10.1039/d2tb01006b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The emergence of synthetic biology has opened new avenues in constructing cell-assembly biosystems with specific gene expression and function. The phenomena of cell spreading and detachment during tissue development and cancer metastasis are caused by surface tension, which in turn results from differences in cell-cell adhesion mediated by the dimerization of cadherin expressed on the cell surface. In this study, E- and P-cadherin plasmids were first constructed based on the differential adhesion hypothesis, then they were electroporated into K562 cells and HEK293T cells, respectively, to explore the process of cell migration and assembly regulated by cadherins. Using this approach, some special 3D cell functional components with a phase separation structure were fabricated successfully. Our work will be of potential application in the construction of self-assembling synthetic tissues and organoids.
Collapse
Affiliation(s)
- Wenjie Han
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Miao He
- School of Chemistry and Materials Science, Department of Polymer Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yunhan Zhang
- School of Chemistry and Materials Science, Department of Polymer Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Junxiang Zhou
- School of Chemistry and Materials Science, Department of Polymer Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Zhigang Li
- School of Chemistry and Materials Science, Department of Polymer Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Xiaoyu Liu
- School of Chemistry and Materials Science, Department of Polymer Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Xiaoyun Sun
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Xue Yin
- School of Chemistry and Materials Science, Department of Polymer Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Dongbao Yao
- School of Chemistry and Materials Science, Department of Polymer Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Haojun Liang
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China. .,School of Chemistry and Materials Science, Department of Polymer Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
37
|
Abstract
Lipid-DNA conjugates have emerged as highly useful tools to modify the cell membranes. These conjugates generally consist of a lipid anchor for membrane modification and a functional DNA nanostructure for membrane analysis or regulation. There are several unique properties of these lipid-DNA conjugates, especially including their programmability, fast and efficient membrane insertion, and precise sequence-specific assembly. These unique properties have enabled a broad range of biophysical applications on live cell membranes. In this review, we will mainly focus on recent tremendous progress, especially during the past three years, in regulating the biophysical features of these lipid-DNA conjugates and their key applications in studying cell membrane biophysics. Some insights into the current challenges and future directions of this interdisciplinary field have also been provided.
Collapse
Affiliation(s)
| | | | - Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
38
|
Xiao M, Lai W, Yao X, Pei H, Fan C, Li L. Programming Receptor Clustering with DNA Probabilistic Circuits for Enhanced Natural Killer Cell Recognition. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mingshu Xiao
- East China Normal University School of Chemistry and Molecular Engineering 500 Dongchuan Road 200241 Shanghai CHINA
| | - Wei Lai
- East China Normal University School of Chemistry and Molecular Engineering 500 Dongchuan Road 200241 Shanghai CHINA
| | - Xiaowei Yao
- East China Normal University School of Chemistry and Molecular Engineering 500 Dongchuan Road 200241 Shanghai CHINA
| | - Hao Pei
- East China Normal University School of Chemistry and Molecular Engineering 500 Dongchuan Road 200241 Shanghai CHINA
| | - Chunhai Fan
- Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital School of Chemistry and Chemical Engineering, Institute of Molecular Medicine 800 Dongchuan Road 200240 Shanghai CHINA
| | - Li Li
- East China Normal University School of Chemistry and Molecular Engineering No. 500 Dongchuan Road 200241 Shanghai CHINA
| |
Collapse
|
39
|
Pei Y, Bian T, Liu Y, Liu Y, Xie Y, Song J. Single-Molecule Resettable DNA Computing via Magnetic Tweezers. NANO LETTERS 2022; 22:3003-3010. [PMID: 35357200 DOI: 10.1021/acs.nanolett.2c00183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
DNA-based Boolean logic computing has emerged as a leading technique in biosensing, diagnosis, and therapeutics. Due to the development of the biological and chemical methods, especially the toehold-mediated DNA strand displacement (TMSD) reaction, different logic gates as well as circuits can be performed. However, most of these methods have been conducted at the bulk level, which may lead to missing information and be less controllable. Herein, we engineered single-molecule DNA computing controlled by stretching forces using magnetic tweezers. By tracking the real-time signals of the DNA extension, the output can be determined at a single base-pair resolution. A kinetics-controllable TMSD reaction was realized in the range of a ∼19-fold change of the reaction rate by different stretching forces. OR, AND, and NOT gates were also achieved. In addition, resettable DNA computing using force stretching cycles has been further exemplified. Overall, such a real-time, label-free, and force-controlled single-molecule DNA computing system provided new insight into molecular computing.
