1
|
Huo Z, Xie X, Mahmud N, Worch JC, Tong R. Functionalized Cyclic Poly(α-Hydroxy Acids) via Controlled Ring-Opening Polymerization of O-Carboxyanhydrides. Angew Chem Int Ed Engl 2025:e202423973. [PMID: 40192181 DOI: 10.1002/anie.202423973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/12/2025] [Accepted: 03/31/2025] [Indexed: 04/12/2025]
Abstract
Linear poly(α-hydroxy acids) are important degradable polymers, and they can be efficiently prepared by ring-opening polymerization of O-carboxyanhydrides with pendant functional groups. However, attempts to prepare cyclic poly(α-hydroxy acids) have been plagued by side reactions, including epimerization and uncontrolled intramolecular chain transfers or termination, that prevent the synthesis of high-molecular-weight stereoregular cyclic polyesters. Herein, we report a scalable method for the synthesis of high-molecular-weight (>100 kDa) stereoregular functionalized cyclic poly(α-hydroxy acids) by means of controlled polymerization of O-carboxyanhydrides using a catalytic system consisting of a lanthanum complex with a sterically bulky ligand and a manganese silylamide. Additionally, using this system, we could readily prepare cyclic block poly(α-hydroxy acids) by means of sequential addition of O-carboxyanhydrides. The obtained cyclic polyesters and their cyclic block copolyesters exhibit distinctive physicochemical properties-including elevated phase transition temperature, improved toughness, and reduced viscosity-compared to their linear counterparts.
Collapse
Affiliation(s)
- Ziyu Huo
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, Virginia, 24061, USA
| | - Xiaoyu Xie
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, Virginia, 24061, USA
| | - Nadim Mahmud
- Department of Chemistry, Virginia Polytechnic Institute and State University, 1040 Drillfield Drive, Blacksburg, Virginia, 24061, USA
| | - Joshua C Worch
- Department of Chemistry, Virginia Polytechnic Institute and State University, 1040 Drillfield Drive, Blacksburg, Virginia, 24061, USA
| | - Rong Tong
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, Virginia, 24061, USA
| |
Collapse
|
2
|
Precision synthesis and closed-loop recycling of ultrahigh-molar-mass cyclic polymers. Nat Chem 2024; 16:1939-1940. [PMID: 38671302 DOI: 10.1038/s41557-024-01526-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
|
3
|
Elardo MJ, Levenson AM, Kitos Vasconcelos AP, Pomfret MN, Golder MR. A general synthesis of cyclic bottlebrush polymers with enhanced mechanical properties via graft-through ring expansion metathesis polymerization. Chem Sci 2024; 15:d4sc06050d. [PMID: 39360007 PMCID: PMC11440813 DOI: 10.1039/d4sc06050d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
Bottlebrush polymers represent an important class of macromolecular architectures, with applications ranging from drug delivery to organic electronics. While there is an abundance of literature describing the synthesis, structure, and applications of linear bottlebrush polymers using ring-opening metathesis polymerization (ROMP), there are comparatively less reports on their cyclic counterparts. This lack of research is primarily due to the difficulty in synthesizing cyclic bottlebrush polymers, as extensions of typical routes towards linear bottlebrush polymers (i.e., "grafting-through" polymerizations of macromonomers with ROMP) produce only ultrahigh molar mass cyclic bottlebrush polymers with poor molar mass control. Herein, we report a ring-expansion metathesis polymerization (REMP) approach to cyclic bottlebrush polymers via a "grafting-through" approach utilizing the active pyr-CB6 initiator developed in our lab. The resulting polymers, characterized via GPC-MALS-IV, are shown to have superior molar mass control across a range of target backbone lengths. The cyclic materials are also found to have superior mechanical properties when compared to their linear counterparts, as assessed by ball-mill grinding and compression testing experiments.
Collapse
Affiliation(s)
- Matthew J Elardo
- Department of Chemistry, Molecular Engineering & Science Institute, University of Washington 36 Bagley Hall Seattle WA 98195 USA
| | - Adelaide M Levenson
- Department of Chemistry, Molecular Engineering & Science Institute, University of Washington 36 Bagley Hall Seattle WA 98195 USA
| | - Ana Paula Kitos Vasconcelos
- Department of Chemistry, Molecular Engineering & Science Institute, University of Washington 36 Bagley Hall Seattle WA 98195 USA
| | - Meredith N Pomfret
- Department of Chemistry, Molecular Engineering & Science Institute, University of Washington 36 Bagley Hall Seattle WA 98195 USA
| | - Matthew R Golder
- Department of Chemistry, Molecular Engineering & Science Institute, University of Washington 36 Bagley Hall Seattle WA 98195 USA
| |
Collapse
|
4
|
Zhou L, Reilly LT, Shi C, Quinn EC, Chen EYX. Proton-triggered topological transformation in superbase-mediated selective polymerization enables access to ultrahigh-molar-mass cyclic polymers. Nat Chem 2024; 16:1357-1365. [PMID: 38649467 DOI: 10.1038/s41557-024-01511-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024]
Abstract
The selective synthesis of ultrahigh-molar-mass (UHMM, >2 million Da) cyclic polymers is challenging as an exceptional degree of spatiotemporal control is required to overcome the possible undesired reactions that can compete with the desired intramolecular cyclization. Here we present a counterintuitive synthetic methodology for cyclic polymers, represented here by polythioesters, which proceeds via superbase-mediated ring-opening polymerization of gem-dimethylated thiopropiolactone, followed by macromolecular cyclization triggered by protic quenching. This proton-triggered linear-to-cyclic topological transformation enables selective, linear polymer-like access to desired cyclic polythioesters, including those with UHMM surpassing 2 MDa. In addition, this method eliminates the need for stringent conditions such as high dilution to prevent or suppress linear polymer contaminants and presents the opposite scenario in which protic-free conditions are required to prevent cyclic polymer formation, which is capitalized to produce cyclic polymers on demand. Furthermore, such UHMM cyclic polythioester exhibits not only much enhanced thermostability and mechanical toughness, but it can also be quantitatively recycled back to monomer under mild conditions due to its gem-disubstitution.
