1
|
Han L, Zhou H, Hou J, Shi X, Li Q. The formation reaction of a carbon-carbon bond promoted by Eosin-Y under visible light. Org Biomol Chem 2025; 23:3741-3799. [PMID: 40159809 DOI: 10.1039/d5ob00141b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
In recent years, photochemical organic conversion promoted by visible light has attracted the interest of many organic chemists. Compared with traditional methods, visible light for the photoredox catalysis of renewable energy has been proved to be a mild and powerful tool that can promote the activation of organic molecules through the single electron transfer (SET) process. Therefore, the formation reaction of a C-C bond can be achieved by activating these molecules with visible light, which can effectively modify the structure of these compounds and obtain compounds with multiple structures and functions. At present, this research has become an important research field in organic synthesis. Eosin-Y, a cheap and widely-used organic dye, has been employed as an economically and environmentally friendly substitute for many transition-metal-based photocatalysts. In recent years, it has gained much more attention due to its ease of handling and eco-friendliness, and it has great potential for applications in visible-light-mediated organic synthesis. This article reviews the research results on the formation of carbon-carbon bonds promoted by the organic photocatalyst Eosin-Y under visible light in recent years, and discusses representative examples and their different mechanistic pathways (such as SET, HAT, and energy transfer).
Collapse
Affiliation(s)
- Lirong Han
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, P. R. China.
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Hui Zhou
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, P. R. China.
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Jinsong Hou
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, P. R. China.
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Xiaohao Shi
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, P. R. China.
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Qinghan Li
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, P. R. China.
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| |
Collapse
|
2
|
Gaikwad S, Bhattacharjee A, Elacqua E. Cooperative Photoredox Catalysis Under Confinement. Chemistry 2025; 31:e202404699. [PMID: 39999321 PMCID: PMC11979689 DOI: 10.1002/chem.202404699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 02/27/2025]
Abstract
Photoredox catalysis has emerged as a potent means to conduct synthetic chemistry. Leveraging light to achieve challenging organic transformations has led to many developments, both of fundamental and industrial nature. Despite their potency, photoredox processes are inherently diffusion controlled, which can limit their ability to enable both reactivity and selectivity. Relevant to this is the idea of colocalizing cocatalysts in architectures that enable spatial proximity, promoting 'catalysis under confinement.' In this Concept review, we summarize recent designs and advancements using well-defined heterogeneous and homogeneous frameworks that enable dual photoredox catalysis, such as metal-organic frameworks, heterogeneous organic polymeric systems, and single-chain polymer nanoparticles (SCNPs). These advances generally stem from the material's inherent ability to enforce catalyst communication, typically resulting in expedient radical, electron, or energy transfer that accelerates reactivity. Whereas heterogeneous systems are comprehensively investigated, the design space arising from the modularity and versatility of a SCNP is quite large making the recyclable platform an intriguing candidate to investigate for confinement-enabled photoredox catalysis. We expect that both heterogeneous and homogeneous platforms systems detailed herein will continue to exhibit superior performance, while underscoring the importance of confinement to tackle diffusion-limited reactions.
Collapse
Affiliation(s)
- Shweta Gaikwad
- Department of ChemistryThe Pennsylvania State UniversityUniversity ParkPA 16802USA
| | - Argha Bhattacharjee
- Department of ChemistryThe Pennsylvania State UniversityUniversity ParkPA 16802USA
| | - Elizabeth Elacqua
- Department of ChemistryThe Pennsylvania State UniversityUniversity ParkPA 16802USA
| |
Collapse
|
3
|
Wang Z, Cao L, Hu H, Wang C. Postsynthetic Modification of Metal-Organic Layers. Acc Chem Res 2025; 58:812-823. [PMID: 40047205 DOI: 10.1021/acs.accounts.4c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
ConspectusMetal-organic layers (MOLs), as a subclass of two-dimensional (2D) metal-organic frameworks (MOFs), have gained prominence in materials science by combining the structural versatility of MOFs with the unique physical and chemical properties of 2D materials. MOLs consist of metal oxide clusters connected by organic ligands, forming periodically extended 2D architectures with tunable properties and large surface areas. These characteristics endow MOLs with significant potential for applications in catalysis, sensing, energy storage, and biomedicine.The synthesis of MOLs predominantly follows two key pathways: top-down exfoliation of bulk layered MOFs and bottom-up assembly from molecular building units. The exfoliation method allows for the isolation of ultrathin MOL sheets from bulk precursors, but scalability and structural defects present ongoing challenges. In contrast, the bottom-up assembly offers more precise control over structural design, enabling the formation of MOLs with tailored chemical functionalities and morphologies. By carefully selecting linkers and synthetic conditions, researchers have successfully constructed MOLs with diverse geometric configurations including linear, triangular, and rectangular ligand motifs. Nevertheless, achieving consistent monolayer formation and controlling lateral dimensions remain critical challenges for the widespread application of these materials.A defining advantage of MOLs is their exceptional amenability to postsynthetic modification (PSM). PSM strategies enable fine-tuning of MOL properties and the introduction of novel functionalities without compromising the integrity of the underlying framework. Four principal approaches to PSM have been established: (1) linker modification, where additional coordination sites facilitate selective metalation or functional group incorporation; (2) secondary building unit (SBU) modification, using replaceable sites perpendicular to the MOL plane for targeted functionalization; (3) dual modification, integrating linker and SBU functionalization to achieve complex multifunctional platforms; and (4) multilevel assembly, incorporating MOLs into larger hierarchical architectures such as biomimetic systems and composite materials.These versatile modification strategies have unlocked novel applications of MOLs, including single-site catalysis, photocatalysis, and artificial photosynthetic systems. For instance, MOLs functionalized with transition metal complexes have more accessible reactive sites than conventional MOFs for faster substrate transport. Additionally, MOLs interfaced with biomimetic systems, such as liposomes and proteins, have demonstrated significant promise in photochemical energy conversion and selective oxidation processes.Despite these advancements, several key obstacles persist. Achieving uniform monolayer thickness while preventing multilayer aggregation remains a formidable task, necessitating deeper insights into the thermodynamic and kinetic factors governing MOL growth. Furthermore, the behavior of MOLs during drying, adsorption, and structural modification often deviates from classical models, suggesting the involvement of complex interfacial phenomena that warrant further investigation. Addressing these challenges will be crucial for harnessing the full potential of MOLs in next-generation functional materials.In summary, MOLs represent a versatile and dynamic class of materials that offer opportunities for innovation across diverse scientific disciplines. By advancing synthetic methodologies and deepening our understanding of postsynthetic modification strategies, researchers can continue to expand the functional landscape of MOLs, paving the way for transformative applications in catalysis, energy conversion, and beyond.
Collapse
Affiliation(s)
- Zhiye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Lingyun Cao
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Huihui Hu
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Cheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
4
|
Chen Y, Matatyaho Ya'akobi A, Nguyen TV, Kao SC, West JG, Biswal SL, Talmon Y, Martí AA. Supramolecular self-assembly of metal complex surfactants (MeCS) into micellar nanoscale reactors in aqueous solution. Chem Sci 2025; 16:3440-3446. [PMID: 39935512 PMCID: PMC11808396 DOI: 10.1039/d4sc07623k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/16/2024] [Indexed: 02/13/2025] Open
Abstract
Surfactants are amphiphilic molecules that can form micellar structures with a hydrophobic core and a hydrophilic corona in water. In this work, we combine the remarkable properties of photoactive metal complexes with the supramolecular organization of surfactants to create photoactive vessels that support photocatalytic processes in aqueous media, even for starting materials that are insoluble in water. Herein, we report a library of photoactive metal complex surfactants (MeCSs) and their photophysical and photochemical properties. These properties are modulated by the length of an alkyl chain attached to the polypyridyl ligand of the metal complex. Finally, an alkene hydroxytrifluoromethylation photocatalytic reaction was demonstrated in aqueous solution, suggesting the usefulness of metal complex surfactants for the development of green aqueous photoreactions.
