1
|
Spears J, Shawky Adly M, Castro E, Puente Santiago AR, Echegoyen L, He T, Dares CJ, Noufal M. Understanding the effects of adduct functionalization on C 60 nanocages for the hydrogen evolution reaction. NANOSCALE HORIZONS 2025; 10:719-723. [PMID: 39868934 DOI: 10.1039/d4nh00586d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
In this work, we use experimental and theoretical techniques to study the origin of the boosted hydrogen evolution reaction (HER) catalytic activity of two pyridyl-pyrrolidine functionalized C60 fullerenes. Notably, the mono-(pyridyl-pyrrolidine) penta-adduct of C60 has exhibited a remarkable HER catalytic activity as a metal-free catalyst, delivering an overpotential (η10) of 75 mV vs. RHE and a very low onset potential of -45 mV vs. RHE. This work addresses fundamental questions about how functionalization on C60 changes the electron density on fullerene cages for high-performance HER electrocatalysis.
Collapse
Affiliation(s)
- Joy Spears
- Department of Chemical Engineering, Hampton University, Hampton, VA 23668, USA.
| | - Mina Shawky Adly
- Deparment of Chemistry, Faculty of Science, Mansoura University, Al-Mansoura 35516, Egypt
| | - Edison Castro
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, USA
| | - Alain R Puente Santiago
- Florida International University (FIU), Department of Chemistry and Biochemistry, Miami, FL, USA.
| | - Luis Echegoyen
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, USA
| | - Tianwei He
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials& Technology, School of Materials and Energy, Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650091, China.
| | - Christopher J Dares
- Florida International University (FIU), Department of Chemistry and Biochemistry, Miami, FL, USA.
| | - Mohamed Noufal
- Department of Chemical Engineering, Hampton University, Hampton, VA 23668, USA.
| |
Collapse
|
2
|
Masip-Sánchez A, Poblet JM, López X. DESC: An Automated Strategy to Efficiently Account for Dynamic Environment Effects in Solution. J Chem Theory Comput 2025; 21:2472-2486. [PMID: 40019021 DOI: 10.1021/acs.jctc.5c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
The properties and dynamic behavior of molecules in liquid solutions depend critically on the solvent and other species, or cosolutes, including electrolytes (if present), especially when molecular association or pairing occurs. In Quantum Mechanical (QM) calculations, the electronic structure of molecules in liquid solution is typically obtained with implicit solvent models (ISMs). However, ISMs cannot differentiate between, for example, cation types (e.g., Cs+ versus nBu4N+), leading to limited accuracy in capturing possible solute-specific interactions. Addressing this issue in QM calculations often requires an explicit treatment of the cosolute, typically a counterion, a challenging approach due to the definition of representative cosolute positions, numerical convergence, and high computational cost for bulky species. A new computational strategy called Dynamic Environment in Solution by Clustering (DESC) is herein presented, which leverages classical Molecular Dynamics (MD) data to feed QM calculations, enabling the inclusion of counterion-specific effects with greater detail and efficiency than ISMs. DESC is particularly advantageous in cases where ion pairing/aggregation is significant, offering chemically representative QM results at a small fraction of the computational cost associated with the explicit inclusion of counterions in the model. This work presents MD data on polyoxometalate-counterion-solvent systems, introduces the philosophy behind DESC and its operational details, and applies it to polyoxometalate solutions and other relevant systems, comparing outcomes with benchmark QM/ISM calculations.