Collapse
Affiliation(s)
- Li Zhou
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Liam T Reilly
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Changxia Shi
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Ethan C Quinn
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
5
|
Li C, Zhao W, He J, Zhang Y. Topology Controlled All-(Meth)acrylic Thermoplastic Elastomers by Multi-Functional Lewis Pairs-Mediated Polymerization. Angew Chem Int Ed Engl 2024; 63:e202401265. [PMID: 38390752 DOI: 10.1002/anie.202401265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
It remains challenging to synthesize all-(meth)acrylic triblock thermoplastic elastomers (TPEs), due to the drastically different reactivities between the acrylates and methacrylates and inevitable occurrence of side reactions during polymerization of acrylates. By taking advantage of the easy structural modulation features of N-heterocyclic olefins (NHOs), we design and synthesize strong nucleophilic tetraphenylethylene-based NHOs varying in the number (i.e. mono-, dual- and tetra-) of initiating functional groups. Its combination with bulky organoaluminum [iBuAl(BHT)2] (BHT=bis(2,6-di-tBu-4-methylphenoxy)) constructs Lewis pair (LP) to realize the living polymerization of both acrylates and methacrylates, furnishing polyacrylates with ultrahigh molecular weight (Mn up to 2174 kg ⋅ mol-1) within 4 min. Moreover, these NHO-based LPs enable us to not only realize the control over the polymers' topology (i.e. linear and star), but also achieve triblock star copolymers in one-step manner. Mechanical studies reveal that the star triblock TPEs exhibit better mechanical properties (elongation at break up to 1863 % and tensile strength up to 19.1 MPa) in comparison with the linear analogs. Moreover, the presence of tetraphenylethylene group in the NHOs entitled the triblock TPEs with excellent AIE properties in both solution and solid state.
Collapse
Affiliation(s)
- Chengkai Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, China, 130012
- SINOPEC Beijing Research Institute of Chemical Industry, Beijing, China, 100013
| | - Wuchao Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, China, 130012
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, China, 130012
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, China, 130012
| |
Collapse
|
6
|
Zhang YY, Yang GW, Lu C, Zhu XF, Wang Y, Wu GP. Organoboron-mediated polymerizations. Chem Soc Rev 2024; 53:3384-3456. [PMID: 38411207 DOI: 10.1039/d3cs00115f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The scientific community has witnessed extensive developments and applications of organoboron compounds as synthetic elements and metal-free catalysts for the construction of small molecules, macromolecules, and functional materials over the last two decades. This review highlights the achievements of organoboron-mediated polymerizations in the past several decades alongside the mechanisms underlying these transformations from the standpoint of the polymerization mode. Emphasis is placed on free radical polymerization, Lewis pair polymerization, ionic (cationic and anionic) polymerization, and polyhomologation. Herein, alkylborane/O2 initiating systems mediate the radical polymerization under ambient conditions in a controlled/living manner by careful optimization of the alkylborane structure or additives; when combined with Lewis bases, the selected organoboron compounds can mediate the Lewis pair polymerization of polar monomers; the bicomponent organoboron-based Lewis pairs and bifunctional organoboron-onium catalysts catalyze ring opening (co)polymerization of cyclic monomers (with heteroallenes, such as epoxides, CO2, CO, COS, CS2, episulfides, anhydrides, and isocyanates) with well-defined structures and high reactivities; and organoboranes initiate the polyhomologation of sulfur ylides and arsonium ylides providing functional polyethylene with different topologies. The topological structures of the produced polymers via these organoboron-mediated polymerizations are also presented in this review mainly including linear polymers, block copolymers, cyclic polymers, and graft polymers. We hope the summary and understanding of how organoboron compounds mediate polymerizations can inspire chemists to apply these principles in the design of more advanced organoboron compounds, which may be beneficial for the polymer chemistry community and organometallics/organocatalysis community.
Collapse
Affiliation(s)
- Yao-Yao Zhang
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Guan-Wen Yang
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Chenjie Lu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiao-Feng Zhu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Yuhui Wang
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Guang-Peng Wu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
7
|
Ma C, Wang H, Sun R, Liao X, Han H, Xie M. Polyacetylene-Based Asymmetric Bicyclic Polymer by Blocking-Cyclization Technique. Macromol Rapid Commun 2024; 45:e2300628. [PMID: 38227809 DOI: 10.1002/marc.202300628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/31/2023] [Indexed: 01/18/2024]
Abstract
A rare asymmetric bicyclic polymer containing different length of conjugated polyacetylene segments is synthesized by metathesis cyclopolymerization-mediated blocking-cyclization technique. The size of each single ring differs from each other, and the unique cyclic polymer topology is controlled by adjusting the feed ratio of monofunctional monomer to catalyst. The topological difference between linear and bicyclic polymers is confirmed by several techniques, and the visualized morphology of asymmetric bicyclic polymer is directly observed without tedious post-modification process. The photoelectric and thermal properties of polymers are investigated. This work expands the pathway for the derivation of cyclic polymers, and such unique topological structure enriches the diversity of cyclic polymer classes.
Collapse
Affiliation(s)
- Cuihong Ma
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Hao Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Ruyi Sun
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xiaojuan Liao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Huijing Han
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Meiran Xie
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
8
|
Clarke RW, Caputo MR, Polo Fonseca L, McGraw ML, Reilly LT, Franklin KA, Müller AJ, Chen EYX. Cyclic and Linear Tetrablock Copolymers Synthesized at Speed and Scale by Lewis Pair Polymerization of a One-Pot (Meth)acrylic Mixture and Characterized at Multiple Levels. J Am Chem Soc 2024; 146:4930-4941. [PMID: 38346332 DOI: 10.1021/jacs.3c14136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Cyclic block copolymers (cBCP) are fundamentally intriguing materials, but their synthetic challenges that demand precision in controlling both the monomer sequence and polymer topology limit access to AB and ABC block architectures. Here, we show that cyclic ABAB tetra-BCPs (cABAB) and their linear counterpart (lABAB) can be readily obtained at a speed and scale from one-pot (meth)acrylic monomer mixtures, through coupling the Lewis pair polymerization's unique compounded-sequence control with its precision in topology control. This approach achieves fast (<15 min) and quantitative (>99%) conversion to tetra-BCPs of predesignated linear or cyclic topology at scale (40 g) in a one-pot procedure, precluding the needs for repeated chain extensions, stoichiometric addition steps, dilute conditions, and postsynthetic modifications, and/or postsynthetic ring-closure steps. The resulting lABAB and cABAB have essentially identical molecular weights (Mn = 165-168 kg mol-1) and block degrees/symmetry, allowing for direct behavioral comparisons in solution (hydrodynamic volume, intrinsic viscosity, elution time, and refractive indices), bulk (thermal transitions), and film (thermomechanical and rheometric properties and X-ray scattering patterns) states. To further the morphological characterizations, allylic side-chain functionality is exploited via the thiol-ene click chemistry to install crystalline octadecane side chains and promote phase separation between the A and B blocks, allowing visualization of microdomain formation.