Collapse
Affiliation(s)
- Ying Chen
- Department of Chemistry, Rice University Houston Texas 77005 USA
| | - Asia Matatyaho Ya'akobi
- Department of Chemical Engineering, The Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology Haifa 3200003 Israel
| | - Thao Vy Nguyen
- Department of Chemical and Biomolecular Engineering, Rice University Houston TX 77005 USA
| | - Shih-Chieh Kao
- Department of Chemistry, Rice University Houston Texas 77005 USA
| | - Julian G West
- Department of Chemistry, Rice University Houston Texas 77005 USA
| | - Sibani Lisa Biswal
- Department of Chemical and Biomolecular Engineering, Rice University Houston TX 77005 USA
| | - Yeshayahu Talmon
- Department of Chemical Engineering, The Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology Haifa 3200003 Israel
| | - Angel A Martí
- Department of Chemistry, Rice University Houston Texas 77005 USA
- Department of Materials Science & Nanoengineering, Department of Bioengineering, Rice University Houston TX. 77005 USA
| |
Collapse
|
5
|
Shi C, Liu R, Wang Z, Gao C, Chen JS, Qin H, Shan W, Zhuang W, Zhou N, Li X, Shi D. Anaerobic 1,2-/1,3-Hydroxytrifluoromethylation of Unactivated Alkenes Enabled by Photoexcited Nitroarenes. Org Lett 2025; 27:922-926. [PMID: 39789914 DOI: 10.1021/acs.orglett.4c04780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
An anaerobic 1,2-/1,3-hydroxytrifluoromethylation of unactivated alkenes is described. This reaction proceeds in mild and environmentally friendly conditions without photocatalyst and metal catalyst, allowing access to a wide range of β- and γ-trifluoromethyl alcohols. Preliminary mechanistic investigations indicate that the accomplishment of this protocol relies on the dual functionality of the photoexcited triplet nitroarenes, which serve as the oxygen atom source and enable the single-electron transfer (SET) process with CF3SO2Na.
Collapse
Affiliation(s)
- Cong Shi
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, Shandong 266237, P. R. China
| | - Ruihua Liu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, Shandong 266237, P. R. China
| | - Zemin Wang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, Shandong 266237, P. R. China
| | - Chenxia Gao
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, Shandong 266237, P. R. China
| | - Jia-Shu Chen
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, Shandong 266237, P. R. China
| | - Hongyun Qin
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, Shandong 266237, P. R. China
| | - Wenlong Shan
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, Shandong 266237, P. R. China
| | - Wenli Zhuang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, Shandong 266237, P. R. China
| | - Nan Zhou
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, Shandong 266237, P. R. China
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, Shandong 266237, P. R. China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, Shandong 266237, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, P. R. China
| |
Collapse
|
6
|
Zhang Y, Zhang YY, Zhang L, Qin Q, Tao Y, Cui J, Wang D, Huang C, Hou H. Programming Bifunctional Metal-Organic Frameworks to Integrate Multiple Triboelectric Nanogenerators for Green Electronics toward Effective Self-Powered Photocatalytic System. ACS APPLIED MATERIALS & INTERFACES 2025; 17:1522-1532. [PMID: 39690491 DOI: 10.1021/acsami.4c16023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Programming and synthesizing bifunctional materials for regulating the output of triboelectric nanogenerators (TENGs) and their photocatalytic efficiency is a promising strategy for energy harvesting to build self-powered systems. Herein, we tackle this challenge by introducing metal-organic frameworks (MOFs) as molecular catalysts and triboelectric layers for self-powered photocatalytic systems. A zeolite-like mixed-valence MOF (CuICuII-1) and a ladder-structured MOF (CuII-2) were obtained through structural transformation. Due to the excellent charge-trapping capability and surface potential of CuICuII-1, the outputs of CuICuII-1-TENG (a short-circuit current (Isc) of 30.4 μA and an open-circuit voltage (Voc) of 524.1 V) were significantly superior to those of CuII-2-TENG. The incorporation of CuICuII-1 with ethylcellulose (EC) to form CuICuII-1@EC composite films greatly improved the TENG outputs, and the 10% CuICuII-1@EC-TENG offered the maximum Isc (57.2 μA) and Voc (986.8 V). Furthermore, multiple 10% CuICuII-1@EC-TENG devices were integrated in parallel to assemble multiple TENG devices (M-TENG) to harvest biomechanical energy, which displayed significant potential to continuously power blue LEDs, generating blue-light irradiation to trigger the photocatalytic C(sp)-H/Si-H cross-coupling reactions of aromatic alkyne and trimethylsilane for alkynylsilane over the photocatalysts CuICuII-1 and CuII-2. The results revealed that CuICuII-1 achieved a cooperative effect on remarkable catalytic selectivity and activity. This work demonstrates that bifunctional MOFs can serve as friction electrode materials for the large-scale integration and assembly of MOF-based TENG, and photocatalysts for achieving self-powered photocatalytic systems.
Collapse
Affiliation(s)
- Yue Zhang
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, and School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Ying-Ying Zhang
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, and School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Lin Zhang
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, and School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Qi Qin
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, and School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Yuanmeng Tao
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, and School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Jiaxing Cui
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, and School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Dandan Wang
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, and School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Chao Huang
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, and School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Hongwei Hou
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
7
|
Muralirajan K, Khan IS, Garzon-Tovar L, Kancherla R, Kolobov N, Dikhtiarenko A, Almalki M, Shkurenko A, Rendón-Patiño A, Guillerm V, Le KN, Shterk G, Zhang H, Hendon CH, Eddaoudi M, Gascon J, Rueping M. Ba/Ti MOF: A Versatile Heterogeneous Photoredox Catalyst for Visible-Light Metallaphotocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2405646. [PMID: 39648587 DOI: 10.1002/adma.202405646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 11/18/2024] [Indexed: 12/10/2024]
Abstract
The field of sustainable heterogeneous catalysis is evolving rapidly, with a strong emphasis on developing catalysts that enhance efficiency. Among various heterogeneous photocatalysts, metal-organic frameworks (MOFs) have gained significant attention for their exceptional performance in photocatalytic reactions. In this context, contrary to the conventional homogeneous iridium or ruthenium-based photocatalysts, which face significant challenges in terms of availability, cost, scalability, and recyclability, a new Ba/Ti MOF (ACM-4) is developed as a heterogeneous catalyst that can mimic/outperform the conventional photocatalysts, offering a more sustainable solution for efficient chemical processes. Its redox potential and triplet energy are comparable to or higher than the conventional catalysts, organic dyes, and metal semiconductors, enabling its use in both electron transfer and energy transfer applications. It facilitates a broad range of coupling reactions involving pharmaceuticals, agrochemicals, and natural products, and is compatible with various transition metals such as nickel, copper, cobalt, and palladium as co-catalysts. The effectiveness of the ACM-4 as a photocatalyst is supported by comprehensive material studies, photophysical, and recycling experiments. These significant findings underscore the potential of ACM-4 as a highly versatile and cost-effective photoredox catalyst, providing a sustainable, one-material solution for efficient chemical processes.