Collapse
Affiliation(s)
- Albert Masip-Sánchez
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili (URV), Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Josep M Poblet
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili (URV), Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Xavier López
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili (URV), Marcel·lí Domingo 1, 43007 Tarragona, Spain
| |
Collapse
|
3
|
Zhang R, Zhang B, Liu H, Jewell L, Liu X, Qiao S. Homo-Nuclear Hetero-Atomic Conjugated Reticular Oligomers for Heterojunction: A Novel "Electron Medium" for Panel Photoelectrocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407834. [PMID: 39429204 PMCID: PMC11633481 DOI: 10.1002/advs.202407834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/29/2024] [Indexed: 10/22/2024]
Abstract
A substantial challenge in employing covalent organic frameworks (COFs) for photoelectrochemical (PEC) water splitting lies in improving their solution-processability while concurrently facilitating the transfer of charges and mass to the catalytic sites. Herein, we synthesize a solution-processable conjugated reticular oligomers (CROs), and further embed ruthenium (Ru) into the CRO, forming a CRO-Ru with homo-nuclear hetero-atomic. Thereafter, CRO and CRO-Ru construct an organic-organic heterojunction membrane at the nanoscale. This design achieves perfect lattice matching, significantly reducing the energy barrier of mass transfer, and effectively lowering the recombination rate of charge carriers. The optimized photocathode, CuI/CRO-Bpy:CRO-Bpy-Ru-1:1+P3HT/SnO2/Pt, exhibits an efficiency of 111.0 µA cm-2 at 0.4 V versus a reversible hydrogen electrode (RHE). Compared with the original bulk COFs and CROs, the efficiency is significantly improved. The apparent improvements in charge carrier separation and transfer are responsible for the high PEC activity. In the heterojunction, the incorporation of CRO-Bpy-Ru with a longer excited-state lifetime and a substantial built-in electric field has effectively accelerated the photo-induced electron transfer from the conduction band (CB) of CRO-Bpy to the valence band (VB) of CRO-Bpy-Ru, effectively suppressing the recombination of charges. These findings offer significant guidance for the design and optimization of high-performance photoelectrochemical catalysts.
Collapse
Affiliation(s)
- Ruijuan Zhang
- College of Chemistry and Pharmaceutical EngineeringHebei University of Science and TechnologyShijiazhuang050018China
- Institute for Catalysis and Energy SolutionsUniversity of South AfricaPrivate Bag X6Florida1710South Africa
| | - Boying Zhang
- College of Chemistry and Pharmaceutical EngineeringHebei University of Science and TechnologyShijiazhuang050018China
- Department of Chemical EngineeringFaculty of Engineering and the Built EnvironmentUniversity of JohannesburgDoornfontein2028South Africa
| | - Haining Liu
- College of Chemistry and Pharmaceutical EngineeringHebei University of Science and TechnologyShijiazhuang050018China
- Hebei Engineering Research Center of Organic Solid Photoelectric Materials for electronic informationShijiazhuang050018China
| | - Linda Jewell
- Institute for Catalysis and Energy SolutionsUniversity of South AfricaPrivate Bag X6Florida1710South Africa
| | - Xinying Liu
- Institute for Catalysis and Energy SolutionsUniversity of South AfricaPrivate Bag X6Florida1710South Africa
| | - Shanlin Qiao
- College of Chemistry and Pharmaceutical EngineeringHebei University of Science and TechnologyShijiazhuang050018China
- Hebei Engineering Research Center of Organic Solid Photoelectric Materials for electronic informationShijiazhuang050018China
| |
Collapse
|
4
|
Xiong M, Kong C, Yang Z, Yang T. Superhalogens inside fullerenes X@C 2n (X = BO 2, BeF 3; 2 n = 60, 70). Phys Chem Chem Phys 2024; 26:21282-21289. [PMID: 39078036 DOI: 10.1039/d4cp02082k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The exploration of endohedral fullerenes has garnered significant attention recently due to their distinctive chemical, electrochemical, and optoelectronic properties. Charge transfer, which usually occurs from encapsulated species to fullerenes, importantly affects the structures and properties of endohedral fullerenes. In this study, we theoretically investigated endohedral superhalogen fullerenes X@C2n (X = BO2, BeF3; 2n = 60, 70), in which the charge is reversely transferred from the fullerene to the superhalogen, by using density functional theory calculations and ab initio molecular dynamics simulations. Both natural population analysis and the quantum theory of atoms in molecules confirm about one electron transfer from the fullerene to the superhalogen, resulting in the formal valence state of X-@C2n+. Energy decomposition analysis on the interaction between the superhalogen and fullerene revealed that electrostatic energy contributes predominantly to the total interaction energy. These endohedral superhalogen fullerenes with cationic fullerenes were predicted to be able to serve as building blocks for one dimensional fullerene-based nanowires when combined with endohedral alkali-metallofullerenes with anionic fullerenes.