Collapse
Affiliation(s)
- Ryan W Clarke
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Maria Rosaria Caputo
- Polymat and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
| | - Lucas Polo Fonseca
- Polymat and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
| | - Michael L McGraw
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Liam T Reilly
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Kevin A Franklin
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Alejandro J Müller
- Polymat and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
9
|
Hu S, Xu H, Xie C, Meng Y, Xu X. Inhibition of human cervical cancer development through p53-dependent pathways induced by the specified triple helical β-glucan. Int J Biol Macromol 2023; 251:126222. [PMID: 37586625 DOI: 10.1016/j.ijbiomac.2023.126222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/05/2023] [Accepted: 08/05/2023] [Indexed: 08/18/2023]
Abstract
This study demonstrates that the purified β-glucan (LNT) with a triple helix and relatively narrow molecular weight distribution, extracted and purified from artificially cultured Lentinus edodes, showed a significant cervical cancer inhibition with little cytotoxicity against normal cells in vitro and in vivo. From the in vitro data, the potential mechanism of anti-cervical cancer was preliminarily revealed as follows: LNT was firstly recognized by the human cervical cancer cell line of Hela and induced cell proliferation inhibition through p21 and apoptosis via a mitochondrion-dependent pathway by targeting the tumor suppressor of p53, indicated by an increase in reactive oxygen species (ROS) generation and a loss of mitochondrial membrane potential (Δψm), in a significant dosage-dependent manner. Meanwhile, LNT repressed tumor growth with an inhibition ratio of 61.2 % and induced tumor cell apoptosis through endogenous MDM2/p53/Bax/mitochondrion signal pathway by up-regulating the expression of p53, Bax, Cyt. c, caspase 9, and caspase 3, as well as down-regulating Bcl-2, MDM2, and PARP1 levels in Hela cells-transplanted BALB/c nude mice. This study provides a scientific basis for the clinical treatment of cervical cancer with LNT as a potential drug candidate characterized by the triple helix and specified molecular weight with a relatively narrow distribution.
Collapse
Key Words
- 4′, 6-Diamidino-2-Phenylindole (DAPI, PubChem CID: 2954)
- Acetic acid (HAc, PubChem CID:176)
- Anti-cervical cancer
- Deuterated dimethyl sulfoxide (DMSO‑d(6), PubChem CID: 75151)
- Dimethyl Sulfoxide (DMSO, PubChem CID: 679)
- Eosin (PubChem CID: 11048)
- Fluorescein isothiocyanate isomer (FITC, PubChem CID: 18730)
- Hematoxylin (PubChem CID: 442514)
- Hydrogen peroxide (H(2)O(2), PubChem CID: 784)
- Narrow molecular weight distribution
- Phenol (PubChem CID: 996)
- Sodium borohydride (NaBH(4), PubChem CID: 4311764)
- Sodium chloride (NaCl, PubChem CID: 5234)
- Sodium hydroxide (NaOH, PubChem CID: 14798)
- Sulfuric acid (PubChem CID: 1118)
- Trifluoroacetic acid (TFA, PubChem CID: 6422)
- Triple helix β-glucan
Collapse
Affiliation(s)
- Shuqian Hu
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan University, Wuhan 430072, China
| | - Hui Xu
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan University, Wuhan 430072, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yan Meng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan University, Wuhan 430072, China; Department of Radiation and Medical Oncology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
10
|
Duan BH, Yu JX, Gao RT, Li SY, Liu N, Wu ZQ. Controlled synthesis of cyclic helical polyisocyanides and bottlebrush polymers using a cyclic alkyne-Pd(II) catalyst. Chem Commun (Camb) 2023; 59:13002-13005. [PMID: 37830293 DOI: 10.1039/d3cc04095j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Cyclic polymers have very unique structure and properties, and thus have drawn intense research attention. However, controlled synthesis of cyclic polymers with predictable molar mass and narrow distribution is still a challenging task. In this study, we developed a novel cyclic catalyst that initiates the ring-expansion polymerisation of isocyanides, producing a series of cyclic helical polymers with predictable molecular weight and low dispersity. Interestingly, the ring-expansion polymerization of the isocyanide macromonomers gives well-defined cyclic bottlebrush polymers. The cyclic topology was demonstrated using transmission electron microscopy.
Collapse
Affiliation(s)
- Bing-Hui Duan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Jia-Xin Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Run-Tan Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Shi-Yi Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Na Liu
- The School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, P. R. China.
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
11
|
Van Guyse JFR, Bernhard Y, Podevyn A, Hoogenboom R. Non-activated Esters as Reactive Handles in Direct Post-Polymerization Modification. Angew Chem Int Ed Engl 2023; 62:e202303841. [PMID: 37335931 DOI: 10.1002/anie.202303841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/26/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023]
Abstract
Non-activated esters are prominently featured functional groups in polymer science, as ester functional monomers display great structural diversity and excellent compatibility with a wide range of polymerization mechanisms. Yet, their direct use as a reactive handle in post-polymerization modification has been typically avoided due to their low reactivity, which impairs the quantitative conversion typically desired in post-polymerization modification reactions. While activated ester approaches are a well-established alternative, the modification of non-activated esters remains a synthetic and economically valuable opportunity. In this review, we discuss past and recent efforts in the utilization of non-activated ester groups as a reactive handle to facilitate transesterification and aminolysis/amidation reactions, and the potential of the developed methodologies in the context of macromolecular engineering.
Collapse
Affiliation(s)
- Joachim F R Van Guyse
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
- Leiden Academic Center for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Yann Bernhard
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
- Université de Lorraine, UMR CNRS 7053 L2CM, Faculté des Sciences et Technologies, BP 70239, 54506, Vandoeuvre-lès-Nancy Cedex, France
| | - Annelore Podevyn
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| |
Collapse
|
12
|
Yato H, Oto K, Takasu A, Higuchi M. Catenane formation of a cyclic poly(alkyl sorbate) via chain-growth polymerization induced by an N-heterocyclic carbene and ring-closing without extreme dilution. RSC Adv 2023; 13:13616-13623. [PMID: 37152560 PMCID: PMC10155494 DOI: 10.1039/d3ra01614e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/18/2023] [Indexed: 05/09/2023] Open
Abstract
1,3-Di-tert-butylimidazol-2-ylidene (NHCtBu), a typical N-heterocyclic carbene (NHC), was previously found to induce the anionic chain-growth polymerization of ethyl sorbate (ES) in the presence of an aluminum Lewis acid, i.e., methylaluminum bis(2,6-di-tert-butyl-4-methylphenoxide) (MAD), in which the neighboring of α-terminal dienolate with a propagating anion induced cyclization without highly diluted conditions, after monomer depletion, to give the cyclic poly(ES). In this paper, we report that catenane formation occurs by two-step polymerization of ethyl sorbate (ES), in which, after complete monomer (ES) consumption ([ES]0/[NHCtBu]0 = 100/1) in toluene followed by purification by reprecipitation, a second addition of ES monomer ([ES]0/[ NHCtBu]0 = 20/1) in another pot (in toluene or tetrahydrofuran (THF)) resulted in catenane formation, namely a polycatenane. TEM images of a sample from the second step polymerization in THF revealed particles of polycatenane structure consisting of cyclic poly(ES) with sizes ranging from 200 to 1000 nm, showing that this NHCtBu triggered chain polymerization and successive cyclization without highly diluted conditions enabled us to fabricate the intended polycatenane in the successive two-step polymerization.
