1
|
Jiang Z, Chen Z, Yu X, Lu S, Xu W, Yu B, Stern CL, Li SY, Zhao Y, Liu X, Han Y, Chen S, Cai K, Shen D, Ma K, Li X, Chen AXY. Engineering Helical Chirality in Metal-Coordinated Cyclodextrin Nanochannels. J Am Chem Soc 2025; 147:7325-7335. [PMID: 39964363 DOI: 10.1021/jacs.4c14123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Helicates are a defining element of DNAs and proteins, with functions that are critical to a variety of biological processes. Cyclodextrins are promising candidates for forging multiple-stranded helicates with well-defined helicity, but a lack of available tools has precluded the construction of artificial helical nanochannels with a controllable geometry and helicity from these widely available chiral building blocks. Herein, we disclose a family of Ag6L2 helical nanochannels that can be readily assembled from α-cyclodextrin-derived ligands through coordination between pyridinyl groups and Ag+ cations. We discovered that the nanochannels exhibit either an M or a P helicity when the Ag+ cations adopt a tetrahedral coordination geometry while losing most of their helicity when the Ag+ cations are linearly coordinated. Both the geometry and helicity of the nanochannels can be precisely controlled by simply changing the number of methyl groups at the ortho positions of the pyridinyl ligands. The tetracoordinated Ag+ cations interconnect the helical nanochannels into an infinite two-dimensional coordinative network characterized by hexagonal tessellation. Theoretical calculations, which reveal lower energies of the helical conformations observed in crystals compared with those of their inverted counterparts, support the experimental results.
Collapse
Affiliation(s)
- Zhiyuan Jiang
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Zhi Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xiujun Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Shuai Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Wenmin Xu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Bo Yu
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Shu-Yi Li
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Yue Zhao
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Xinzhi Liu
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Yeqiang Han
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Shuqi Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Kang Cai
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Dengke Shen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Kaikai Ma
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Aspen X-Y Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
2
|
Koehler V. From Double-Stranded Helicates to Abiotic Double Helical Supramolecular Assemblies. Chemistry 2025; 31:e202402222. [PMID: 39429111 DOI: 10.1002/chem.202402222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
The folding of oligomeric strands is the method that nature has selected to generate ordered assemblies presenting spectacular functions. In the purpose to mimic these biomacromolecules and extend their properties and functions, chemists make important efforts to prepare artificial secondary, tertiary, and even quarternary structures based on folded abiotic backbones. A large variety of oligomers and polymers, encoded with chemical informations, were designed, synthesized and characterized, and the establishment of non-covalent interactions lead to complex and functional supramolecular architectures resulting from a spontaneous self-assembly process. The association of complementary molecular strands into double helical structures is a common structural pattern of nucleic acids and proteins, so the synthesis of bio-inspired double helices has emerged as an important subject. In recent years, a number of synthetic oligomers have been reported to form stable double helices and it was shown that the equilibrium between single and double helices can be controlled via different stimuli like the modification of the solvent or the temperature. This kind of structure presents highly interesting functions, such as molecular recognition within the cavity of double helices, and some other potential applications will emerge in the future.
Collapse
Affiliation(s)
- Victor Koehler
- Adionics, The Advanced Ionic Solution, 17 bis avenue des Andes, 91940, Les Ulis, France
| |
Collapse
|
3
|
Lee S, Song G, Jeong KS. Stimuli-Responsive Molecular Duplexes Displaying Duplex-to-Duplex Switching. Angew Chem Int Ed Engl 2024; 63:e202410884. [PMID: 38937392 DOI: 10.1002/anie.202410884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 06/29/2024]
Abstract
Synthetic duplexes with high stabilities have promising potential for mimicking biomolecular functions and developing supramolecular smart materials. Herein, we describe the synthesis and stimuli-responsive properties of molecular duplexes derived from indolocarbazole-pyridine (I-P) oligomers. These duplexes adopt nonclassical helical structures, stabilized by I-P hydrogen-bonding pairs in anhydrous chlorinated solvents. Notably, the longest duplex 62 (11-mer)2 displays remarkable stability, forming twenty hydrogen bonds; its exchange energy barrier was determined to be ΔG≠=22.0 kcal ⋅ mol-1 at 75 °C in anhydrous (CDCl2)2. Upon the addition of water, a hydrated duplex 62 (11-mer)2⊃10H2O was formed, with one water molecule inserted between each I-P hydrogen-bonding pair. The Hill coefficient (n) for this process is 6.1, demonstrating extremely positive cooperativity. Conversely, the hydrated duplex 62 (11-mer)2⊃10H2O was completely converted into the original anhydrous duplex 62 (11-mer)2 when the temperature was increased. Interconversion between these two distinct duplexes can be repeatedly carried out by varying the temperature. Furthermore, reversible switching between hetero-duplexes and homo-duplexes was also demonstrated by controlling the temperature, with concomitant changes in the characteristic emission signals.