Collapse
Affiliation(s)
- Krishnamoorthy Muralirajan
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Il Son Khan
- KAUST Catalysis Center (KCC), Advanced Catalytic Materials (ACM), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Luis Garzon-Tovar
- KAUST Catalysis Center (KCC), Advanced Catalytic Materials (ACM), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Rajesh Kancherla
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Nikita Kolobov
- KAUST Catalysis Center (KCC), Advanced Catalytic Materials (ACM), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Alla Dikhtiarenko
- Imaging and Characterization Department, KAUST Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Maram Almalki
- Functional Materials Design, Discovery and Development Research Group (FMD3), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Aleksander Shkurenko
- Functional Materials Design, Discovery and Development Research Group (FMD3), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Alejandra Rendón-Patiño
- KAUST Catalysis Center (KCC), Advanced Catalytic Materials (ACM), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Vincent Guillerm
- Functional Materials Design, Discovery and Development Research Group (FMD3), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Khoa N Le
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, 97403, USA
| | - Genrikh Shterk
- KAUST Catalysis Center (KCC), Advanced Catalytic Materials (ACM), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Huabin Zhang
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Christopher H Hendon
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, 97403, USA
| | - Mohamed Eddaoudi
- Functional Materials Design, Discovery and Development Research Group (FMD3), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jorge Gascon
- KAUST Catalysis Center (KCC), Advanced Catalytic Materials (ACM), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
8
|
Wang Z, Tang Y, Liu S, Zhao L, Li H, He C, Duan C. Energy transfer-mediated multiphoton synergistic excitation for selective C(sp 3)-H functionalization with coordination polymer. Nat Commun 2024; 15:8813. [PMID: 39394220 PMCID: PMC11470074 DOI: 10.1038/s41467-024-53115-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 10/01/2024] [Indexed: 10/13/2024] Open
Abstract
Activation and selective oxidation of inert C(sp3)-H bonds remain one of the most challenging tasks in current synthetic chemistry due to the inherent inertness of C(sp3)-H bonds. In this study, inspired by natural monooxygenases, we developed a coordination polymer with naphthalenediimide (NDI)-based ligands and binuclear iron nodes. The mixed-valence FeIIIFeII species and chlorine radicals (Cl•) are generated via ligand-to-metal charge transfer (LMCT) between FeIII and chlorine ions. These Cl• radicals abstract a hydrogen atom from the inert C(sp3)-H bond of alkanes via hydrogen atom transfer (HAT). In addition, NDI converts oxygen to 1O2 via energy transfer (EnT), which then coordinates to FeII, forming an FeIV = O intermediate for the selective oxidation of C(sp3)-H bonds. This synthetic platform, which combines photoinduced EnT, LMCT and HAT, provides a EnT-mediated parallel multiphoton excitation strategy with kinetic synergy effect for selective C(sp3)-H oxidation under mild conditions and a blueprint for designing coordination polymer-based photocatalysts for C(sp3)-H bond oxidation.
Collapse
Affiliation(s)
- Zhonghe Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Yang Tang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Songtao Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, People's Republic of China.
| | - Huaqing Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, People's Republic of China.
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, People's Republic of China.
| |
Collapse
|
9
|
Gao H, Tang Y, Liu S, He C, Li H, Zhao L, Duan C. Eosin Y Post-Decorated Metal-Organic Framework as a Selectivity Regulator for the Alcohols Oxidation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37896-37905. [PMID: 39010647 DOI: 10.1021/acsami.4c05017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The selective oxidation of alcohols into aldehydes is a basic and significant procedure, with great potential for scientific research and industrial applications. However, as an important factor in the C(sp3)-H activation process, high selectivity is generally difficult to achieve due to the fact that the more easily activated properties of aldehydes are compared to alcohols. Herein, by the ingenious decoration of eosin Y into a Zr-based metal-organic framework (MOF-808), EY@MOF-808 was prepared as a selectivity regulator for the aerobic oxidation of the benzyl alcohols into corresponding aldehydes, possessing applicability for the benzylic alcohols with various substituents. By anchoring eosin Y on Zr6O4(OH)4 clusters of MOF-808 and maintaining open metal nodes with selective binding effects, the benzyl alcohol substrates were selectively coordinated to the unsaturated metal clusters adjacent to eosin Y, which ensured that the excited eosin Y rapidly activated substrates to generate carbon radicals by the hydrogen atom transfer (HAT) process. The rapid electron transfer (ET) simultaneously produced reactive oxygen species (O2•-) and then a combination of both to further promote the generation of benzaldehydes. The weak interaction of benzaldehydes with the skeleton allowed it to dissociate rapidly, thus preventing overoxidation. Under the catalysis of EY@MOF-808, the selectivity of various benzaldehydes was more than 99%. In contrast, eosin Y gave only benzoic acid products under the same conditions, which demonstrated the superiority of regulatory selectivity of EY@MOF-808. Taking advantage of the heterogeneity of the MOF, EY@MOF-808 was recycled four times without a decrease in its selectivity and avoided the quenching effect of eosin Y. The organic functional units postdecorated MOF-based photocatalyst strategy exhibits a promising new perspective approach to sustainably regulating the selectivity of inert oxidation.
Collapse
Affiliation(s)
- Hui Gao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yang Tang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Songtao Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Huaqing Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chunying Duan
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
10
|
Zhu YY, He YY, Li YX, Liu CH, Lin W. Heterogeneous Porous Synergistic Photocatalysts for Organic Transformations. Chemistry 2024; 30:e202400842. [PMID: 38691421 DOI: 10.1002/chem.202400842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/03/2024]
Abstract
Recent interest has surged in using heterogeneous carriers to boost synergistic photocatalysis for organic transformations. Heterogeneous catalysts not only facilitate synergistic enhancement of distinct catalytic centers compared to their homogeneous counterparts, but also allow for the easy recovery and reuse of catalysts. This mini-review summarizes recent advancements in developing heterogeneous carriers, including metal-organic frameworks, covalent-organic frameworks, porous organic polymers, and others, for synergistic catalytic reactions. The advantages of porous materials in heterogeneous catalysis originate from their ability to provide a high surface area, facilitate enhanced mass transport, offer a tunable chemical structure, ensure the stability of active species, and enable easy recovery and reuse of catalysts. Both photosensitizers and catalysts can be intricately incorporated into suitable porous carriers to create heterogeneous dual photocatalysts for organic transformations. Notably, experimental evidence from reported cases has shown that the catalytic efficacy of heterogeneous catalysts often surpasses that of their homogeneous analogues. This enhanced performance is attributed to the proximity and confinement effects provided by the porous nature of the carriers. It is expected that porous carriers will provide a versatile platform for integrating diverse catalysts, thus exhibiting superior performance across a range of organic transformations and appealing prospect for industrial applications.
Collapse
Affiliation(s)
- Yuan-Yuan Zhu
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Yuan-Yuan He
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Yan-Xiang Li
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Chun-Hua Liu
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
11
|
Lin Y, Li L, Shi Z, Zhang L, Li K, Chen J, Wang H, Lee JM. Catalysis with Two-Dimensional Metal-Organic Frameworks: Synthesis, Characterization, and Modulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309841. [PMID: 38217292 DOI: 10.1002/smll.202309841] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Indexed: 01/15/2024]
Abstract
The demand for the exploration of highly active and durable electro/photocatalysts for renewable energy conversion has experienced a significant surge in recent years. Metal-organic frameworks (MOFs), by virtue of their high porosity, large surface area, and modifiable metal centers and ligands, have gained tremendous attention and demonstrated promising prospects in electro/photocatalytic energy conversion. However, the small pore sizes and limited active sites of 3D bulk MOFs hinder their wide applications. Developing 2D MOFs with tailored thickness and large aspect ratio has emerged as an effective approach to meet these challenges, offering a high density of exposed active sites, better mechanical stability, better assembly flexibility, and shorter charge and photoexcited state transfer distances compared to 3D bulk MOFs. In this review, synthesis methods for the most up-to-date 2D MOFs are first overviewed, highlighting their respective advantages and disadvantages. Subsequently, a systematic analysis is conducted on the identification and electronic structure modulation of catalytic active sites in 2D MOFs and their applications in renewable energy conversion, including electrocatalysis and photocatalysis (electro/photocatalysis). Lastly, the current challenges and future development of 2D MOFs toward highly efficient and practical electro/photocatalysis are proposed.