Collapse
Affiliation(s)
- Hirotake Yato
- Division of Soft Materials, Department of Engineering, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Kota Oto
- Division of Soft Materials, Department of Engineering, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Akinori Takasu
- Division of Soft Materials, Department of Engineering, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Masahiro Higuchi
- Division of Soft Materials, Department of Engineering, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| |
Collapse
|
13
|
Yang Z, Hu C, Gao Z, Duan R, Sun Z, Zhou Y, Pang X, Chen X. Precise Synthesis of Sequence-Controlled Oxygen-Rich Multiblock Copolymers via Reversible Carboxylation of a Commercial Salen-Mn(III) Catalyst. Macromolecules 2023. [DOI: 10.1021/acs.macromol.3c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Zhenjie Yang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Chenyang Hu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Zan Gao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Ranlong Duan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Zhiqiang Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Yanchuan Zhou
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| |
Collapse
|
14
|
Song Y, He J, Zhang Y, Gilsdorf RA, Chen EYX. Recyclable cyclic bio-based acrylic polymer via pairwise monomer enchainment by a trifunctional Lewis pair. Nat Chem 2023; 15:366-376. [PMID: 36443531 DOI: 10.1038/s41557-022-01097-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/19/2022] [Indexed: 11/30/2022]
Abstract
The existing catalyst/initiator systems and methodologies used for the synthesis of polymers can access only a few cyclic polymers composed entirely of a single monomer type, and the synthesis of such authentic cyclic polar vinyl polymers (acrylics) devoid of any foreign motifs remains a challenge. Here we report that a tethered B-P-B trifunctional, intramolecular frustrated Lewis pair catalyst enables the synthesis of an authentic cyclic acrylic polymer, cyclic poly(γ-methyl-α-methylene-γ-butyrolactone) (c-PMMBL), from the bio-based monomer MMBL. Detailed studies have revealed an initiation and propagation mechanism through pairwise monomer enchainment enabled by the cooperative and synergistic initiator/catalyst sites of the trifunctional catalyst. We propose that macrocyclic intermediates and transition states comprising two catalyst molecules are involved in the catalyst-regulated ring expansion and eventual cyclization, forming authentic c-PMMBL rings and concurrently regenerating the catalyst. The cyclic topology of the c-PMMBL polymers imparts an ~50 °C higher onset decomposition temperature and a much narrower degradation window compared with their linear counterparts of similar molecular weight and dispersity, while maintaining high chemical recyclability.
Collapse
Affiliation(s)
- Yanjiao Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, China.
| | - Reid A Gilsdorf
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
15
|
Wan Y, He J, Zhang Y. An Arbitrarily Regulated Monomer Sequence in Multi-Block Copolymer Synthesis by Frustrated Lewis Pairs. Angew Chem Int Ed Engl 2023; 62:e202218248. [PMID: 36577704 DOI: 10.1002/anie.202218248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022]
Abstract
Rapid access to sequence-controlled multi-block copolymers (multi-BCPs) remains as a challenging task in the polymer synthesis. Here we employ a Lewis pair (LP) composed of organophosphorus superbase and bulky organoaluminum to effectively copolymerize the mixture of methacrylate, cyclic acrylate, and two acrylates, into well-defined di-, tri-, tetra- and even a hepta-BCP in one-pot one-step manner. The combined livingness, dual-initiation and CSC feature of Lewis pair polymerization enable us to achieve not only a trihexaconta-BCP with the highest record in 8 steps by using four-component monomer mixture as building blocks, but also the arbitrarily-regulated monomer sequence in multi-BCP, simply by changing the composition and adding order of the monomer mixtures, thus demonstrating the powerful capability of our strategy in improving the efficiency and enriching the composition of multi-BCP synthesis.
Collapse
Affiliation(s)
- Yi Wan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| |
Collapse
|
16
|
Abe M, Kametani Y, Uemura T. Fabrication of Double-Stranded Vinyl Polymers Mediated by Coordination Nanochannels. J Am Chem Soc 2023; 145:2448-2454. [PMID: 36656961 DOI: 10.1021/jacs.2c11723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Although double-stranded structures are commonly found in biopolymers, a general and versatile methodology for fabricating double-stranded synthetic polymers has not yet been developed. Here, we report a new approach for synthesizing double-stranded polymers composed of polystyrene and poly(methyl methacrylate). We conducted crosslinking radical polymerization inside a metal-organic framework (MOF), which had one-dimensional channels with diameters similar to the thickness of two polymer chains. Effective spatial constraint within the MOF pores facilitated highly regulated crosslinking reactions between two polymer chains with extended conformations. Remarkably, the obtained double-stranded polymers were soluble in many organic solvents, even at a high crosslinking ratio (20%), unlike conventional crosslinked polymers. Notably, this stable duplex topology, which was inaccessible using previous methods, endowed the double-stranded vinyl polymers with unusual properties in the solution and bulk states. By designing the properties of the MOF nanochannels, the proposed technique can contribute to the development of a wide range of synthetic polymer duplexes.
Collapse
Affiliation(s)
- Masahiro Abe
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuki Kametani
- Institute of Engineering Innovation, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
17
|
Reilly LT, McGraw ML, Eckstrom FD, Clarke RW, Franklin KA, Chokkapu ER, Cavallo L, Falivene L, Chen EYX. Compounded Interplay of Kinetic and Thermodynamic Control over Comonomer Sequences by Lewis Pair Polymerization. J Am Chem Soc 2022; 144:23572-23584. [PMID: 36521036 DOI: 10.1021/jacs.2c10568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The design of facile synthetic routes to well-defined block copolymers (BCPs) from direct polymerization of one-pot comonomer mixtures, rather than traditional sequential additions, is both fundamentally and technologically important. Such synthetic methodologies often leverage relative monomer reactivity toward propagating species exclusively and therefore are rather limited in monomer scope and control over copolymer structure. The recently developed compounded sequence control (CSC) by Lewis pair polymerization (LPP) utilizes synergistically both thermodynamic (Keq) and kinetic (kp) differentiation to precisely control BCP sequences and suppress tapering and misincorporation errors. Here, we present an in-depth study of CSC by LPP, focusing on the complex interplay of the fundamental Keq and kp parameters, which enable the unique ability of CSC-LPP to precisely control comonomer sequences across a variety of polar vinyl monomer classes. Individual Lewis acid equilibrium and polymerization rate parameters of a range of commercially relevant monomers were experimentally quantified, computationally validated, and rationalized. These values allowed for the judicious design of copolymerizations which probed multiple hypotheses regarding the constructive vs conflicting nature of the relationship between Keq and kp biases, which arise during CSC-LPP of comonomer mixtures. These relationships were thoroughly explored and directly correlated with resultant copolymer microstructures. Several examples of higher-order BCPs are presented, further demonstrating the potential for materials innovation offered by this methodology.