Collapse
Affiliation(s)
- Seungwon Lee
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Geunmoo Song
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kyu-Sung Jeong
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
4
|
Mobian P, Pham DJ, Chaumont A, Barloy L, Khalil G, Kyritsakas N. Circular Heterochiral Titanium-Based Self-Assembled Architectures. J Am Chem Soc 2024; 146:14067-14078. [PMID: 38728688 DOI: 10.1021/jacs.4c02352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Circular trinuclear helicates have been synthesized from a bis-biphenol strand (LH4), titanium isopropoxide, and various diimine ligands. These self-assembled architectures constructed around three TiO4N2 nodes have a heterochiral structure (C1 symmetry) when 2,2'-bipyridine (A), 4,4'-dimethyl-2,2'-bipyridine (B), 4,4'-bromo-2,2'-bipyridine (C), or 4,4'-dimethyl-2,2'-bipyrimidine (D) is employed. Within these complexes, one nitrogen ligand is endo-positioned inside the metallo-macrocycle, whereas the other two diimine ligands point outside the helicate framework. This investigation highlights that the nitrogen ligand which does not participate in the helicate framework of the complex controls the overall symmetry of the helicate since the 2,2'-bipyrimidine chelate (F) ends in the formation of a homochiral aggregate (C3 symmetry). The lack of symmetry found in the solid state for the trinuclear species ([Ti3L3(B)3], [Ti3L3(C)3], and [Ti3L3(D)3]) is observed for these complexes in solution (dichloromethane or chloroform). Remarkably, the 2,2'-bipyrazine ligand (ligand E) ends in the formation of a hexameric aggregate formulated as [Ti6L6(E)6], whereas the use of 4,4'-dimethyl-2,2'-bipyrimidine (ligand D) permits to generate the dinuclear complexes ([Ti2L(D)2(OiPr)4] and [Ti2L2(D)2]) in addition to the trimeric structure [Ti3L3(D)3]. The behavior of [Ti3L3(A)3] in solution, on the other hand, is unique since an equilibrium between the homochiral and the heterochiral form is reached within 17 days after the complex has been dissolved in dichloromethane (C3-[Ti3L3(A)3]/C1-[Ti3L3(A)3] ratio = 0.3). In chloroform, the heterochiral form of [Ti3L3(A)3] is stable for the same period of time, evidencing the dependence of this stereochemical transformation toward the solvent medium. The thermodynamic and kinetic parameters linked to this stereochemical equilibrium have been obtained and point to the fact that the transformation is intramolecular and not induced by the presence of external ligands. The thermodynamic constant of the C1-[Ti3L3(A)3]/C3-[Ti3L3(A)3] equilibrium is found to be K = 0.34 ± 10%. Further evidence to rationalize this solvent-induced symmetry switch is obtained via a DFT calculation and classical molecular dynamics. In particular, this computational investigation elucidates the reason why the stereochemical transformation of a heterochiral architecture into a homochiral structure is possible only for a trinuclear assembly containing ligand A.