Collapse
Affiliation(s)
- Yanping Lin
- School of Physics & New Energy, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Lu Li
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Zhe Shi
- School of Physics & New Energy, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Lishang Zhang
- School of Physics & New Energy, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Ke Li
- School of Chemistry, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials and BioEngineering Research (AMBER), Trinity College Dublin, 2 Dublin, Ireland
| | - Jianmei Chen
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Hao Wang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210023, China
| | - Jong-Min Lee
- School of Chemistry Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore
| |
Collapse
|
12
|
He Y, Liu Y, Chen C, Wang X, Li C, Chen XB, Shi Z, Feng S. Defect-Induced All-Solid-State Frustrated Lewis Pair on Metal-Organic Monolayer Accelerating Photocatalytic CO 2 Reduction with H 2O Vapor. NANO LETTERS 2024. [PMID: 38620050 DOI: 10.1021/acs.nanolett.4c00903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Understanding the structure-performance relationships of a frustrated Lewis pair (FLP) at the atomic level is key to yielding high efficiency in activating chemically "inert" molecules into value-added products. A sound strategy was developed herein through incorporating oxygen defects into a Zr-based metal-organic layer (Zr-MOL-D) and employing Lewis basic proximal surface hydroxyls for the in situ formation of solid heterogeneous FLP (Zr4-δ-VO-Zr-OH). Zr-MOL-D exhibits a superior CO2 to CO conversion rate of 49.4 μmol g-1 h-1 in water vapor without any sacrificing agent or photosensitizer, which is about 12 times higher than that of pure MOL (Zr-MOL-P), with extreme stability even after being placed for half a year. Theoretical and experimental results reveal that the introduction of FLP converts the process of the crucial intermediate COOH* from an endothermic reaction to an exothermic spontaneous reaction. This work is expected to provide new prospects for developing efficient MOL-based photocatalysts in FLP chemistry through a sound defect-engineering strategy.
Collapse
Affiliation(s)
- Yiqiang He
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yuxin Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Cailing Chen
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Xiyang Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Chunguang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Xiao-Bo Chen
- School of Engineering, RMIT University, Carlton, VIC 3053, Australia
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
13
|
Li M, Feng Z, Duan C, Zhang T, Shi Y. Confinement Effect in Metal-Organic Framework Cu 3( BTC) 2 for Enhancing Shape Selectivity of Radical Difunctionalization of Alkenes. ACS OMEGA 2024; 9:14233-14240. [PMID: 38559924 PMCID: PMC10976352 DOI: 10.1021/acsomega.3c09911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
The radical difunctionalization of alkenes plays a vital role in pharmacy, but the conventional homogeneous catalytic systems are challenging in selectivity and sustainability to afford the target molecules. Herein, the famous readily available metal-organic framework (MOF), Cu3(BTC)2, has been applied to cyano-trifluoromethylation of alkenes as a high-performance and recyclable heterogeneous catalyst, which possesses copper(II) active sites residing in funnel-like cavities. Under mild conditions, styrene derivatives and various unactivated olefins could be smoothly transformed into the corresponding cyano-trifluoromethylation products. Moreover, the transformation brought about by the active copper center in confined environments achieved regio- and shape selectivity. To understand the enhanced selectivity, the activation manner of the MOF catalyst was studied with control catalytic experiments such as FT-IR and UV-vis absorption spectroscopy of substrate-incorporated Cu3(BTC)2, which elucidated that the catalyst underwent a radical transformation with the intermediates confined in the MOF cavity, and the confinement effect endowed the method with pronounced selectivities.
Collapse
Affiliation(s)
- Mochen Li
- State
Key Laboratory of Fine Chemicals, School of Chemical Engineering,
School of Chemistry, Dalian University of
Technology, Dalian 116024, P. R. China
| | - Zhi Feng
- State
Key Laboratory of Fine Chemicals, School of Chemical Engineering,
School of Chemistry, Dalian University of
Technology, Dalian 116024, P. R. China
| | - Chunying Duan
- State
Key Laboratory of Fine Chemicals, School of Chemical Engineering,
School of Chemistry, Dalian University of
Technology, Dalian 116024, P. R. China
- State
Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China
| | - Tiexin Zhang
- State
Key Laboratory of Fine Chemicals, School of Chemical Engineering,
School of Chemistry, Dalian University of
Technology, Dalian 116024, P. R. China
| | - Yusheng Shi
- Jiangsu
Yangnong Chemical Group Co., Ltd., Yangzhou 225001, P. R. China
| |
Collapse
|
14
|
Su T, Cai C. Ball-milled prepared Fe 3O 4-Fe SAs-NPs@NC catalyst synergistically facilitate the generation of reactive oxygen species for oxidative trifluoromethylation of alkenes. J Colloid Interface Sci 2024; 655:199-207. [PMID: 37939404 DOI: 10.1016/j.jcis.2023.10.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Heterogeneous catalysts have recently regarded as a promising chose for the thermally-driven generation of the reactive oxygen species (ROS) through catalytic reactions with molecular oxygen, which can facilitate this process by specific geometric and electronic structure. However, the oxidative trifluoromethylation of alkenes to α-trifluoromethylated ketones by CF3SO2Na is rarely reported in this system. In this work, we report a one-pot polymerization ball milling strategy to construct precursor, and then pyrolyze it to obtain specific carbon nanotubes matrix with Fe/Fe3O4 nanoparticles and single atoms Fe. Remarkably, the optimized catalyst (Fe3O4-FeSAs-NPs@NC-1) displays excellent catalytic performance, broad substrates and recyclability for this fluorination reaction via radical pathway. Based on characterizations and mechanistic studies, we discover that the coexistence of Fe/Fe3O4 and Fe-Nx not only synergistically facilitates the catalytic efficiency in altering the electronic structure of Fe sites, but also benefits the absorption of O2 and the ability of the thermally-driven generating ROS which can activate CF3SO2Na to CF3 radical. This work offers a method of designing Fe-based catalysts and also opens up a new thermal-heterogeneous catalysis way for the oxidative trifluoromethylation of alkenes.
Collapse
Affiliation(s)
- Tianyue Su
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing 210094, PR China
| | - Chun Cai
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing 210094, PR China.
| |
Collapse
|
15
|
Wang Z, Ding R, Li X, Zhang J, Yang L, Wang Y, Liu J, Zhou Z. Blocking Accretion Enables Dimension Reduction of Metal-Organic Framework for Photocatalytic Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2305308. [PMID: 37635096 DOI: 10.1002/smll.202305308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/07/2023] [Indexed: 08/29/2023]
Abstract
The evolution and formation process of two-dimensional metal-organic frameworks (MOFs) primarily arise from the anisotropic growth of crystals, leading to variations in photocatalytic performance. It is crucial to achieve a synergistic combination of anisotropic electron transfer direction and dimension reduction strategies. In this study, a novel approach that effectively blocks crystal growth accretion through the coordination of solvent molecules is presented, achieving the successful synthesis of impurity-free two-dimensional nanosheet Zn-PTC with exceptional hydrogen evolution reaction (HER) performance (15.4 mmol g-1 h-1 ). The structural and photophysical characterizations validate the successful prevention of crystal accretion, while establishing correlation between structural anisotropy and intrinsic charge transfer mode through transient spectroscopy. These findings unequivocally demonstrate that electron transfer along the [001] direction plays a pivotal role in the redox performance of nano-Zn-PTC. Subsequently, by coupling the photocatalytic performance and density functional theory (DFT) simulation calculations, the carrier diffusion kinetics is explored, revealing that effective dimension reduction along the ligand-to-metal charge transfer (LMCT) direction is the key to achieving superior photocatalytic performance.
Collapse
Affiliation(s)
- Zejin Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210033, P. R. China
| | - Rui Ding
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210033, P. R. China
| | - Xiaoke Li
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210033, P. R. China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210033, P. R. China
| | - Le Yang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210033, P. R. China
| | - Ying Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210033, P. R. China
- Eco-Materials and Renewable Energy Research Center (ERERC), Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Jianguo Liu
- Institute of Energy Power Innovation, North China Electric Power University, Beijing, 102206, P. R. China
| | - Zhigang Zhou
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210033, P. R. China
- Eco-Materials and Renewable Energy Research Center (ERERC), Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| |
Collapse
|
16
|
Shibata H, Nakayama M, Tagami K, Kanbara T, Yajima T. Hydroxy- and Hydro-Perfluoroalkylation of Styrenes by Controlling the Quenching Cycle of Eosin Y. Molecules 2023; 28:7577. [PMID: 38005299 PMCID: PMC10674426 DOI: 10.3390/molecules28227577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/11/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Fluoroalkyl compounds are widely used, underscoring a pressing need for the development of methods for their synthesis. However, reports on perfluoroalkylation to styrenes have been sparse. In this study, both hydroxy- and hydro-perfluoroalkylation of styrene were achieved using visible light reactions, catalyzed by eosin Y, by selecting appropriate additives and controlling the eosin Y quenching cycle. These reactions are heavy-metal free, use water as the hydroxyl or hydrogen source, and employ inexpensive and readily available reagents.