Collapse
Affiliation(s)
- Mo Xiong
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| | - Chuncai Kong
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| | - Zhimao Yang
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| | - Tao Yang
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| |
Collapse
|
5
|
Jin H, Xin J, Xiang W, Jiang Z, Han X, Chen M, Du P, Yao YR, Yang S. Bandgap Engineering of Erbium-Metallofullerenes toward Switchable Photoluminescence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304121. [PMID: 37805835 DOI: 10.1002/adma.202304121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/07/2023] [Indexed: 10/09/2023]
Abstract
Encapsulating photoluminescent lanthanide ions like erbium (Er) into fullerene cages affords photoluminescent endohedral metallofullerenes (EMFs). Few reported photoluminescent Er-EMFs are all based on encapsulation of multiple (two to three) metal atoms, whereas mono-Er-EMFs exemplified by Er@C82 are not photoluminescent due to its narrow optical bandgap. Herein, by entrapping an Er-cyanide cluster into various C82 cages to form novel Er-monometallic cyanide clusterfullerenes (CYCFs), ErCN@C82 (C2 (5), Cs (6), and C2 v (9)), the photoluminescent properties of CYCFs are investigated, and obvious near-infrared (NIR) photoluminescence only is observed for ErCN@C2 (5)-C82 . Combined with a comparative photoluminescence study of three medium-bandgap di-Er-EMFs, including Er2 @Cs (6)-C82 , Er2 O@Cs (6)-C82 , and Er2 C2 @Cs (6)-C82 , this study proposes that the optical bandgap can be used as a simple criterion for switching the photoluminescence of Er-EMFs, and the bandgap threshold is determined to be between 0.83 and 0.74 eV. Furthermore, the photoluminescent patterns of these three di-Er-EMFs differ dramatically. It is found that the location of the Er atom within the same Cs (6)-C82 cage is almost fixed and independent on the endo-unit; thus the previous statement on the key role of metal position in photoluminescence of di-Er-EMFs seems erroneous, and the geometric configuration of the endo-unit, especially the bridging mode of two Er ions, is decisive instead.
Collapse
Affiliation(s)
- Huaimin Jin
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jinpeng Xin
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wenhao Xiang
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zhanxin Jiang
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xinyi Han
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Muqing Chen
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Pingwu Du
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yang-Rong Yao
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Shangfeng Yang
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
6
|
Liu TX, Wang X, Xia S, Chen M, Li M, Yang P, Ma N, Hu Z, Yang S, Zhang G, Wang GW. Dearomative Ring-Fused Azafulleroids and Carbazole-Derived Metallofullerenes: Reactivity Dictated by Encapsulation in a Fullerene Cage. Angew Chem Int Ed Engl 2023; 62:e202313074. [PMID: 37789646 DOI: 10.1002/anie.202313074] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/05/2023]
Abstract
Herein, we report divergent additions of 2,2'-diazidobiphenyls to C60 and Sc3 N@Ih -C80 . In stark contrast to that of the previously reported bis-azide additions, the unexpected cascade reaction leads to the dearomative formation of azafulleroids 2 fused with a 7-6-5-membered ring system in the case of C60 . In contrast, the corresponding reaction with Sc3 N@Ih -C80 switches to the C-H insertion pathway, thereby resulting in multiple isomers, including a carbazole-derived [6,6]-azametallofulleroid 3 and a [5,6]-azametallofulleroid 4 and an unusual 1,2,3,6-tetrahydropyrrolo[3,2-c]carbazole-derived metallofullerene 5, whose molecular structures have been unambiguously determined by single-crystal X-ray diffraction analyses. Among them, the addition type of 5 is observed for the first time in all reported additions of azides to fullerenes. Furthermore, unexpected isomerizations from 3 to 5 and from 4 to 5 have been discovered, providing the first examples of the isomerization of an azafulleroid to a carbazole-derived fullerene rather than an aziridinofullerene. In particular, the isomerism of the [5,6]-isomer 4 to the [5,6]-isomer 5 is unprecedented in fullerene chemistry, contradicting the present understanding that isomerization generally occurs between [5,6]- and [6,6]-isomers. Control experiments have been carried out to rationalize the reaction mechanism. Furthermore, representative azafulleroids have been applied in organic solar cells, thereby resulting in improved power conversion efficiencies.