Collapse
Affiliation(s)
- Pierre Mobian
- Université de Strasbourg, CNRS, CMC UMR 7140 (team SFAM), F-67000 Strasbourg, France
| | - David-Jérôme Pham
- Université de Strasbourg, CNRS, CMC UMR 7140 (team SFAM), F-67000 Strasbourg, France
| | - Alain Chaumont
- Université de Strasbourg, CNRS, CMC UMR 7140 (team MSM), F-67000 Strasbourg, France
| | - Laurent Barloy
- Université de Strasbourg, CNRS, CMC UMR 7140 (team SFAM), F-67000 Strasbourg, France
| | - Georges Khalil
- Université de Strasbourg, CNRS, CMC UMR 7140 (team SFAM), F-67000 Strasbourg, France
| | - Nathalie Kyritsakas
- Université de Strasbourg, CNRS, CMC UMR 7140 (team LTM), F-67000 Strasbourg, France
| |
Collapse
|
5
|
Wang Z, Cao Z, Hao A, Xing P. Pnictogen bonding in imide derivatives for chiral folding and self-assembly. Chem Sci 2024; 15:6924-6933. [PMID: 38725497 PMCID: PMC11077576 DOI: 10.1039/d4sc00554f] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/05/2024] [Indexed: 05/12/2024] Open
Abstract
Pnictogen bonding (PnB) is an attraction interaction that originates from the anisotropic distribution of electron density of pnictogen elements, which however has been rarely found in nitrogen atoms. In this work, for the first time, we unveil the general presence of N-involved PnB in aromatic or aliphatic imide groups and reveal its implications in chiral self-assembly of folding. This long-neglected interaction was consolidated by Cambridge structural database (CSD) searching as well as subsequent computational studies. Though the presence of PnB has limited effects on spectroscopic properties in the solution phase, conformation locking effects are sufficiently expressed in the chiral folding and self-assembly behavior. PnB anchors the chiral conformation to control the emergence and inversion of chiroptical signals, while intramolecular PnB induces the formation of supramolecular tilt chirality. It also enables the chiral folding of imide-containing amino acid or peptide derivatives, which induces the formation of unique secondary structural sequences such as β-sheets. Finally, the effects of PnB in directing folded helical structures were revealed. Examples of cysteine and cystine derivatives containing multiple N⋯O and N⋯S PnBs constitute an α-helix like secondary structure with characteristic circular dichroism. This work discloses the comprehensive existence of imide-involved PnB, illustrates its important role in folding and self-assembly, and sheds light on the rational fabrication of conformation-locked compounds and polymers with controllable chiroptical activities.
Collapse
Affiliation(s)
- Zhuoer Wang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| | - Zhaozhen Cao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| | - Aiyou Hao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| |
Collapse
|
6
|
Sun SN, Niu Q, Lin JM, He LL, Shi JW, Huang Q, Liu J, Lan YQ. Sulfur atom-directed metal-ligand synergistic catalysis in zirconium/hafnium-oxo clusters for highly efficient amine oxidation. Sci Bull (Beijing) 2024; 69:492-501. [PMID: 38044194 DOI: 10.1016/j.scib.2023.11.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/23/2023] [Accepted: 11/17/2023] [Indexed: 12/05/2023]
Abstract
The performance applications (e.g., photocatalysis) of zirconium (Zr) and hafnium (Hf) based complexes are greatly hindered by the limited development of their structures and the relatively inert metal reactivity. In this work, we constructed two ultrastable Zr/Hf-based clusters (Zr9-TC4A and Hf9-TC4A) using hydrophobic 4-tert-butylthiacalix[4]arene (H4TC4A) ligands, in which unsaturated coordinated sulfur (S) atoms on the TC4A4- ligand can generate strong metal-ligand synergy with nearby active metal Zr/Hf sites. As a result, these two functionalized H4TC4A ligands modified Zr/Hf-oxo clusters, as catalysts for the amine oxidation reaction, exhibited excellent catalytic activity, achieving very high substrate conversion (>99%) and product selectivity (>90%). Combining comparative experiments and theoretical calculations, we found that these Zr/Hf-based cluster catalysts accomplish efficient amine oxidation reactions through synergistic effect between metals and ligands: (i) The photocatalytic benzylamine (BA) oxidation reaction was achieved by the synergistic effect of the dual active sites, in which, the naked S sites on the TC4A4- ligand oxidize the BA by photogenerated hole and oxygen molecules are reduced by photogenerated electrons on the metal active sites; (ii) in the aniline oxidation reaction, aniline was adsorbed by the bare S sites on ligands to be closer to metal active sites and then oxidized by the oxygen-containing radicals activated by the metal sites, thus completing the catalytic reaction under the synergistic catalytic effect of the proximity metal-ligand. In this work, the Zr/Hf-based complexes applied in the oxidation of organic amines have been realized using active S atom-directed metal-ligand synergistic catalysis and have demonstrated very high reactivity.