Collapse
Affiliation(s)
| | | | | | | | - Tomoko Yajima
- Department of Chemistry, Ochanomizu University, 2-1-1 Otsuka, Bukyo-ku, Tokyo 104-8610, Japan
| |
Collapse
|
17
|
Li QQ, Pan PH, Liu H, Zhou L, Zhao SY, Deng B, He YJ, Song JX, Liu P, Wang YY, Li JL. Incorporating a D-A-D-Type Benzothiadiazole Photosensitizer into MOFs for Photocatalytic Oxidation of Phenylsulfides and Benzylamines. Inorg Chem 2023; 62:17182-17190. [PMID: 37815498 DOI: 10.1021/acs.inorgchem.3c02212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Oxidation and removal of highly toxic sulfides and amines are particularly important for environmental and human security but remain challenging. Here, incorporating an excellent photosensitizer, donor-acceptor-donor (D-A-D)-type 4,4'-(benzo[c][1,2,5]thiadiazole-4,7-diyl)dibenzoic (H2L), into metal-organic frameworks (MOFs) has been manifested to promote the charge separation, affording four three-dimensional (3D) MOFs (isostructural 1-Co/1-Zn with Co2/Zn2 units, and 2-Gd/2-Tb with Gd/Tb-cluster chains) as photocatalysts in the visible light-driven air-O2-mediated catalytic oxidation and removal of hazardous phenylsulfides and benzylamines. Impressively, structure-property correlation illustrated that the transition metal centers assembled in MOFs play an important role in the photocatalytic activity, and we can conclude that 1-Zn can be a robust heterogeneous catalyst possessing good light adsorption and fast charge separation in oxidation removal reactions of both benzylamines and phenylsulfides under visible light irradiation and room temperature with excellent activity/selectivity, stability, and reusability.
Collapse
Affiliation(s)
- Quan-Quan Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, People's Republic of China
| | - Peng-Hui Pan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Hua Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Li Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Shu-Ya Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Bing Deng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Yu-Jie He
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Jin-Xi Song
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, People's Republic of China
| | - Ping Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Jian-Li Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| |
Collapse
|
18
|
Yuan X, Wu X, Xiong J, Yan B, Gao R, Liu S, Zong M, Ge J, Lou W. Hydrolase mimic via second coordination sphere engineering in metal-organic frameworks for environmental remediation. Nat Commun 2023; 14:5974. [PMID: 37749093 PMCID: PMC10520056 DOI: 10.1038/s41467-023-41716-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/15/2023] [Indexed: 09/27/2023] Open
Abstract
Enzymes achieve high catalytic activity with their elaborate arrangements of amino acid residues in confined optimized spaces. Nevertheless, when exposed to complicated environmental implementation scenarios, including high acidity, organic solvent and high ionic strength, enzymes exhibit low operational stability and poor activity. Here, we report a metal-organic frameworks (MOFs)-based artificial enzyme system via second coordination sphere engineering to achieve high hydrolytic activity under mild conditions. Experiments and theoretical calculations reveal that amide cleavage catalyzed by MOFs follows two distinct catalytic mechanisms, Lewis acid- and hydrogen bonding-mediated hydrolytic processes. The hydrogen bond formed in the secondary coordination sphere exhibits 11-fold higher hydrolytic activity than the Lewis acidic zinc ions. The MOFs exhibit satisfactory degradation performance of toxins and high stability under extreme working conditions, including complicated fermentation broth and high ethanol environments, and display broad substrate specificity. These findings hold great promise for designing artificial enzymes for environmental remediation.
Collapse
Affiliation(s)
- Xin Yuan
- Lab of Applied Biocatalysis, School of Food Science and Technology, South China University of Technology, 510640, Guangzhou, Guangdong, China
| | - Xiaoling Wu
- Lab of Applied Biocatalysis, School of Food Science and Technology, South China University of Technology, 510640, Guangzhou, Guangdong, China.
| | - Jun Xiong
- Lab of Applied Biocatalysis, School of Food Science and Technology, South China University of Technology, 510640, Guangzhou, Guangdong, China
| | - Binhang Yan
- Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
| | - Ruichen Gao
- Lab of Applied Biocatalysis, School of Food Science and Technology, South China University of Technology, 510640, Guangzhou, Guangdong, China
| | - Shuli Liu
- Lab of Applied Biocatalysis, School of Food Science and Technology, South China University of Technology, 510640, Guangzhou, Guangdong, China
| | - Minhua Zong
- Lab of Applied Biocatalysis, School of Food Science and Technology, South China University of Technology, 510640, Guangzhou, Guangdong, China
| | - Jun Ge
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China.
| | - Wenyong Lou
- Lab of Applied Biocatalysis, School of Food Science and Technology, South China University of Technology, 510640, Guangzhou, Guangdong, China.
| |
Collapse
|
19
|
Jin J, Wan S, Lee S, Oh C, Jang GY, Zhang K, Lu Z, Park JH. Tailoring the Nanoporosity and Photoactivity of Metal-Organic Frameworks With Rigid Dye Modulators for Toluene Purification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302776. [PMID: 37254455 DOI: 10.1002/smll.202302776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Indexed: 06/01/2023]
Abstract
Facile synthesis of hierarchically porous metal-organic frameworks (MOFs) with adjustable porosity and high crystallinity attracts great attention yet remains challenging. Herein, a micromolar amount of dye-based modulator (Rhodamine B (RhB)) is employed to easily and controllably tailor the pore size of a Ti-based metal-organic framework (MIL-125-NH2 ). The RhB used in this method is easily removed by washing or photodegradation, avoiding secondary posttreatment. It is demonstrated that the carboxyl functional group and the steric effects of RhB are indispensable for enlarging the pore size of the MIL-125-NH2 . The resulting hierarchically porous MIL-125-NH2 (RH-MIL-125-NH2 ) exhibits optimized adsorption and photocatalytic activity because the newly formed mesopore with defects concurrently facilitates mass transport of guest molecules (toluene) and photogenerated charge separation. This work offers a meaningful basis for the construction of hierarchically porous MOFs and demonstrates the superiority of the hierarchical pore structure for adsorption and heterogeneous catalysis.
Collapse
Affiliation(s)
- Jie Jin
- School of Emergency Management, Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Shipeng Wan
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - SunJe Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Cheoulwoo Oh
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Gyu Yong Jang
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Kan Zhang
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Ziyang Lu
- School of Emergency Management, Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jong Hyeok Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| |
Collapse
|
20
|
Liu H, Li QQ, Zhou L, Deng B, Pan PH, Zhao SY, Liu P, Wang YY, Li JL. Confinement of Organic Dyes in UiO-66-Type Metal-Organic Frameworks for the Enhanced Synthesis of [1,2,5]Thiadiazole[3,4- g]benzoimidazoles. J Am Chem Soc 2023; 145:17588-17596. [PMID: 37454391 DOI: 10.1021/jacs.3c02379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Organic dyes as non-noble metal photosensitizers have attracted increasing attention due to their environmental friendliness and sustainability but suffer from fast deactivation and low stability. Here, we reported a fruitful strategy by the confinement and stabilization of visible light-active signal unit organic dyes within the metal-organic frameworks (MOFs) and developed a series of heterogeneous photocatalysts dye@UiO-66s [dye = fluorescein (FL)/rhodamine B (RhB)/eosin Y (EY), UiO-66s = UiO-66, and Bim-UiO-66]. It has been demonstrated that the encapsulated dyes can effectively sensitize MOF hosts and dominate the band structures and photocatalytic activities of dye@UiO-66s regardless of the ligand functionalization of MOFs. Photocatalytic experiments showed that these dye@UiO-66s exhibit enhanced activities relative to free dyes and among them, FL@Bim-UiO-66 displays excellent efficiencies toward the green synthesis of new carbon-bridged annulations, [1,2,5]thiadiazole[3,4-g]benzoimidazoles in the yield of up to 98% at room temperature with outstanding stability and reusability. Furthermore, the intramolecular cyclization intermediate was captured and characterized by the single-crystal X-ray diffraction analysis.