Collapse
Affiliation(s)
- Yufeng Pei
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, People's Republic of China
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Tianyuan Bian
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
- Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin 300072, P.R. China
| | - Yonglin Liu
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P.R. China
| | - Yan Liu
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Yujie Xie
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Jie Song
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| |
Collapse
|
40
|
Abstract
Artificially induced in vitro cell fusion is one essential technique that has been extensively used for biological studies. Nevertheless, there is a lack of robust and efficient method to produce fused cells efficiently. Herein, we proposed to use cell-membrane-anchored polyvalent DNA ligands (PDL) to bring cells into close proximity by forming clusters to enhance PEG-induced cell fusion. PDL of complementary sequences are separately anchored onto different population of cells through cholesterol-induced hydrophobic insertion into lipid membrane. Cells are clustered via mixing cells of complementary PDL prior to cell fusion. PDL exhibited strong stability on cell membrane, induced efficient cell clustering, and eventually achieved cell fusion efficiently in combination with PEG induction. We demonstrated homogeneous and heterogeneous cell fusion of high yield on various cell types. This report presented a programmable yet robust technique for achieving efficient cell fusion that hold great application potentials.
Collapse
Affiliation(s)
- Fei Gao
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Donglei Yang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Xu
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaowei Ma
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Pengfei Wang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
41
|
Guo Z, Zhang L, Yang Q, Peng R, Yuan X, Xu L, Wang Z, Chen F, Huang H, Liu Q, Tan W. Manipulation of Multiple Cell–Cell Interactions by Tunable DNA Scaffold Networks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhenzhen Guo
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Lili Zhang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Qiuxia Yang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Ruizi Peng
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
- The Cancer Hospital of the University of Chinese Academy of Sciences Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Hangzhou Zhejiang 310022 China
| | - Xi Yuan
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Liujun Xu
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Zhimin Wang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Fengming Chen
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Huidong Huang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Qiaoling Liu
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
- The Cancer Hospital of the University of Chinese Academy of Sciences Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Hangzhou Zhejiang 310022 China
- Institute of Molecular Medicine (IMM) Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
42
|
Sontakke VA, Yokobayashi Y. Programmable Macroscopic Self-Assembly of DNA-Decorated Hydrogels. J Am Chem Soc 2022; 144:2149-2155. [DOI: 10.1021/jacs.1c10308] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Vyankat A. Sontakke
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate School, Onna, Okinawa 904-0495, Japan
| | - Yohei Yokobayashi
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate School, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
43
|
Wu Z, Xiao M, Lai W, Sun Y, Li L, Hu Z, Pei H. Nucleic Acid-Based Cell Surface Engineering Strategies and Their Applications. ACS APPLIED BIO MATERIALS 2022; 5:1901-1915. [DOI: 10.1021/acsabm.1c01126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zhongdong Wu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yueyang Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zongqian Hu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
44
|
Lin M, Chen Y, Zhao S, Tang R, Nie Z, Xing H. A Biomimetic Approach for Spatially Controlled Cell Membrane Engineering Using Fusogenic Spherical Nucleic Acid. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Minjie Lin
- Institute of Chemical Biology and Nanomedicine State Key Laboratory of Chemo/Biosensing and Chemometrics Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| | - Yuanyuan Chen
- Institute of Chemical Biology and Nanomedicine State Key Laboratory of Chemo/Biosensing and Chemometrics Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| | - Sisi Zhao
- Institute of Chemical Biology and Nanomedicine College of Biology Hunan University Changsha 410082 China
| | - Rui Tang
- Institute of Chemical Biology and Nanomedicine State Key Laboratory of Chemo/Biosensing and Chemometrics Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| | - Zhou Nie
- Institute of Chemical Biology and Nanomedicine State Key Laboratory of Chemo/Biosensing and Chemometrics Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| | - Hang Xing
- Institute of Chemical Biology and Nanomedicine State Key Laboratory of Chemo/Biosensing and Chemometrics Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| |
Collapse
|
45
|
Biosupramolecular networks: Taking inspiration from nature to create powerful synthetic platforms. Curr Opin Chem Biol 2021; 66:102104. [PMID: 34936943 DOI: 10.1016/j.cbpa.2021.102104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022]
Abstract
Nature is predicated on the ability to process large number of parallel signals to produce specific downstream outputs. Biosupramolecular networks are beginning to allow such processing power in synthetic systems, particularly through harnessing the recognition power of biomolecules. Such systems can be summarised through the reductionist view of containing inputs, circuitry motifs and functional outputs, with each of these elements able to be readily combined in a modular approach. Through the inherent 'plug and play' nature of these systems the field continues to rapidly expand, providing a wealth of new smart diagnostic and therapeutic systems.