Collapse
Affiliation(s)
- Tong-Xin Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xin Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Shilu Xia
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Muqing Chen
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, Guangdong Province, 523808, P. R. China
| | - Mingjie Li
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Panting Yang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Nana Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Ziqi Hu
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Guisheng Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Guan-Wu Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
7
|
Li N, Guo K, Li M, Shao X, Du Z, Bao L, Yu Z, Lu X. Fullerene Fragment Restructuring: How Spatial Proximity Shapes Defect-Rich Carbon Electrocatalysts. J Am Chem Soc 2023. [PMID: 37922470 DOI: 10.1021/jacs.3c06456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Fullerene transformation emerges as a powerful route to construct defect-rich carbon electrocatalysts, but the carbon bond breakage and reformation that determine the defect states remain poorly understood. Here, we explicitly reveal that the spatial proximity of disintegrated fullerene imposes a crucial impact on the bond reformation and electrocatalytic properties. A counterintuitive hard-template strategy is adopted to enable the space-tuned fullerene restructuring by calcining impregnated C60 not only before but also after the removal of rigid silica spheres (∼300 nm). When confined in the SiO2 nanovoids, the adjacent C60 fragments form sp3 bonding with adverse electron transfer and active site exposure. In contrast, the unrestricted fragments without SiO2 confinement reconnect at the edges to form sp2-hybridized nanosheets while retaining high-density intrinsic defects. The optimized catalyst exhibits robust alkaline oxygen reduction performance with a half-wave potential of 0.82 V via the 4e- pathway. Copper poisoning affirms the intrinsic defects as the authentic active sites. Density functional theory calculations further substantiate that pentagons in the basal plane lead to localized structural distortion and thus exhibit significantly reduced energy barriers for the first O2 dissociation step. Such space-regulated fullerene restructuring is also verified by heating C60 crystals confined in gallium liquid and a quartz tube.
Collapse
Affiliation(s)
- Ning Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kun Guo
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mengyang Li
- School of Physics, Xidian University, Xi'an 710071, China
| | - Xiudi Shao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhiling Du
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lipiao Bao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhixin Yu
- Department of Energy and Petroleum Engineering, University of Stavanger, 4036 Stavanger, Norway
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
8
|
Khalaf MM, Abd El-Lateef HM, Mohamed IMA. Novel electrocatalysts for ethylene glycol oxidation based on functionalized phosphates of bimetals Mn/Ni: Morphology, crystallinity, and electrocatalytic performance. SURFACES AND INTERFACES 2023; 38:102850. [DOI: 10.1016/j.surfin.2023.102850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
9
|
How an electric field makes endohedral fullerene an improved catalyst for hydrogen evolution reaction. COMPUT THEOR CHEM 2023. [DOI: 10.1016/j.comptc.2023.114026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Deng X, Zhu L, Zhang H, Li L, Zhao N, Wang J, Osman SM, Luque R, Chen BH. Highly efficient and stable catalysts-covalent organic framework-supported palladium particles for 4-nitrophenol catalytic hydrogenation. ENVIRONMENTAL RESEARCH 2022; 214:114027. [PMID: 35988829 DOI: 10.1016/j.envres.2022.114027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
A covalent organic framework (COF) was used as the support of the catalyst in this work in order to obtain an environmentally friendly catalyst with high catalytic performance, selectivity and stability for 4-nitrophenol hydrogenation. Pd tiny particles are fixed in the cavity of COF to obtain Pd/COF catalysts, which has a quite narrow particle size distribution (5.09 ± 1.30 nm). As-prepared Pd/COF catalysts (Pd loading-2.11 wt%) shows excellent catalytic performance (conversion - 99.3%, selectivity >99.0% and turnover frequency (TOF)-989.4 h-1) for 4-nitrophenol hydrogenation under relatively mild reaction conditions of reaction temperature-40 °C and reaction pressure-3.0 MPa H2, and Pd/COF catalysts have high stability. Pd/COF catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope energy-dispersive X-ray spectroscopy (SEM-EDS), transmission electron microscope (TEM), high resolution TEM (HRTEM), Brunauer-Emmett-Teller (BET), scanning TEM energy-dispersive X-ray spectroscopy (STEM-EDS) elemental analysis techniques to prove that the Pd nanoparticles are highly dispersed on the COF. Pd/COF catalysts have good stability and reusability hence with certain industrial application value.