Collapse
Affiliation(s)
- Hua Liu
- College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, P. R. China
| | - Quan-Quan Li
- College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, P. R. China
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, P. R. China
| | - Li Zhou
- College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, P. R. China
| | - Bing Deng
- College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, P. R. China
| | - Peng-Hui Pan
- College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, P. R. China
| | - Shu-Ya Zhao
- College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, P. R. China
| | - Ping Liu
- College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, P. R. China
| | - Yao-Yu Wang
- College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, P. R. China
| | - Jian-Li Li
- College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
21
|
Zheng H, Fan Y, Blenko AL, Lin W. Sequential Modifications of Metal-Organic Layer Nodes for Highly Efficient Photocatalyzed Hydrogen Atom Transfer. J Am Chem Soc 2023; 145:9994-10000. [PMID: 37125994 DOI: 10.1021/jacs.3c02703] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Herein, we report the synthesis of a bifunctional photocatalyst, Zr-OTf-EY, through sequential modifications of metal cluster nodes in a metal-organic layer (MOL). With eosin Y and strong Lewis acids on the nodes, Zr-OTf-EY catalyzes cross-coupling reactions between various C-H compounds and electron-deficient alkenes or azodicarboxylate to afford C-C and C-N coupling products, with turnover numbers of up to 1980. In Zr-OTf-EY-catalyzed reactions, Lewis acid sites bind the alkenes or azodicarboxylate to increase their local concentrations and electron deficiency for enhanced radical additions, while EY is stabilized by site isolation on the MOL to afford a long-lived catalyst for hydrogen atom transfer. The proximity between photostable EY sites and Lewis acids on the nodes of Zr-OTf-EY enhances the catalytic efficiency by approximately 400 times over the homogeneous counterpart in the cross-coupling reactions.
Collapse
Affiliation(s)
- Haifeng Zheng
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Yingjie Fan
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Abigail L Blenko
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
22
|
Jiang Z, Sun W, Yang Z, Pan H, Tang Z, Shi W, Xiang Y, Yan D, Teng H. Pyrene-Based D-A Molecules as Efficient Heterogeneous Catalysts for Visible-Light-Induced Aerobic Organic Transformations. CHEMSUSCHEM 2023; 16:e202202082. [PMID: 36479983 DOI: 10.1002/cssc.202202082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Indexed: 06/17/2023]
Abstract
In this work, an efficient visible light promoted aerobic dehydro-coupling of amines, oxidation of thioethers and hydroxylation of arylboronic acids under benign conditions by using pyrene-based donor-acceptor (D-A) conjugated organic molecules was described. Donor-acceptor structure influences their π-conjugation and band gap a lot, and thereby enhances their visible light absorption ability, single electron transfer and oxidative behaviors. Alkynyl units in PS-IV play a crucial role in the catalyst which could serve as electron transferring bridge to strengthen electron delocalization, thus facilitating the single electron transfer from photosensitizer to substrates, and making it an efficient ⋅O2 - generator. While PS-III without alkynyl units tends to produce 1 O2 . Therefore, these molecules can serve as efficient catalysts for different kinds of visible-light-induced aerobic organic reactions. More importantly, the simply structured molecule is insoluble and stable in various solvents, and thus could be recycled as heterogeneous catalyst for many rounds with slight catalytic activity degradation. Besides, large scale (1 mol) reaction of benzylamine coupling proceeded smoothly under the standard conditions.
Collapse
Affiliation(s)
- Zhihui Jiang
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Wenhao Sun
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Zhenyan Yang
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Hui Pan
- Jingzhou Institute for Food and Drug Control, Jingzhou, 434000, P. R. China
| | - Zubing Tang
- Downhole Operation Branch of Sinopec Southwest Petroleum Engineering Corporation, Deyang, 618000, P. R. China
| | - Wei Shi
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Yonggang Xiang
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Dingce Yan
- Analytical and Testing Center, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Huailong Teng
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| |
Collapse
|
23
|
Jiao R, Wang Y, Pang Y, Yang D, Li Z, Lou H, Qiu X. Construction of Macroporous β-Glucosidase@MOFs by a Metal Competitive Coordination and Oxidation Strategy for Efficient Cellulose Conversion at 120 °C. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8157-8168. [PMID: 36724351 DOI: 10.1021/acsami.2c21383] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Metal-organic frameworks (MOFs) have become promising accommodation for enzyme immobilization in recent years. However, the microporous nature of MOFs affects the accessibility of large molecules, resulting in a significant decline in biocatalysis efficiency. Herein, a novel strategy is reported to construct macroporous MOFs by metal competitive coordination and oxidation with induced defect structure using a transition metal (Fe2+) as a functional site. The feasibility of in situ encapsulating β-glucosidase (β-G) within the developed macroporous MOFs endows an enzyme complex (β-G@MOF-Fe) with remarkably enhanced synergistic catalysis ability. The 24 h hydrolysis rate of β-G@MOF-Fe (with respect to cellobiose) is as high as approximately 99.8%, almost 32.2 times that of free β-G (3.1%). Especially, the macromolecular cellulose conversion rate of β-G@MOF-Fe reached 90% at 64 h, while that of β-G@MOFs (most micropores) was only 50%. This improvement resulting from the expansion of pores (significantly increased at 50-100 nm) can provide enough space for the hosted biomacromolecules and accelerate the diffusion rate of reactants. Furthermore, unexpectedly, the constructed β-G@MOF-Fe showed a superior heat resistance of up to 120 °C, attributing to the new strong coordination bond (Fe2+-N) formation through the metal competitive coordination. Therefore, this study offers new insights to solve the problem of the high-temperature macromolecular substrate encountered in the actual reaction.
Collapse
Affiliation(s)
- Rui Jiao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou510640, China
| | - Yanming Wang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou510640, China
| | - Yuxia Pang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou510640, China
| | - Dongjie Yang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou510640, China
| | - Zhixian Li
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou510640, China
| | - Hongming Lou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou510640, China
| | - Xueqing Qiu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou510640, China
| |
Collapse
|
24
|
Yang XG, Zhang JR, Tian XK, Qin JH, Zhang XY, Ma LF. Enhanced Activity of Enzyme Immobilized on Hydrophobic ZIF-8 Modified by Ni 2+ Ions. Angew Chem Int Ed Engl 2023; 62:e202216699. [PMID: 36536412 DOI: 10.1002/anie.202216699] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The development of efficient enzyme immobilization to promote their recyclability and activity is highly desirable. Zeolitic imidazolate framework-8 (ZIF-8) has been proved to be an effective platform for enzyme immobilization due to its easy preparation and biocompatibility. However, the intrinsic hydrophobic characteristic hinders its further development in this filed. Herein, a facile synthesis approach was developed to immobilize pepsin (PEP) on the ZIF-8 carrier by using Ni2+ ions as anchor (ZIF-8@PEP-Ni). By contrast, the direct coating of PEP on the surface of ZIF-8 (ZIF-8@PEP) generated significant conformational changes. Electrochemical oxygen evolution reaction (OER) was employed to study the catalytic activity of immobilized PEP. The ZIF-8@PEP-Ni composite attains remarkable OER performance with an ultralow overpotential of only 127 mV at 10 mA cm-2 , which is much lower than the 690 and 919 mV overpotential values of ZIF-8@PEP and PEP, respectively.