Collapse
Affiliation(s)
- Sheng-Nan Sun
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Qian Niu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jiao-Min Lin
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Li-Ling He
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Jing-Wen Shi
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Qing Huang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jiang Liu
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
7
|
Teng B, Mandal PK, Allmendinger L, Douat C, Ferrand Y, Huc I. Controlling aromatic helix dimerization in water by tuning charge repulsions. Chem Sci 2023; 14:11251-11260. [PMID: 37860656 PMCID: PMC10583700 DOI: 10.1039/d3sc02020g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/14/2023] [Indexed: 10/21/2023] Open
Abstract
Several helically folded aromatic oligoamides were designed and synthesized. The sequences were all water-soluble thanks to the charged side chains borne by the monomers. Replacing a few, sometimes only two, charged side chains by neutral methoxy groups was shown to trigger the formation of various aggregates which could be tentatively assigned to head-to-head stacked dimers of single helices, double helical duplexes and a quadruplex, none of which would form in organic solvent with organic-soluble analogues. The nature of the aggregates was supported by concentration and solvent dependent NMR studies, 1H DOSY experiments, mass spectrometry, and X-ray crystallography or energy-minimized models, as well as analogies with earlier studies. The hydrophobic effect appears to be the main driving force for aggregation but it can be finely modulated by the presence or absence of a small number of charges to an extent that had no precedent in aromatic foldamer architectures. These results will serve as a benchmark for future foldamer design in water.
Collapse
Affiliation(s)
- Binhao Teng
- Department of Pharmacy, Ludwig-Maximilians-Universität Butenandtstr. 5-13 81377 München Germany
| | - Pradeep K Mandal
- Department of Pharmacy, Ludwig-Maximilians-Universität Butenandtstr. 5-13 81377 München Germany
| | - Lars Allmendinger
- Department of Pharmacy, Ludwig-Maximilians-Universität Butenandtstr. 5-13 81377 München Germany
| | - Céline Douat
- Department of Pharmacy, Ludwig-Maximilians-Universität Butenandtstr. 5-13 81377 München Germany
| | - Yann Ferrand
- Univ. Bordeaux, CNRS, Bordeaux Institut National Polytechnique CBMN UMR 5248, 2 rue Escarpit 33600 Pessac France
| | - Ivan Huc
- Department of Pharmacy, Ludwig-Maximilians-Universität Butenandtstr. 5-13 81377 München Germany
| |
Collapse
|
8
|
Joseph J, Mobian P, Chaumont A, Wytko JA, Weiss J. Going Up the Ladder: Stacking Four 4,4'-Bipyridine Moieties within a Ti(IV)-Based Tetranuclear Architecture. Inorg Chem 2022; 61:16448-16457. [PMID: 36201371 DOI: 10.1021/acs.inorgchem.2c02566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biphenol-based ligands have proven their ability to bind titanium(IV) centers and generate sophisticated self-assembled structures in which auxiliary nitrogen ligands often complete the coordination sphere of the metal and improve stability. Here, a central 4,4'-bipyridine, which acts as both a spacer and a source of monodentate nitrogen to complete the coordination sphere of the Ti(IV) complex, was incorporated within two bis-2,2'-biphenol strands, 3H4 and 4H4. Both proligands possess structural features that are well adapted to form self-assembled structures built from titanium-oxygen-nitrogen units; however, their different degrees of torsional freedom strongly influenced the nuclearity of the complexes formed. The presence of a phenyl spacer between the bipyridine and the biphenol moieties of 3H4 provided enough flexibility for the ligand to wrap around one titanium(IV) center to form a mononuclear complex Ti(3)(DMF)2 in the presence of dimethylformamide (DMF). Assembly of the more rigid ligand 4H4 with Ti(OiPr)4 afforded a tetranuclear complex Ti4(4)2(4H)2(OEt)2 containing four stacked 4,4'-bipyridine units as shown by the X-ray structure of the complex. Density functional theory studies suggested that the assembly of this tetrametallic complex involves a dimetallic intermediate with TiO6 nodes that is converted to the thermodynamically stable tetranuclear complex with two TiO6 nodes and two TiO5N units with enhanced covalent character.