Collapse
Affiliation(s)
- Liam T Reilly
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Michael L McGraw
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Francesca D Eckstrom
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Ryan W Clarke
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Kevin A Franklin
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Eswara Rao Chokkapu
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Luigi Cavallo
- Physical Sciences and Engineering Division, KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Laura Falivene
- Dipartimento di Chimica e Biologia, Università di Salerno, Via Papa Paolo Giovanni II, 84100 Fisciano, SA, Italy
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
18
|
Wang X, Tong R. Facile Tandem Copolymerization of O-Carboxyanhydrides and Epoxides to Synthesize Functionalized Poly(ester- b-carbonates). J Am Chem Soc 2022; 144:20687-20698. [DOI: 10.1021/jacs.2c07975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaoqian Wang
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, Virginia24061, United States
| | - Rong Tong
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, Virginia24061, United States
| |
Collapse
|
19
|
Zhang YY, Yang GW, Xie R, Zhu XF, Wu GP. Sequence-Reversible Construction of Oxygen-Rich Block Copolymers from Epoxide Mixtures by Organoboron Catalysts. J Am Chem Soc 2022; 144:19896-19909. [PMID: 36256447 DOI: 10.1021/jacs.2c07857] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Switchable catalysis, in combination with epoxide-involved ring-opening (co)polymerization, is a powerful technique that can be used to synthesize various oxygen-rich block copolymers. Despite intense research in this field, the sequence-controlled polymerization from epoxide congeners has never been realized due to their similar ring-strain which exerts a decisive influence on the reaction process. Recently, quaternary ammonium (or phosphonium)-containing bifunctional organoboron catalysts have been developed by our group, showing high efficiency for various epoxide conversions. Herein, we, for the first time, report an operationally simple pathway to access well-defined polyether-block-polycarbonate copolymers from mixtures of epoxides by switchable catalysis, which was enabled through thermodynamically and kinetically preferential ring-opening of terminal epoxides or internal epoxides under different atmospheres (CO2 or N2) using one representative bifunctional organoboron catalyst. This strategy shows a broad substrate scope as it is suitable for various combinations of terminal epoxides and internal epoxides, delivering corresponding well-defined block copolymers. NMR, MALDI-TOF, and gel permeation chromatography analyses confirmed the successful construction of polyether-block-polycarbonate copolymers. Kinetic studies and density functional theory calculations elucidate the reversible selectivity between different epoxides in the presence/absence of CO2. Moreover, by replacing comonomer CO2 with cyclic anhydride, the well-defined polyether-block-polyester copolymers can also be synthesized. This work provides a rare example of sequence-controlled polymerization from epoxide mixtures, broadening the arsenal of switchable catalysis that can produce oxygen-rich polymers in a controlled manner.
Collapse
Affiliation(s)
- Yao-Yao Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guan-Wen Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Rui Xie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiao-Feng Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guang-Peng Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
20
|
Progress in polymer single-chain based hybrid nanoparticles. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Yoon KY, Noh J, Gan Q, Edwards JP, Tuba R, Choi TL, Grubbs RH. Scalable and continuous access to pure cyclic polymers enabled by 'quarantined' heterogeneous catalysts. Nat Chem 2022; 14:1242-1248. [PMID: 36064971 DOI: 10.1038/s41557-022-01034-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 07/28/2022] [Indexed: 11/09/2022]
Abstract
Cyclic polymers are topologically interesting and envisioned as a lubricant material. However, scalable synthesis of pure cyclic polymers remains elusive. The most straightforward way is to recover a used catalyst after the synthesis of cyclic polymers and reuse it. Unfortunately, this is demanding because of the catalyst's vulnerability and inseparability from polymers, which reduce the practicality of the process. Here we develop a continuous circular process, where polymerization, polymer separation and catalyst recovery happen in situ, to dispense a pure cyclic polymer after bulk ring-expansion metathesis polymerization of cyclopentene. It is enabled by introducing silica-supported ruthenium catalysts and newly designed glassware. Different depolymerization kinetics of the cyclic polymer from its linear analogue are also discussed. This process minimizes manual labour, maximizes the security of vulnerable catalysts and guarantees the purity of cyclic polymers, thereby showcasing a prototype of a scalable access to cyclic polymers with increased turnovers (≥415,000) of precious catalysts.
Collapse
Affiliation(s)
- Ki-Young Yoon
- Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.,Ashland Specialty Ingredients, Bridgewater, NJ, USA
| | - Jinkyung Noh
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Quan Gan
- Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Julian P Edwards
- Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Robert Tuba
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea. .,Department of Materials, ETH Zürich, Zürich, Switzerland.
| | - Robert H Grubbs
- Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
22
|
Xu L, Gao B, Xu X, Zhou L, Liu N, Wu Z. Controlled Synthesis of Cyclic‐Helical Polymers with Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2022; 61:e202204966. [DOI: 10.1002/anie.202204966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Lei Xu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
| | - Bao‐Rui Gao
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering. Hefei University of Technology Hefei 230009, Anhui Province China
| | - Xun‐Hui Xu
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering. Hefei University of Technology Hefei 230009, Anhui Province China
| | - Li Zhou
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering. Hefei University of Technology Hefei 230009, Anhui Province China
| | - Na Liu
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering. Hefei University of Technology Hefei 230009, Anhui Province China
| | - Zong‐Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
| |
Collapse
|
23
|
Wang X, Hui J, Shi M, Kou X, Li X, Zhong R, Li Z. Exploration of the Synergistic Effect in a One-Component Lewis Pair System: Serving as a Dual Initiator and Catalyst in the Ring-Opening Polymerization of Epoxides. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaowu Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Jiwen Hui
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Minmin Shi
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Xinhui Kou
- Analyses and Testing Center, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Xiaoxiao Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Ronglin Zhong
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Zhibo Li
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| |
Collapse
|
24
|
Mao X, Xian J, Wang R, Han X, Pan X, Wu J. Synthesis of Linear to Cyclic Polylactide via a One-Pot Step-Wise Ring-Opening Polymerization and Back-Biting Reaction of Ring Closure Using Magnesium Complexes. Inorg Chem 2022; 61:10722-10730. [PMID: 35771955 DOI: 10.1021/acs.inorgchem.2c00935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The controllable synthesis of cyclic polylactide remains a challenging topic so far. In this work, a new strategy of one-pot step-wise ring-opening polymerization (ROP) followed by a back-biting reaction of ring closure was reported, in which one magnesium atrane-like complex {N,N-bis[3,5-di-cumyl-2-benzyloxy]-[2-(2-aminoethoxy)ethoxy]magnesium} was utilized to initiate the ROP of lactide using 4-dimethylaminopyridine as a co-catalyst; then, macrocyclic polylactides were liberated out via increasing temperature after complete depletion of the monomer in which a back-biting reaction was utilized as a ring-closure method. The living feature at the first ROP stage can be proved well by the controllable molecular weights ranging from 3.10 to 34.70 kDa and narrow molecular weight distributions of linear polylactides obtained after quenching the reaction. The final cyclic polylactides with molecular weights (vs polystyrene) ranging from 2.50 to 16.10 kDa can be achieved too after the back-biting reaction of ring closure. Although a shoulder peak at the gel permeation chromatography profile appears when the ratio of monomer:initiator is high up to 100:1 or 200:1, this system is suitable for the controllable syntheses of cyclic polylactides with desirable modest molecular weights.