Collapse
Affiliation(s)
- Xin Deng
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Chemistry and Chemical Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiang Xi, China
| | - Lihua Zhu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Chemistry and Chemical Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiang Xi, China; Guangdong Provincial Key Lab of Green Chemical Product Technology, Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou, 510640, China.
| | - Huan Zhang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Chemistry and Chemical Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiang Xi, China
| | - Liqing Li
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Chemistry and Chemical Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiang Xi, China.
| | - Ning Zhao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Jiexiang Wang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Sameh M Osman
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Rafael Luque
- Departamento de Química Orgánica, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV, Km 396, E14071, Córdoba, Spain.
| | - Bing Hui Chen
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
11
|
Li M, Zhao R, Dang J, Zhao X. Theoretical study on the stabilities, electronic structures, and reaction and formation mechanisms of fullerenes and endohedral metallofullerenes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Hafez ME, Mohammed ATA. Revealing the Catalytic Activities of Single-Dispersed Pd Clusters Embedded on Hollow Nanoparticles toward the Hydrogen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43290-43297. [PMID: 36099560 DOI: 10.1021/acsami.2c11624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydrogen evolution reaction (HER) is one of the revolutionary aspects that grab lots of attention for the production of clean energy sources, increasing the demands of revealing the intrinsic activities of HER catalysts for designing efficient candidates. Based on using only surface active sites on solid nanoparticles (SNPs), catalysts with high atom dispersion are immensely desirable to magnify their efficiency through maximum atom utilization. Herein, we employed hollow mesoporous silica nanoparticles (HMSNPs) as an insulating nanoplatform for engineering single-dispersed Pd clusters on their surface, assuring high dispersion of the Pd clusters. We then tracked their intrinsic activities using stochastic nanocollision electrochemistry (SNCEC). The insulating silica nanoplatform helped investigate the single-dispersed Pd clusters per contact point of Pd@HMSNP at the electrode surface, revealing exceptional HER performance with high maximum turnover numbers and low onset potential for initiating the HER compared to those of SNPs. Using insulating silica allowed electron transfer only from the single-dispersed Pd cluster at the contact point of Pd@HMSNP to the electrode. Moreover, the high-temporal measurement of SNCEC revealed the diversity of spike shapes based on the heterogeneity of the contact point of Pd@HMSNP, ensuring the capability of the single-entity measurements to distinguish the structure relationship behaviors of the single-dispersed Pd cluster at the electrode/solution interface and clearly clarifying the electron transfer process with complementary information. This work provides sufficient evidence for the importance of atom dispersions in designing highly efficient HER Pd catalysts.
Collapse
Affiliation(s)
- Mahmoud Elsayed Hafez
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Abdulelah T A Mohammed
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| |
Collapse
|
13
|
Self-driven carbon atom implantation into fullerene embedding metal-carbon cluster. Proc Natl Acad Sci U S A 2022; 119:e2202563119. [PMID: 36122234 PMCID: PMC9522327 DOI: 10.1073/pnas.2202563119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hundreds of members have been synthesized and versatile applications have been promised for endofullerenes (EFs) in the past 30 y. However, the formation mechanism of EFs is still a long-standing puzzle to chemists, especially the mechanism of embedding clusters into charged carbon cages. Here, based on synthesis and structures of two representative vanadium-scandium-carbido/carbide EFs, VSc2C@Ih (7)-C80 and VSc2C2@Ih (7)-C80, a reasonable mechanism-C1 implantation (a carbon atom is implanted into carbon cage)-is proposed to interpret the evolution from VSc2C carbido to VSc2C2 carbide cluster. Supported by theoretical calculations together with crystallographic characterization, the single electron on vanadium (V) in VSc2C@Ih (7)-C80 is proved to facilitate the C1 implantation. While the V=C double bond is identified for VSc2C@Ih (7)-C80, after C1 implantation the distance between V and C atoms in VSc2C2@Ih (7)-C80 falls into the range of single bond lengths as previously shown in typical V-based organometallic complexes. This work exemplifies in situ self-driven implantation of an outer carbon atom into a charged carbon cage, which is different from previous heterogeneous implantation of nonmetal atoms (Group-V or -VIII atoms) driven by high-energy ion bombardment or high-pressure offline, and the proposed C1 implantation mechanism represents a heretofore unknown metal-carbon cluster encapsulation mechanism and can be the fundamental basis for EF family genesis.