Collapse
Affiliation(s)
- Jean Joseph
- Institut de Chimie de Strasbourg, UMR 7177 CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67008Strasbourg, France
| | - Pierre Mobian
- Chimie de la matière complexe, UMR 7140 CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67008Strasbourg, France
| | - Alain Chaumont
- Chimie de la matière complexe, UMR 7140 CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67008Strasbourg, France
| | - Jennifer A Wytko
- Institut de Chimie de Strasbourg, UMR 7177 CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67008Strasbourg, France
| | - Jean Weiss
- Institut de Chimie de Strasbourg, UMR 7177 CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67008Strasbourg, France
| |
Collapse
|
9
|
Scarpi-Luttenauer M, Mobian P, Barloy L. Synthesis, structure and functions of discrete titanium-based multinuclear architectures. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Day E, Kauffmann B, Scarpi‐Luttenauer M, Chaumont A, Henry M, Mobian P. An Alternate [2×2] Grid Constructed Around TiO
4
N
2
Units. Chemistry 2022; 28:e202200047. [DOI: 10.1002/chem.202200047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Erin Day
- Laboratoire de Chimie Moléculaire de l'Etat Solide UMR 7140 UDS-CNRS Université de Strasbourg 4 rue Blaise Pascal 67000 Strasbourg France
| | - Brice Kauffmann
- Univ. Bordeaux IECB, UMS 3033/US 001 2 rue Robert Escarpit 33607 Pessac France
| | - Matthieu Scarpi‐Luttenauer
- Laboratoire de Chimie Moléculaire de l'Etat Solide UMR 7140 UDS-CNRS Université de Strasbourg 4 rue Blaise Pascal 67000 Strasbourg France
| | - Alain Chaumont
- Laboratoire de Modélisation et Simulations Moléculaires UMR 7140 UDS-CNRS Université de Strasbourg 4 rue Blaise Pascal 67000 Strasbourg France
| | - Marc Henry
- Laboratoire de Chimie Moléculaire de l'Etat Solide UMR 7140 UDS-CNRS Université de Strasbourg 4 rue Blaise Pascal 67000 Strasbourg France
| | - Pierre Mobian
- Laboratoire de Chimie Moléculaire de l'Etat Solide UMR 7140 UDS-CNRS Université de Strasbourg 4 rue Blaise Pascal 67000 Strasbourg France
| |
Collapse
|
11
|
Wu MY, Xu JX, Chen YH, Lu IC, Han JL, Lin PH. Self-assembled lanthanide-based helixes: synthetic control of the helical handedness by chirality of the ligand. Dalton Trans 2021; 51:69-73. [PMID: 34897306 DOI: 10.1039/d1dt03833h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The control of the self-assembly of lanthanide helical chain and their helical handedness have been investigated for the first time. Δ- and Λ-form lanthanide chain complexes were obtained by introducing thiazolidine ligands that were synthesised from L- and D-cysteine, respectively, and shared the same formula: [Ln2(L)3(H2O)5]∞·3H2O (Ln: Sm and Eu) (L: 2-(2-hydroxy-3,5-dinitrophenyl)thiazolidine-4-carboxylic acid). The crystallographic, circular dichroism, and luminescence properties of these novel lanthanide chain complexes were studied.
Collapse
Affiliation(s)
- Min-Yu Wu
- Department of Chemistry, National Chung Hsing University, 250 Kuo Kuang Rd., Taichung 402, Taiwan.
| | - Jing-Xiang Xu
- Department of Chemistry, National Chung Hsing University, 250 Kuo Kuang Rd., Taichung 402, Taiwan.
| | - Yi-Hsin Chen
- Department of Chemistry, National Chung Hsing University, 250 Kuo Kuang Rd., Taichung 402, Taiwan.
| | - I-Chung Lu
- Department of Chemistry, National Chung Hsing University, 250 Kuo Kuang Rd., Taichung 402, Taiwan.
| | - Jeng-Liang Han
- Department of Chemistry, National Chung Hsing University, 250 Kuo Kuang Rd., Taichung 402, Taiwan.
| | - Po-Heng Lin
- Department of Chemistry, National Chung Hsing University, 250 Kuo Kuang Rd., Taichung 402, Taiwan.
| |
Collapse
|
12
|
Scarpi-Luttenauer M, Kyritsakas N, Chaumont A, Mobian P. Chemistry on the Complex: Derivatization of TiO 4 N 2 -Based Complexes and Application to Multi-Step Synthesis. Chemistry 2021; 27:17910-17920. [PMID: 34767287 DOI: 10.1002/chem.202103235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Indexed: 01/15/2023]
Abstract
The chemistry on octahedral TiO4 N2 -complexes is described. The Ti(IV)-based precursors are composed of two 3,3'-diphenyl-2,2'-biphenolato ligands (1) and one substituted 1,10-phenanthroline ligand (2-5). The application of imine condensation, palladium-catalyzed C-C bond formation or copper-catalysed azide-alkyne cycloaddition allowed the grafting of various new groups onto these species. In particular Sonogashira reactions permitted to observe an excellent conversion of the starting complexes. This systematic study enabled to compile the factors required to preserve the framework of the complexes in the course of a chemical transformation. Thanks to this chemistry realized on the complex, the Ti(1)2 fragment was used as a protecting group to develop a multi-step synthesis of a bis-phenanthroline compound (12), for which the synthesis without this protection failed. Thus, a dinuclear complex [Ti2 (1)4 (12)] was first prepared starting from complex precursor bearing an acetylenic function via a Hay coupling reaction. This was followed by a deprotection step affording 12. Overall, this work illustrates how the Ti(1)2 fragment could be an useful tool for the preparation of unprecedented diimine compounds.