Collapse
Affiliation(s)
- Xiaoyang Mao
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ji Xian
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Rui Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Xinning Han
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, People's Republic of China
| | - Xiaobo Pan
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jincai Wu
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
25
|
Li C, Zhao W, He J, Zhang Y, Zhang W. Single‐Step Expeditious Synthesis of Diblock Copolymers with Different Morphologies by Lewis Pair Polymerization‐Induced Self‐Assembly. Angew Chem Int Ed Engl 2022; 61:e202202448. [DOI: 10.1002/anie.202202448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Chengkai Li
- State Key Laboratory of Supramolecular Structure and Materials. College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Wuchao Zhao
- State Key Laboratory of Supramolecular Structure and Materials. College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials. College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials. College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
26
|
Ma C, Quan Y, Zhang J, Sun R, Zhao Q, He X, Liao X, Xie M. Efficient Synthesis and Cyclic Molecular Topology of Ultralarge-Sized Bicyclic and Tetracyclic Polymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cuihong Ma
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Ying Quan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Jinhuan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Ruyi Sun
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Qiuhua Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Xiao He
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Xiaojuan Liao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Meiran Xie
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
27
|
Xu L, Gao BR, Xu XH, Zhou L, Liu N, Wu ZQ. Controlled Synthesis of Cyclic‐Helical Polymers with Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lei Xu
- Jilin University Polymer Chemistry and Physis CHINA
| | - Bao-Rui Gao
- Hefei University of Technology Polymer Science and Engineering CHINA
| | - Xun-Hui Xu
- Hefei University of Technology Polymer Science and Engineering CHINA
| | - Li Zhou
- Hefei University of Technology Polymer Science and Engineering CHINA
| | - Na Liu
- Hefei University of Technology Polymer Science and Engineering CHINA
| | - Zong-Quan Wu
- Jilin University Polymer Chemistry and Physis Qianjin Street 2699 130012 Changchun CHINA
| |
Collapse
|
28
|
Li C, Zhao W, He J, Zhang Y, Zhang W. Single‐Step Expeditious Synthesis of Diblock Copolymers with Different Morphologies by Lewis Pair Polymerization‐Induced Self‐Assembly. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Chengkai Li
- State Key Laboratory of Supramolecular Structure and Materials. College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Wuchao Zhao
- State Key Laboratory of Supramolecular Structure and Materials. College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials. College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials. College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
29
|
McGraw ML, Reilly LT, Clarke RW, Cavallo L, Falivene L, Chen EY. Mechanism of Spatial and Temporal Control in Precision Cyclic Vinyl Polymer Synthesis by Lewis Pair Polymerization. Angew Chem Int Ed Engl 2022; 61:e202116303. [PMID: 35132730 PMCID: PMC9304268 DOI: 10.1002/anie.202116303] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 11/25/2022]
Abstract
In typical cyclic polymer synthesis via ring-closure, chain growth and cyclization events are competing with each other, thus affording cyclic polymers with uncontrolled molecular weight or ring size and high dispersity. Here we uncover a mechanism by which Lewis pair polymerization (LPP) operates on polar vinyl monomers that allows the control of where and when cyclization takes place, thereby achieving spatial and temporal control to afford precision cyclic vinyl polymers or block copolymers with predictable molecular weight and low dispersity (≈1.03). A combined experimental and theoretical study demonstrates that cyclization occurs only after all monomers have been consumed (when) via conjugate addition of the propagating chain end to the specific site of the initiating chain end (where), allowing the cyclic polymer formation steps to be regulated and executed with precision in space and time.
Collapse
Affiliation(s)
- Michael L. McGraw
- Department of ChemistryColorado State UniversityFort CollinsCO 80523–1872USA
| | - Liam T. Reilly
- Department of ChemistryColorado State UniversityFort CollinsCO 80523–1872USA
| | - Ryan W. Clarke
- Department of ChemistryColorado State UniversityFort CollinsCO 80523–1872USA
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST)Physical Sciences and Engineering DivisionKAUST Catalysis CenterThuwal23955-6900Saudi Arabia
| | - Laura Falivene
- Università di SalernoDipartimento di Chimica e BiologiaVia Papa Paolo Giovanni II84100Fisciano (SA)Italy
| | - Eugene Y.‐X. Chen
- Department of ChemistryColorado State UniversityFort CollinsCO 80523–1872USA
| |
Collapse
|
30
|
Tang J, Li M, Wang X, Tao Y. Switchable Polymerization Organocatalysis: From Monomer Mixtures to Block Copolymers. Angew Chem Int Ed Engl 2022; 61:e202115465. [PMID: 35107197 DOI: 10.1002/anie.202115465] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Indexed: 11/09/2022]
Abstract
One-pot production of sequence-controlled block copolymer from mixed monomers is a crucial but rarely reached goal. Using a switchable Lewis-pair organocatalyst, we have accomplished sequence-selective polymerization from a mixture of O-carboxyanhydride (OCA) and epoxide. Polymerization of the OCA monomer occurs first and exclusively because of its exceedingly high polymerizability. When OCA is fully consumed, alternating copolymerization of epoxide and CO2 liberated in OCA polymerization is triggered from the termini of the first block. The two polymerizations thus occur in tandem, both in chemoselective fashion, so that a sequence-controlled block polymer with up to 99 % CO2 conversion is furnished in this one-pot protocol. Calculations and experimental results demonstrate a chemoselective and cooperative mechanism, where the high polymerizability of the OCA monomers guarantees exquisite sequence selectivity and the cooperative decarboxylation partly arose from the stabilization effect by triethylborane, which facilitates the smooth transformation of the chain end from carbonate to alkoxide.