Collapse
|
14
|
Han X, Xin J, Yao Y, Liang Z, Qiu Y, Chen M, Yang S. Capturing the Long-Sought Dy@ C2v(5)-C 80 via Benzyl Radical Stabilization. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3291. [PMID: 36234419 PMCID: PMC9565622 DOI: 10.3390/nano12193291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Endohedral metallofullerenes (EMFs) are one type of intriguing metal/carbon hybrid molecule with the molecule configuration of sphere cavity-encapsulating metal ions/metal clusters due to their unique physicochemical properties and corresponding application in the fields of biological materials, single molecule magnet materials and energy conversion materials. Although the EMF family is growing, and versatile EMFs have been successfully synthesized and confirmed using crystal structures, some expected EMF members have not been observed using the conventional fullerene separation and purify strategy. These missing EMFs raise an interesting scientific issue as to whether this is due to the difficulty in separating them from the in situ formed carbon soot. Herein, we successfully captured a long-sought dysprosium-based EMF bearing a C2v(5)-C80 cage (Dy@C2v(5)-C80) in the form of Dy@C2v(5)-C80(CH2Ph)(Ph = -C6H5) from carbon soot containing versatile EMFs using simple benzyl radical functionalization and unambiguously confirmed the molecule structure using single crystal X-ray diffraction characterization. Meanwhile, the crystal structure of Dy@C2v(5)-C80(CH2Ph) showed that a single benzyl group was grafted onto the (5,6,6)-carbon, suggesting the open-shell electronic configuration of Dy@C2v(5)-C80. The theoretical calculations unveiled that the benzyl radical addition enables the modulation of the electronic configuration of Dy@C2v(5)-C80 and the corresponding stabilization of Dy@C2v(5)-C80 in conventional organic solvents. This facile stabilization strategy via benzyl radical addition exhibits the considerable capability to capture these missing EMFs, with the benefit of enriching the endohedral fullerene family.
Collapse
Affiliation(s)
- Xinyi Han
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jinpeng Xin
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yangrong Yao
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhihui Liang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yongfu Qiu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Muqing Chen
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
15
|
Louis H, Ikenyirimba OJ, Unimuke TO, Mathias GE, Gber TE, Adeyinka AS. Electrocatalytic activity of metal encapsulated, doped, and engineered fullerene-based nanostructured materials towards hydrogen evolution reaction. Sci Rep 2022; 12:15608. [PMID: 36114360 PMCID: PMC9481569 DOI: 10.1038/s41598-022-20048-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/08/2022] [Indexed: 12/19/2022] Open
Abstract
The utilization of nanostructured materials as efficient catalyst for several processes has increased tremendously, and carbon-based nanostructured materials encompassing fullerene and its derivatives have been observed to possess enhanced catalytic activity when engineered with doping or decorated with metals, thus making them one of the most promising nanocage catalyst for hydrogen evolution reaction (HER) during electro-catalysis. Prompted by these, and the reported electrochemical, electronic and stability advantage, an attempt is put forward herein to inspect the metal encapsulated, doped, and decorated dependent HER activity of C24 engineered nanostructured materials as effective electro-catalyst for HER. Density functional theory (DFT) calculations have been utilized to evaluate the catalytic hydrogen evolution reaction activity of four proposed bare systems: fullerene (C24), calcium encapsulated fullerene (CaencC24), nickel-doped calcium encapsulated fullerene (NidopCaencC24), and silver decorated nickel-doped calcium encapsulated (AgdecNidopCaencC24) engineered nanostructured materials at the TPSSh/GenECP/6-311+G(d,p)/LanL2DZ level of theory. The obtained results divulged that, a potential decrease in energy gap (Egap) occurred in the bare systems, while a sparing increase was observed upon adsorption of hydrogen onto the surfaces, these surfaces where also observed to maintain the least EH-L gap while the AgdecNidopCaencC24 surface exhibited an increased electrocatalytic activity when compared to others. The results also showed that the electronic properties of the systems evinced a correspondent result with their electrochemical properties, the Ag-decorated surface also exhibited a proficient adsorption energy [Formula: see text] and Gibb's free energy (ΔGH) value. The engineered Ag-decorated and Ni-doped systems were found to possess both good surface stability and excellent electro-catalytic property for HER activities.
Collapse
Affiliation(s)
- Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria.
- Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria.
| | - Onyinye J Ikenyirimba
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria
| | - Tomsmith O Unimuke
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria.
- Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria.
| | - Gideon E Mathias
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria
| | - Terkumbur E Gber
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria
| | - Adedapo S Adeyinka
- Research Centre for Synthesis and Catalysis, Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
16
|
Zhang B, Chen L, Zhang Z, Li Q, Khangale P, Hildebrandt D, Liu X, Feng Q, Qiao S. Modulating the Band Structure of Metal Coordinated Salen COFs and an In Situ Constructed Charge Transfer Heterostructure for Electrocatalysis Hydrogen Evolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105912. [PMID: 35657033 PMCID: PMC9353467 DOI: 10.1002/advs.202105912] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/15/2022] [Indexed: 05/22/2023]
Abstract
A series of crystalline, stable Metal (Metal = Zn, Cu, Ni, Co, Fe, and Mn)-Salen covalent organic framework (COF)EDA complex are prepared to continuously tune the band structure of Metal-Salen COFEDA , with the purpose of optimizing the free energy intermediate species during the hydrogen evolution reaction (HER) process. The conductive macromolecular poly(3,4-ethylenedioxythiophene) (PEDOT) is subsequently integrated into the one-dimensional (1D) channel arrays of Metal-Salen COFEDA to form heterostructure PEDOT@Metal-Salen COFEDA via the in situ solid-state polymerization method. Among the Metal-Salen COFEDA and PEDOT@Metal-Salen COFEDA complexes, the optimized PEDOT@Mn-Salen COFEDA displays prominent electrochemical activity with an overpotential of 150 mV and a Tafel slope of 43 mV dec-1 . The experimental results and density of states data show that the continuous energy band structure modulation in Metal-Salen COFEDA has the ability to make the metal d-orbital interact better with the s-orbital of H, which is conducive to electron transport in the HER process. Moreover, the calculated charge density difference indicates that the heterostructures composed of PEDOT and Metal-Salen COFEDA induce an intramolecular charge transfer and construct highly active interfacial sites.
Collapse
Affiliation(s)
- Boying Zhang
- College of Chemistry and Pharmaceutical EngineeringHebei University of Science and TechnologyShijiazhuang050018P. R. China
- Department of Chemical EngineeringFaculty of Engineering and the Built EnvironmentUniversity of JohannesburgDoornfontein2028South Africa
| | - Liling Chen
- College of Chemistry and Pharmaceutical EngineeringHebei University of Science and TechnologyShijiazhuang050018P. R. China
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology School of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Zhenni Zhang
- College of Chemistry and Pharmaceutical EngineeringHebei University of Science and TechnologyShijiazhuang050018P. R. China
| | - Qing Li
- College of Chemistry and Pharmaceutical EngineeringHebei University of Science and TechnologyShijiazhuang050018P. R. China
| | - Phathutshedzo Khangale
- Department of Chemical EngineeringFaculty of Engineering and the Built EnvironmentUniversity of JohannesburgDoornfontein2028South Africa
| | - Diane Hildebrandt
- African Energy Leadership CentreWITS Business School and Molecular Science InstituteSchool of ChemistryUniversity of WitwatersrandJohannesburg2050South Africa
| | - Xinying Liu
- Institute for Development of Energy for African SustainabilityUniversity of South AfricaFlorida1709South Africa
| | - Qingliang Feng
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology School of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Shanlin Qiao
- College of Chemistry and Pharmaceutical EngineeringHebei University of Science and TechnologyShijiazhuang050018P. R. China
- Hebei Electronic Organic Chemicals Technology Innovation CenterShijiazhuang050018P. R. China
| |
Collapse
|
17
|
Zhang L, Meng Y, Koso A, Yao Y, Tang H, Xia S. The mechanism of nitrogen reduction reaction on defective boron nitride (BN) monolayer doped with monatomic Co, Ni, and Mo–A first principles study. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Cooperative electrocatalytic effect of Pd and Ce alloys nanoparticles in PdCe@CNWs electrode for oxygen evolution reaction (OER). MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Facile synthesis of electrospun transition metallic nanofibrous mats with outstanding activity for ethylene glycol electro-oxidation in alkaline solution. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
Fernandez-Delgado O, Puente Santiago AR, Galindo Betancourth J, Sanad MF, Sreenivasan ST, Echegoyen L. Diazonium functionalized fullerenes: a new class of efficient molecular catalysts for the hydrogen evolution reaction. NANOSCALE 2022; 14:3858-3864. [PMID: 35199813 DOI: 10.1039/d1nr05498h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Considerable efforts are being made to find cheaper and more efficient alternatives to the currently commercially available catalysts based on precious metals for the Hydrogen Evolution Reaction (HER). In this context, fullerenes have started to gain attention due to their suitable electronic properties and relatively easy functionalization. We found that the covalent functionalization of C60, C70 and Sc3N@IhC80 with diazonium salts endows the fullerene cages with ultra-active charge polarization centers, which are located near the carbon-diazonium bond and improve the efficiency towards the molecular generation of hydrogen. To support our findings, Electrochemical Impedance Spectroscopy (EIS), double layer capacitance (Cdl) and Mott-Schottky approximation were performed. Among all the functionalized fullerenes, DPySc3N@IhC80 exhibited a very low onset potential (-0.025 V vs. RHE) value, which is due to the influence of the inner cluster on the extra improvement of the electronic density states of the catalytic sites. For the first time, the covalent assembly of fullerenes and diazonium groups was used as an electron polarization strategy to build superior molecular HER catalytic systems.