Collapse
Affiliation(s)
- Xiao-Gang Yang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang, 471934, P. R. China
| | - Ji-Rui Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang, 471934, P. R. China
| | - Xu-Ke Tian
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang, 471934, P. R. China
| | - Jian-Hua Qin
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang, 471934, P. R. China
| | - Xin-Ya Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang, 471934, P. R. China
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang, 471934, P. R. China
| |
Collapse
|
25
|
Fan JQ, Yang Y, Tao CB, Li MB. Cadmium-Doped and Pincer Ligand-Modified Gold Nanocluster for Catalytic KA 2 Reaction. Angew Chem Int Ed Engl 2023; 62:e202215741. [PMID: 36478512 DOI: 10.1002/anie.202215741] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
A gold nanocluster Au17 Cd2 (PNP)2 (SR)12 (PNP=2,6-bis(diphenylphosphinomethyl)pyridine, SR=4-MeOPhS) consisting of an icosahedral Au13 kernel, two Au2 CdS6 staple motifs, and two PNP pincer ligands has been designed, synthesized and well characterized. This cadmium and PNP pincer ligand co-modified gold nanocluster showed high catalytic efficiency in the KA2 reaction, featuring high TON, mild reaction conditions, broad substrate scope as well as catalyst recyclability. Comparison of the catalytic performance between Au17 Cd2 (PNP)2 (SR)12 and the structurally similar single cadmium (or PNP) modified gold nanoclusters demonstrates that the co-existence of the cadmium and PNP on the surface is crucial for the high catalytic activity of the gold nanocluster. This work would be enlightening for developing efficient catalysts for cascade reactions and discovering the catalytic potential of metal nanoclusters in organic transformations.
Collapse
Affiliation(s)
- Ji-Qiang Fan
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Ying Yang
- College of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui, 237015, P. R. China
| | - Cheng-Bo Tao
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Man-Bo Li
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
26
|
Wang R, Gao L, Zhou C, Zhang X. Haloperfluoroalkylation of Unactivated Terminal Alkenes over Phenylphenothiazine-Based Porous Organic Polymers. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202211013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
27
|
Matsukuma K, Tayu M, Yashiro Y, Yamaguchi T, Ohrui S, Saito N. A Photoredox/Sulfide Dual Catalysis System That Uses Sulfide Radical Cations to Promote Alkene Chlorotrifluoromethylation. Chem Pharm Bull (Tokyo) 2023; 71:695-700. [PMID: 37661375 DOI: 10.1248/cpb.c23-00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Sulfides and their derivatives are among the most important class of reagent in synthetic chemistry. Despite the importance of such compounds, the use of sulfide radical cations in synthetic chemistry is underdeveloped. To address this issue, herein, we describe alkene chlorotrifluoromethylation reactions promoted by photoredox/sulfide dual catalysis systems, which involves sulfide radical cations generated through the oxidation of sulfides by a photoredox catalyst. The high functional group tolerance of this chemistry was demonstrated using natural products and drug molecules as substrate alkenes.
Collapse
|
28
|
Zhang Y, Wang H, Jiang D, Sun N, He W, Zhao L, Qin N, Zhu N, Fang Z, Guo K. Photomediated core modification of diaryl dihydrophenzines through three-component alkylarylation of alkenes toward organocatalyzed ATRP. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
29
|
Xu Y, Xiong H, Zhang B, Lee I, Xie J, Li M, Zhang H, Seung Kim J. Photodynamic Alzheimer’s disease therapy: From molecular catalysis to photo-nanomedicine. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Multifunctional Mn(II) Metal-Organic framework for photocatalytic aerobic oxidation and C H direct trifluoromethylation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Cheng S, Tang J, Quan Y. Metal‐Organic Frameworks with Organic Photosensitizers in Organic Synthesis. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shengxian Cheng
- Department of Chemistry the Hong Kong University of Science and Technology Clear Water Bay Sai Kung New Territories Hong Kong
| | - Jiayue Tang
- Department of Chemistry the Hong Kong University of Science and Technology Clear Water Bay Sai Kung New Territories Hong Kong
| | - Yangjian Quan
- Department of Chemistry the Hong Kong University of Science and Technology Clear Water Bay Sai Kung New Territories Hong Kong
| |
Collapse
|
32
|
Li Z, Qiu S, Song Y, Huang S, Gao J, Sun L, Hou J. Engineering single–atom active sites anchored covalent organic frameworks for efficient metallaphotoredox C N cross–coupling reactions. Sci Bull (Beijing) 2022; 67:1971-1981. [DOI: 10.1016/j.scib.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
|
33
|
Li DJ, Tian YB, Lin Q, Zhang J, Gu ZG. Optimizing Photodetectors in Two-Dimensional Metal-Metalloporphyrinic Framework Thin Films. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33548-33554. [PMID: 35770297 DOI: 10.1021/acsami.2c07686] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) metalloporphyrin-based MOF thin films possessing abundant π-π interactions are promising materials for photoelectronic devices, but no reports on fabrication of photodetectors are available so far. Herein, a series of 2D MOF Zn2[TCPP(M)] (named ZnTCPP(M); TCPP = 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin; M = Zn, Mn, Fe, and H2) films with [001] orientation are fabricated on SiO2/Si substrates by the liquid-phase epitaxial (LPE) layer-by-layer (lbl) approach and further assembled to photodetectors. The obtained ZnTCPP(M)-based photodetectors exhibit an excellent photoresponse due to abundant π-π stacking between the MOF layers. Moreover, the metalloporphyrinic groups in ZnTCPP(M) have a significant influence on modulating the photoresponse of the photodetectors, among which the prepared ZnTCPP(Zn) film-based device exhibits the best photodetection performance with a high on/off ratio of 2.3 × 104, responsivity (Rλ, up to 10.3 A W-1), short rise/fall times (0.09/0.07 s), and a large detectivity (D*) of 8.1 × 1013 Jones. Density functional theory (DFT) calculations reveal that the perturbation of the ring π-electron system and the introduction of low-lying states as well as the large delocalization of the metalloporphyrinic group will adjust the photodetection performance of ZnTCPP(M) films. These results will provide a new understanding of the modulation of 2D metalloporphyrinic MOFs toward photodetection performance and perspective for the fabrication of photoelectronic devices.
Collapse
Affiliation(s)
- De-Jing Li
- Fujian Engineering and Research Centre of New Chinese Lacquer Material, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, PR China
| | - Yi-Bo Tian
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Qi Lin
- Fujian Engineering and Research Centre of New Chinese Lacquer Material, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, PR China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhi-Gang Gu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
34
|
Tian XK, Zhang JR, Wen MY, Liu ZH, Guo JH, Ma CY, Zhang HY, Yang XG, Ma LF. Red room temperature phosphorescence of lead halide based coordination polymer showing efficient angle-dependent polarized emission and photoelectric performance. Dalton Trans 2022; 51:10055-10060. [PMID: 35726759 DOI: 10.1039/d2dt01196d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of organic-inorganic hybrid materials with long-lived room temperature phosphorescence (RTP) has attracted tremendous attention owing to their promising applications in the optoelectronic and anti-counterfeiting fields. In this work, by the selection of lead halide and electron-poor heteroaromatic molecule 1,10-phenanthroline (phen), a coordination polymer [Pb(phen)Cl2] has been synthesized under hydrothermal conditions. This complex shows an alternating arrangement of a long-range order of phen π-conjugated systems and lead halide inorganic chains as revealed by X-ray single-crystal structural analysis. This structural character and special chemical components endow this hybrid material with a rare example of red room temperature phosphorescence. Its electronic structure and electronic transition behavior were further examined by theoretical calculations. Meanwhile, the film of the complex features remarkable angle-dependent polarized emission and photoelectric performance.
Collapse
Affiliation(s)
- Xu-Ke Tian
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.,College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China.
| | - Ji-Rui Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China.
| | - Meng-Yao Wen
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China.
| | - Zi-Han Liu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China.
| | - Jia-Hui Guo
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China.
| | - Cheng-Yu Ma
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China.
| | - Hao-Yi Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China.
| | - Xiao-Gang Yang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China.