Collapse
Affiliation(s)
- Jiadong Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Maosheng Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, P. R. China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, P. R. China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
31
|
Zhao W, Wang Q, He J, Zhang Y. Boron-Based Lewis Pairs Catalyzed Living, Regioselective and Topology-Controlled Polymerization of (E, E)-alkyl Sorbates. Macromol Rapid Commun 2022; 43:e2200088. [PMID: 35363417 DOI: 10.1002/marc.202200088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/16/2022] [Indexed: 11/06/2022]
Abstract
It remains as a great challenge to realize living and controlled polymerization of renewable monomers by the boron-based Lewis pairs. Here we employ strong nucleophilic N-heterocyclic olefins (NHOs) or N-heterocyclic carbenes (NHCs) as Lewis bases (LBs), and boron-based compounds as Lewis acids (LAs) to construct LPs for polymerization of alkyl sorbates, including (E, E)-methyl sorbate (MS) and (E, E)-ethyl sorbate (ES). Systematic investigation reveal that the combinations of B(C6 F5 )3 with appropriate acidity and steric hindrance, and strong nucleophilic NHOs promote living and controlled polymerization of alkyl sorbates in 100% 1,4-addition manner, furnishing polymers with predicted molecular weight (Mw up to 56.6 kg/mol) and narrow molecular weight distribution (Đ as low as 1.12). Furthermore, topology analysis shows that NHC1/B(C6 F5 )3 LP produced PMS possessing cyclic structure. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wuchao Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Qianyi Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|
32
|
He W, Wang S, Li M, Wang X, Tao Y. Iterative Synthesis of Stereo- and Sequence-Defined Polymers via Acid-Orthogonal Deprotection Chemistry. Angew Chem Int Ed Engl 2022; 61:e202112439. [PMID: 34981638 DOI: 10.1002/anie.202112439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Indexed: 12/15/2022]
Abstract
Absolute control over polymer stereo- and sequence structure is highly challenging in polymer chemistry. Here, an acid-orthogonal deprotection strategy is proposed for the iterative synthesis of a family of unimolecular polymers starting with enantiopure serines, featuring precise sequence, stereoconfiguration and side-chain functionalities that cannot be achieved using traditional polymerization techniques. Acid-orthogonal deprotections proceed independently of one another by the selection of protecting groups that feature the respective acid-lability. Under p-toluenesulfonic acid, acidolysis of tert-butyloxycarbonyl can proceed exclusively, while low-dosage trifluoroacetic acid and low temperature only trigger the selective and quantitative cleavage of trityl. The pioneering use of this acid-orthogonal deprotection chemistry increases the compatibility with otherwise sensitive groups and opens up pathways to facilely introduce structural and functional diversity into stereo- and sequence-defined polymers, thus imparting their unique properties beyond natural biopolymers.
Collapse
Affiliation(s)
- Wenjing He
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, P.R. China.,University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Shixue Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, P.R. China
| | - Maosheng Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, P.R. China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, P.R. China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, P.R. China.,University of Science and Technology of China, Hefei, 230026, P.R. China
| |
Collapse
|
33
|
Koyama T, Shimizu A, Matsuoka SI, Suzuki M. Lewis Pair RAFT Polymerization of Methacrylates on-Water: Evidence of Radical Propagation Mechanism. CHEM LETT 2022. [DOI: 10.1246/cl.220025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tomoko Koyama
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Atsushi Shimizu
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Shin-ichi Matsuoka
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Masato Suzuki
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| |
Collapse
|
34
|
McGraw ML, Reilly LT, Clarke RW, Cavallo L, Falivene L, Chen EY. Mechanism of Spatial and Temporal Control in Precision Cyclic Vinyl Polymer Synthesis by Lewis Pair Polymerization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Michael L. McGraw
- Department of Chemistry Colorado State University Fort Collins CO 80523–1872 USA
| | - Liam T. Reilly
- Department of Chemistry Colorado State University Fort Collins CO 80523–1872 USA
| | - Ryan W. Clarke
- Department of Chemistry Colorado State University Fort Collins CO 80523–1872 USA
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST) Physical Sciences and Engineering Division KAUST Catalysis Center Thuwal 23955-6900 Saudi Arabia
| | - Laura Falivene
- Università di Salerno Dipartimento di Chimica e Biologia Via Papa Paolo Giovanni II 84100 Fisciano (SA) Italy
| | - Eugene Y.‐X. Chen
- Department of Chemistry Colorado State University Fort Collins CO 80523–1872 USA
| |
Collapse
|
35
|
Tang J, Li M, Wang X, Tao Y. Switchable Polymerization Organocatalysis: From Monomer Mixtures to Block Copolymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiadong Tang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Maosheng Li
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 P. R. China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 P. R. China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
36
|
He W, Wang S, Li M, Wang X, Tao Y. Iterative Synthesis of Stereo‐ and Sequence‐Defined Polymers
via
Acid‐Orthogonal Deprotection Chemistry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wenjing He
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 P.R. China
- University of Science and Technology of China Hefei 230026 P.R. China
| | - Shixue Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 P.R. China
| | - Maosheng Li
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 P.R. China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 P.R. China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 P.R. China
- University of Science and Technology of China Hefei 230026 P.R. China
| |
Collapse
|
37
|
One‐Step Synthesis of Lignin‐Based Triblock Copolymers as High‐Temperature and UV‐Blocking Thermoplastic Elastomers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202114946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Wan Y, He J, Zhang Y, Chen EYX. One-Step Synthesis of Lignin-Based Triblock Copolymers as High-Temperature and UV-Blocking Thermoplastic Elastomers. Angew Chem Int Ed Engl 2021; 61:e202114946. [PMID: 34904337 DOI: 10.1002/anie.202114946] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Indexed: 11/08/2022]
Abstract
This work utilizes frustrated Lewis pairs consisting of tethered bis-organophosphorus superbases and a bulky organoaluminum to furnish the highly efficient synthesis of well-defined triblock copolymers via one-step block copolymerization of lignin-based syringyl methacrylate and n-butyl acrylate, through di-initiation and compounded sequence control. The resulting thermoplastic elastomers (TPEs) exhibit microphase separation and much superior mechanical properties (elongation at break up to 2091 %, tensile strength up to 11.5 MPa, and elastic recovery up to 95 % after 10 cycles) to those of methyl methacrylate-based TPEs. More impressively, lignin-based tri-BCPs can maintain TPEs properties up to 180 °C, exhibit high transparency and nearly 100 % UV shield, suggesting potential applications in temperature-resistant and optical devices.
Collapse
Affiliation(s)
- Yi Wan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| |
Collapse
|
39
|
Stephan DW. Diverse Uses of the Reaction of Frustrated Lewis Pair (FLP) with Hydrogen. J Am Chem Soc 2021; 143:20002-20014. [PMID: 34786935 DOI: 10.1021/jacs.1c10845] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The articulation of the notion of "frustrated Lewis pairs" (FLPs) emerged from the discovery that H2 can be reversibly activated by combinations of sterically encumbered main group Lewis acids and bases. This has prompted numerous studies focused on various perturbations of the Lewis acid/base combinations and the applications to organic reductions. This Perspective focuses on the new directions and developments that are emerging from this FLP chemistry involving hydrogen. Three areas are discussed including new applications and approaches to FLP reductions, the reductions of small molecules, and the advances in heterogeneous FLP systems. These foci serve to illustrate that despite having its roots in main group chemistry, this simple concept of FLPs is being applied across the discipline.