Collapse
Affiliation(s)
- Matthieu Scarpi-Luttenauer
- Laboratoire de Synthèse et fonctions des Architectures Moléculaires, Université de Strasbourg, CNRS, CMC UMR 7140, 67000, Strasbourg, France
| | - Nathalie Kyritsakas
- Laboratoire de Tectonique Moléculaire, Université de Strasbourg, CNRS, CMC UMR 7140, 67000, Strasbourg, France
| | - Alain Chaumont
- Laboratoire de Modélisation et Simulations Moléculaires, Université de Strasbourg, CNRS, CMC UMR 7140, 67000, Strasbourg, France
| | - Pierre Mobian
- Laboratoire de Synthèse et fonctions des Architectures Moléculaires, Université de Strasbourg, CNRS, CMC UMR 7140, 67000, Strasbourg, France
| |
Collapse
|
13
|
Ousaka N, Yamamoto S, Iida H, Iwata T, Ito S, Souza R, Hijikata Y, Irle S, Yashima E. Encapsulation of Aromatic Guests in the Bisporphyrin Cavity of a Double-Stranded Spiroborate Helicate: Thermodynamic and Kinetic Studies and the Encapsulation Mechanism. J Org Chem 2021; 86:10501-10516. [PMID: 34282918 DOI: 10.1021/acs.joc.1c01155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A double-stranded spiroborate helicate bearing a bisporphyrin unit in the middle forms an inclusion complex with electron-deficient aromatic guests that are sandwiched between the porphyrins. In the present study, we systematically investigated the effects of size, electron density, and substituents of a series of aromatic guests on inclusion complex formations within the bisporphyrin. The thermodynamic and kinetic behaviors during the guest-encapsulation process were also investigated in detail. The guest-encapsulation abilities in the helicate increased with the increasing core sizes of the electron-deficient aromatic guests and decreased with the increasing bulkiness and number of substituents of the guests. Among the naphthalenediimide derivatives, those with bulky N-substituents at both ends hardly formed an inclusion complex. Instead, they formed a [2]rotaxane-like inclusion complex through the water-mediated dynamic B-O bond cleavage/reformation of the spiroborate groups of the helicate, which enhanced the conformational flexibility of the helicate to enlarge the bisporphyrin cavity and form an inclusion complex. Based on the X-ray crystal structure of a unique pacman-like 1:1 inclusion complex between the helicate and an ammonium cation as well as the molecular dynamics simulation results, a plausible mechanism for the inclusion of a planar aromatic guest within the helicate is also proposed.
Collapse
Affiliation(s)
- Naoki Ousaka
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan.,Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Shinya Yamamoto
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Hiroki Iida
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Takuya Iwata
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Shingo Ito
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Rafael Souza
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Yuh Hijikata
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8601, Japan
| | - Stephan Irle
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8601, Japan
| | - Eiji Yashima
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan.,Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|
14
|
Jiao J, Dong J, Li Y, Cui Y. Fine‐Tuning of Chiral Microenvironments within Triple‐Stranded Helicates for Enhanced Enantioselectivity. Angew Chem Int Ed Engl 2021; 60:16568-16575. [DOI: 10.1002/anie.202104111] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/01/2021] [Indexed: 12/24/2022]
Affiliation(s)
- Jingjing Jiao
- School of Chemistry and Chemical Technology Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
- The Key Laboratory of Resource Chemistry of Ministry of Education Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Normal University Shanghai 200234 China
| | - Jinqiao Dong
- School of Chemistry and Chemical Technology Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yingguo Li
- School of Chemistry and Chemical Technology Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yong Cui
- School of Chemistry and Chemical Technology Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
15
|
Jiao J, Dong J, Li Y, Cui Y. Fine‐Tuning of Chiral Microenvironments within Triple‐Stranded Helicates for Enhanced Enantioselectivity. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jingjing Jiao
- School of Chemistry and Chemical Technology Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
- The Key Laboratory of Resource Chemistry of Ministry of Education Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Normal University Shanghai 200234 China
| | - Jinqiao Dong
- School of Chemistry and Chemical Technology Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yingguo Li
- School of Chemistry and Chemical Technology Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yong Cui
- School of Chemistry and Chemical Technology Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|