Collapse
Affiliation(s)
- Olivia Fernandez-Delgado
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA.
| | - Alain R Puente Santiago
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA.
| | - Jolaine Galindo Betancourth
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA.
- Department of Chemistry, Universidad del Valle, Cali, Colombia
| | - Mohamed F Sanad
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA.
| | - Sreeprasad T Sreenivasan
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA.
| | - Luis Echegoyen
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA.
| |
Collapse
|
21
|
Zhao H, Du Z, Liu D, Lai Y, Yang T, Wang M, Ning Y, Yin F, Zhao B. Preparation of self-supported Ni-based ternary alloy catalysts for superior electrocatalytic hydrogen evolution. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Ahmed J, Alhokbany N, Ahamad T, Alshehri SM. Investigation of enhanced electro-catalytic HER/OER performances of copper tungsten oxide@reduced graphene oxide nanocomposites in alkaline and acidic media. NEW J CHEM 2022. [DOI: 10.1039/d1nj04617a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this paper, we investigate the electro-catalytic hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) of synthesized copper tungsten oxide@reduced graphene oxide (CuWO4@rGO) nanocomposites.
Collapse
Affiliation(s)
- Jahangeer Ahmed
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Norah Alhokbany
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saad M. Alshehri
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
23
|
Fu Z, Guo M, Yao YR, Meng Q, Yan Y, Wang Q, Shen Y, Chen N. A spider hanging inside a carbon cage: off-center shift and pyramidalization of Sc 3N clusters inside C 84 and C 86 fullerene cages. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01318e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structural analysis shows that, in Sc3N@Cs(51365)-C84 and Sc3N@D3(19)-C86, the Sc3N clusters are shifted to one side of the cages and unexpectedly pyramidalized inside the large cages of C84 and C86, which resembles a spider attached to a web.
Collapse
Affiliation(s)
- Ze Fu
- College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Min Guo
- College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yang-Rong Yao
- College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Qingyu Meng
- College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yingjing Yan
- College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Qin Wang
- College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yi Shen
- College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Ning Chen
- College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
24
|
Ghouri ZK, Elsaid K, Badreldin A, Nasef MM, Jusoh NWC, Abdel-Wahab A. Enhanced oxygen evolution reaction on polyethyleneimine functionalized graphene oxide in alkaline medium. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
25
|
Ni nanodendrites prepared by a low-temperature process as electrocatalysts for hydrogen evolution reaction in alkaline solution. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.112006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
N-Doped Graphene as an Efficient Metal-Free Electrocatalyst for Indirect Nitrate Reduction Reaction. NANOMATERIALS 2021; 11:nano11092418. [PMID: 34578734 PMCID: PMC8470669 DOI: 10.3390/nano11092418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/05/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022]
Abstract
N-doped graphene samples with different N species contents were prepared by a two-step synthesis method and evaluated as electrocatalysts for the nitrate reduction reaction (NORR) for the first time. In an acidic solution with a saturated calomel electrode as reference, the pyridinic-N dominant sample (NGR2) had an onset of 0.932 V and a half-wave potential of 0.833 V, showing the superior activity towards the NORR compared to the pyrrolic-N dominant N-doped graphene (onset potential: 0.850 V, half-wave potential: 0.732 V) and the pure graphene (onset potential: 0.698 V, half-wave potential: 0.506 V). N doping could significantly boost the NORR performance of N-doped graphene, especially the contribution of pyridinic-N. Density functional theory calculation revealed the pyridinic-N facilitated the desorption of NO, which was kinetically involved in the process of the NORR. The findings of this work would be valuable for the development of metal-free NORR electrocatalysts.
Collapse
|