Collapse
Affiliation(s)
- Douglas W Stephan
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
40
|
Zhao W, Li F, Li C, He J, Zhang Y, Chen C. Lewis Pair Catalyzed Regioselective Polymerization of (E,E)-Alkyl Sorbates for the Synthesis of (AB) n Sequenced Polymers. Angew Chem Int Ed Engl 2021; 60:24306-24311. [PMID: 34510679 DOI: 10.1002/anie.202111336] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Indexed: 01/17/2023]
Abstract
In this contribution, Lewis pairs (LPs) composed of N-heterocyclic olefins (NHOs) with different steric hindrance and nucleophilicity as Lewis bases (LBs) and Al-based compounds with comparable acidity but different steric hindrance as Lewis acids (LAs) were applied for 1,4-selective polymerization of (E,E)-methyl sorbate (MS) and (E,E)-ethyl sorbate (ES). The effects of steric hindrance, electron-donating ability, and acidity of LPs on MS and ES polymerization were systematically investigated. High catalytic activity and high initiation efficiency can be achieved, leading to the formation of PMS with 100 % 1,4-selectivity, tunable molecular weight (Mw up to 333 kg mol-1 ), and narrow molecular weight distribution (MWD). Block copolymerization of ES and methyl methacrylate (MMA) was also realized. Meanwhile, this system can be applied to other homologous conjugated diene substrates. Furthermore, simple chemical reactions can efficiently convert PMS to different polymers with strict (AB)n sequence structures, such as poly(sorbic acid), poly(propylene-alt-methyl acrylate), poly(propylene-alt-acrylic acid), poly(propylene-alt-allyl alcohol), and poly(ethylene-alt-2-butylene).
Collapse
Affiliation(s)
- Wuchao Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Fukuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Chengkai Li
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Changle Chen
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
41
|
|
42
|
Zhao W, Li F, Li C, He J, Zhang Y, Chen C. Lewis Pair Catalyzed Regioselective Polymerization of (
E
,
E
)‐Alkyl Sorbates for the Synthesis of (AB)
n
Sequenced Polymers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Wuchao Zhao
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University, Changchun Jilin 130012 P. R. China
| | - Fukuan Li
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University, Changchun Jilin 130012 P. R. China
| | - Chengkai Li
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University, Changchun Jilin 130012 P. R. China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University, Changchun Jilin 130012 P. R. China
| | - Changle Chen
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
43
|
Zhang ZH, Wang X, Wang XJ, Li Y, Hong M. Tris(2,4-difluorophenyl)borane/Triisobutylphosphine Lewis Pair: A Thermostable and Air/Moisture-Tolerant Organic Catalyst for the Living Polymerization of Acrylates. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhen-Hua Zhang
- Tianjin Key Lab of Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xing Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiao-Jun Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuesheng Li
- Tianjin Key Lab of Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Miao Hong
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
44
|
Hakobyan K, McErlean CSP, Müllner M. RAFT without an “R-Group”: From Asymmetric Homo-telechelics to Multiblock Step-Growth and Cyclic Block Copolymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Karen Hakobyan
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), Sydney, NSW 2006, Australia
| | | | - Markus Müllner
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), Sydney, NSW 2006, Australia
| |
Collapse
|
45
|
Su Y, Zhao Y, Zhang H, Luo Y, Xu X. Rare-Earth Aryloxide/Ylide-Functionalized Phosphine Frustrated Lewis Pairs for the Polymerization of 4-Vinylpyridine and Its Derivatives. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yujie Su
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yanan Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Hongyue Zhang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yi Luo
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- PetroChina Petrochemical Research Institute, Beijing 102206, P. R. China
| | - Xin Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
46
|
Bai Y, Wang H, He J, Zhang Y, Chen EYX. Dual-initiating and living frustrated Lewis pairs: expeditious synthesis of biobased thermoplastic elastomers. Nat Commun 2021; 12:4874. [PMID: 34385442 PMCID: PMC8360971 DOI: 10.1038/s41467-021-25069-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/13/2021] [Indexed: 11/29/2022] Open
Abstract
Biobased poly(γ-methyl-α-methylene-γ-butyrolactone) (PMMBL), an acrylic polymer bearing a cyclic lactone ring, has attracted increasing interest because it not only is biorenewable but also exhibits superior properties to petroleum-based linear analog poly(methyl methacrylate) (PMMA). However, such property enhancement has been limited to resistance to heat and solvent, and mechanically both types of polymers are equally brittle. Here we report the expeditious synthesis of well-defined PMMBL-based ABA tri-block copolymers (tri-BCPs)-enabled by dual-initiating and living frustrated Lewis pairs (FLPs)-which are thermoplastic elastomers showing much superior mechanical properties, especially at high working temperatures (80-130 °C), to those of PMMA-based tri-BCPs. The FLPs consist of a bulky organoaluminum Lewis acid and a series of newly designed bis(imino)phosphine superbases bridged by an alkyl linker, which promote living polymerization of MMBL. Uniquely, such bisphosphine superbases initiate the chain growth from both P-sites concurrently, enabling the accelerated synthesis of tri-BCPs in a one-pot, two-step procedure. The results from mechanistic studies, including the single crystal structure of the dually initiated active species, detailed polymerizations, and kinetic studies confirm the livingness of the polymerization and support the proposed polymerization mechanism featuring the dual initiation and subsequent chain growth from both P-sites of the superbase di-initiator.
Collapse
Affiliation(s)
- Yun Bai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, China
| | - Huaiyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, China.
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
47
|
Bai Y, Wang H, He J, Zhang Y. Living polymerization of naturally renewable butyrolactone-based vinylidenes mediated by a frustrated Lewis pair. Polym Chem 2021. [DOI: 10.1039/d1py00924a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The frustrated Lewis pair composed of an organophosphorus(iii) superbase and a bulky organoaluminum Lewis acid promoted the living/controlled polymerization of naturally renewable butyrolactone-based vinylidenes.
Collapse
Affiliation(s)
- Yun Bai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Huaiyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|
48
|
Ge F, Li S, Wang Z, Zhang W, Wang X. Controlled and efficient polymerization of methyl methacrylate catalyzed by pyridinylidenaminophosphine based Lewis pairs. Polym Chem 2021. [DOI: 10.1039/d1py00579k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Developing different synthetic approaches to realize controlled or living polymerization is of great interest to polymer chemists to obtain polymers with defined molecular weight, narrow molecular weight distribution and unambiguous structures.
Collapse
Affiliation(s)
- Fang Ge
- College of Chemistry and Chemical Engineering
- 266071
- Qingdao University
- Qingdao
- China
| | - Sun Li
- Chinese–German Faculty for Engineering
- 266426
- Qingdao University of Science and Technology
- Qingdao
- China
| | - Zhe Wang
- Chinese–German Faculty for Engineering
- 266426
- Qingdao University of Science and Technology
- Qingdao
- China
| | | | - Xiaowu Wang
- Chinese–German Faculty for Engineering
- 266426
- Qingdao University of Science and Technology
- Qingdao
- China
| |
Collapse
|