Collapse
|
46
|
Guo Z, Zhang L, Yang Q, Peng R, Yuan X, Xu L, Wang Z, Chen F, Huang H, Liu Q, Tan W. Manipulation of Multiple Cell-Cell Interactions by Tunable DNA Scaffold Networks. Angew Chem Int Ed Engl 2021; 61:e202111151. [PMID: 34873818 DOI: 10.1002/anie.202111151] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Indexed: 12/15/2022]
Abstract
Manipulation of cell-cell interactions via cell surface engineering has potential biomedical applications in tissue engineering and cell therapy. However, manipulation of the comprehensive and multiple intercellular interactions remains a challenge and missing elements. Herein, utilizing a DNA triangular prism (TP) and a branched polymer (BP) as functional modules, we fabricate tunable DNA scaffold networks on the cell surface. The responsiveness of cell-cell recognition, aggregation and dissociation could be modulated by aptamer-functionalized DNA scaffold networks with high accuracy and specificity. By regulating the DNA scaffold networks coated on the cell surface, controlled intercellular molecular transportation is achieved. Our tunable network provides a simple and extendible strategy which addresses a current need in cell surface engineering to precisely manipulate cell-cell interactions and shows promise as a general tool for controllable cell behavior.
Collapse
Affiliation(s)
- Zhenzhen Guo
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Lili Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Qiuxia Yang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Ruizi Peng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China.,The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Xi Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Liujun Xu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Zhimin Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Fengming Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Huidong Huang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Qiaoling Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China.,The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.,Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
47
|
Chen L, Chen W, Liu G, Li J, Lu C, Li J, Tan W, Yang H. Nucleic acid-based molecular computation heads towards cellular applications. Chem Soc Rev 2021; 50:12551-12575. [PMID: 34604889 DOI: 10.1039/d0cs01508c] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acids, with the advantages of programmability and biocompatibility, have been widely used to design different kinds of novel biocomputing devices. Recently, nucleic acid-based molecular computing has shown promise in making the leap from the test tube to the cell. Such molecular computing can perform logic analysis within the confines of the cellular milieu with programmable modulation of biological functions at the molecular level. In this review, we summarize the development of nucleic acid-based biocomputing devices that are rationally designed and chemically synthesized, highlighting the ability of nucleic acid-based molecular computing to achieve cellular applications in sensing, imaging, biomedicine, and bioengineering. Then we discuss the future challenges and opportunities for cellular and in vivo applications. We expect this review to inspire innovative work on constructing nucleic acid-based biocomputing to achieve the goal of precisely rewiring, even reconstructing cellular signal networks in a prescribed way.
Collapse
Affiliation(s)
- Lanlan Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Wanzhen Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Guo Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Jingying Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Chunhua Lu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China. .,Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences; The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Weihong Tan
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences; The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China.,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| |
Collapse
|
48
|
Zhang SY, Zhou ZR, Qian RC. Recent Progress and Perspectives on Cell Surface Modification. Chem Asian J 2021; 16:3250-3258. [PMID: 34427996 DOI: 10.1002/asia.202100852] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/22/2021] [Indexed: 11/11/2022]
Abstract
The cell membrane is a biological interface consisting of phospholipid bilayer, saccharides and proteins that maintains a stable metabolic intracellular environment as well as regulating and controlling the exchange of substances inside and outside the cell. Cell membranes provide a highly complex biological surface carrying a variety of essential surfaces ligands and receptors for cells to receive various stimuli of external signals, thereby inducing corresponding cell responses regulating the life activities of the cell. These surface receptors can be manipulated via cell surface modification to regulate cellular functions and behaviors Thus, cell surface modification has attracted considerable attention due to its significance in cell fate control, cell engineering and cell therapy. In this minireview, we describe the recent developments and advances of cell surface modification, and summarize the main modification methods with corresponding functions and applications. Finally, the prospect for the future development of the modification of the living cell membrane is discussed.
Collapse
Affiliation(s)
- Shi-Yi Zhang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ze-Rui Zhou
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
49
|
Gangrade A, Stephanopoulos N, Bhatia D. Programmable, self-assembled DNA nanodevices for cellular programming and tissue engineering. NANOSCALE 2021; 13:16834-16846. [PMID: 34622910 DOI: 10.1039/d1nr04475c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
DNA-based nanotechnology has evolved into an autonomous, highly innovative, and dynamic field of research at the nexus of supramolecular chemistry, nanotechnology, materials science, and biotechnology. DNA-based materials, including origami nanodevices, have started to emerge as an ideal scaffold for use in cellular programming, tissue engineering, and drug delivery applications. We cover herein the applications for DNA as a scaffold for interfacing with, and guiding, the activity of biological systems like cells and tissues. Although DNA is a highly programmable molecular building block, it suffers from a lack of functional capacity for guiding and modulating cells. Coupling DNA to biologically active molecules can bestow bioactivity to these nanodevices. The main goal of such nanodevices is to synthesize systems that can bind to cells and mimic the extracellular environment, and serve as a highly promising toolbox for multiple applications in cellular programming and tissue engineering. DNA-based programmable devices offer a highly promising approach for programming collections of cells, tissue engineering, and regenerative medicine applications.
Collapse
Affiliation(s)
- Ankit Gangrade
- Biological Engineering, Indian Institute of Technology Gandhinagar, India.
| | - Nicholas Stephanopoulos
- School of Molecular Sciences, Arizona State University, USA
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, USA
| | - Dhiraj Bhatia
- Biological Engineering, Indian Institute of Technology Gandhinagar, India.
- Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, India
| |
Collapse
|
50
|
Lin M, Chen Y, Zhao S, Tang R, Nie Z, Xing H. A Biomimetic Approach for Spatially Controlled Cell Membrane Engineering Using Fusogenic Spherical Nucleic Acid. Angew Chem Int Ed Engl 2021; 61:e202111647. [PMID: 34637590 DOI: 10.1002/anie.202111647] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Indexed: 11/06/2022]
Abstract
Engineering of the cell plasma membrane using functional DNA is important for studying and controlling cellular behaviors. However, most efforts to apply artificial DNA interactions on cells are limited to external membrane surface due to the lack of suitable synthetic tools to engineer the intracellular side, which impedes many applications in cell biology. Inspired by the natural extracellular vesicle-cell fusion process, we have developed a fusogenic spherical nucleic acid construct to realize robust DNA functionalization on both external and internal cell surfaces via liposome fusion-based transport (LiFT) strategy, which enables applications including the construction of heterotypic cell assembly for programmed signaling pathway and detection of intracellular metabolites. This approach can engineer cell membranes in a highly efficient and spatially controlled manner, allowing one to build anisotropic membrane structures with two orthogonal DNA functionalities.
Collapse
Affiliation(s)
- Minjie Lin
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yuanyuan Chen
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Sisi Zhao
- Institute of Chemical Biology and Nanomedicine, College of Biology, Hunan University, Changsha, 410082, China
| | - Rui Tang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zhou Nie
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Hang Xing
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|