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.,College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China.
| |
Collapse
|
35
|
Facile metal-free visible-light-mediated chlorotrifluoromethylation of terminal alkenes. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02930-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Gu S, Yang X, jiang Q, Luo Y, Wang D, Shi P. Insights into the crystal structure and optical property for complexes of iminodiacetic‐terpyridine. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shunxin Gu
- Jiangsu Ocean University School of Environmental and Chemical Engineering CHINA
| | - Xinda Yang
- Tongji University School of Chemical Science and Engineering CHINA
| | - qin jiang
- Jiangsu Ocean University School of Enviromental and Chemical Engineering 59 Cangwu Road 222005 Lianyungang CHINA
| | - Yuhui Luo
- Jiangsu Ocean University School of Environmental and Chemical Engineering CHINA
| | - Daqi Wang
- Liaocheng University School of Chemistry CHINA
| | - Pengfei Shi
- Jiangsu Ocean University School of Environmental and Chemical Engineering CHINA
| |
Collapse
|
37
|
Zhao L, Du Z, Ji G, Wang Y, Cai W, He C, Duan C. Eosin Y-Containing Metal-Organic Framework as a Heterogeneous Catalyst for Direct Photoactivation of Inert C-H Bonds. Inorg Chem 2022; 61:7256-7265. [PMID: 35507831 DOI: 10.1021/acs.inorgchem.1c03813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Xanthene dyes as a class of ideal organic homogeneous photocatalyst have received significant attention in C-H bond activation; however, the inherent nature of fast carrier recombination/deactivation and low stability limits their practical applications. Herein, by the ingenious decoration of eosin Y into a porous metal-organic framework (MOF), a high-performance heterogeneous MOF-based photocatalyst was prepared to efficiently activate inert C-H bonds on the reactants via the hydrogen atom transfer pathway for the functionalization of the C-H bonds. Taking advantage of the fixation effect of a rigid framework, the incorporation of eosin Y into MOF leads to great enhancement of their chemical durability. More importantly, by the introduction of the second auxiliary ligand, the carbonyl groups of xanthene on the eosin Y dyes were perfectly retained and periodically aligned within the confined channels of this rigid framework, which could effectively form excited state radicals to prompt inert C-H bond activation, promoting reaction efficiency by the host-guest supramolecular interaction. New eosin Y-based MOFs were recyclable for six times without reducing photocatalytic activity. This eosin Y functionalized MOF-based heterogeneous photocatalytic system provides an availably catalytic avenue to develop a scalable and sustainable synthetic strategy for the practical application of organic dyes.
Collapse
Affiliation(s)
- Liang Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zenggang Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Guanfeng Ji
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yefei Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wei Cai
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
38
|
Triphenylamine-based conjugated microporous polymers as dye adsorbents and supercapacitors. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Hou L, Jing X, Huang H, Duan C. Merging Charge Transfer into Metal-Organic Frameworks to Achieve High Reduction Potentials via Multiphoton Excitation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15307-15316. [PMID: 35344330 DOI: 10.1021/acsami.2c01595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Utilization of multiphotons to achieve high reduction potentials is a highly demanding but still challenging task for reductive cleavage of inert bonds. Herein, we report a new charge transfer approach that simultaneously excites the electron-rich dye and the radical anionic of the electron-deficient one for photocatalytic activation of aryl chlorides with high reduction potentials (Ered ≈ -1.9 to -2.9 V). Interactions between the tetraphenylbenzene-1,4,-diamine dyes in the large pores of metal-organic frameworks and the adsorbed 9,10-dicyanoanthracene partly endows charge transfer in the ground state. The first photoexcitation led to the formation charge separation pairs containing both radical cation and anion for second photon excitation. The possibility of modifying each absorption band of the two dyes independently innovated the resultant aryl radicals applied in various useful transformations, expanding multiphoton manifolds on both the dye scopes and reaction versions. A comparison of the catalytic performance between different structural patterns of metal-organic frameworks with the same ligand demonstrated that the incorporating of the organic dyes within the pores of the frameworks was essential to form charge-transfer species and accelerate the interesting chemical conversion.
Collapse
Affiliation(s)
- Leixin Hou
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, Dalian 116024, P.R. China
| | - Xu Jing
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, Dalian 116024, P.R. China
| | - Huilin Huang
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, Dalian 116024, P.R. China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, Dalian 116024, P.R. China
| |
Collapse
|
40
|
Structures and Catalytic Properties of two New Squaramide‐decorated Cd‐MOFs. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Nasseri B, Alizadeh E, Bani F, Davaran S, Akbarzadeh A, Rabiee N, Bahadori A, Ziaei M, Bagherzadeh M, Saeb MR, Mozafari M, Hamblin MR. Nanomaterials for photothermal and photodynamic cancer therapy. APPLIED PHYSICS REVIEWS 2022; 9. [DOI: 10.1063/5.0047672] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
Abstract
In recent years, the role of optically sensitive nanomaterials has become powerful moieties in therapeutic techniques and has become particularly emphasized. Currently, by the extraordinary development of nanomaterials in different fields of medicine, they have found new applications. Phototherapy modalities, such as photothermal therapy (PTT) by toxic heat generation and photodynamic therapy (PDT) by reactive oxygen species, are known as promising phototherapeutic techniques, which can overcome the limitations of conventional protocols. Moreover, nanomaterial-based PDT and PTT match the simultaneous immune therapy and increase the immune system stimulation resulting from the denaturation of cancer cells. Nevertheless, nanomaterials should have sufficient biocompatibility and efficiency to meet PDT and PTT requirements as therapeutic agents. The present review focuses on the therapeutic potency of PDT, PTT, and also their combined modalities, which are known alternative protocols with minimal morbidity integrated into gold standard treatments such as surgery, chemotherapy, and radiation therapy at tumor treatment and cancer-related infectious diseases. In addition, for deeper understanding, photoablation effects with emphasis on the nature, morphology, and size of photosensitive nanomaterials in PDT and PTT were studied. Finally, transportation techniques and moieties needed as carriers of photosensitizers and photothermal therapy agents to hard-accessed regions, for example, cancerous regions, were investigated.
Collapse
Affiliation(s)
- Behzad Nasseri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences 1 , Tabriz, Iran
- Department of Nanomedicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences 2 , Tabriz, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences 1 , Tabriz, Iran
| | - Farhad Bani
- Department of Nanomedicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences 2 , Tabriz, Iran
- Drug Applied Research Center 3 , Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Davaran
- Drug Applied Research Center 3 , Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Department of Nanomedicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences 2 , Tabriz, Iran
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology 4 , P.O. Box 11155-9161, Tehran, Iran
- School of Engineering, Macquarie University 5 , Sydney, New South Wales 2109, Australia
| | - Ali Bahadori
- Department of Medical Microbiology, Sarab Faculty of Medical School 6 , Sarab, Iran
| | - Mojtaba Ziaei
- Medicinal Plants Research Center, Maragheh University of Medical Sciences 7 , Maragheh, Iran
| | | | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology 9 , G. Narutowicza 11/12 80-233, Gdańsk, Poland
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Iran University of Medical Sciences 10 , Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg 11 , Doornfontein 2028, South Africa
- Wellman Center for Photomedicine, Massachusetts General Hospital 12 , Boston, Massachusetts 02114, USA
- Department of Dermatology, Harvard Medical School 13 , Boston, Massachusetts 02115, USA
| |
Collapse
|
42
|
Liu L, Lu XY, Zhang ML, Ren YX, Wang J, Yang XG. 2D MOF nanosheets as an artificial light-harvesting system with enhanced photoelectric switching performance. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00404f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report the synthesis, structure and photophysical properties of a novel well-defined layered metal-organic framework (MOF) [Cd(ppda)(mbib)] by the selection of two flexible ligands 1,4-phenylenediacetic acid (ppda) and 1,3-bis(imidazol-1-ylmethyl)benzene...
Collapse
|
43
|
Saikia BS, Borpatra PJ, Rahman I, Deb ML, Baruah PK. Visible-light-promoted sulfenylation of 6-aminouracils under catalyst-free conditions. NEW J CHEM 2022. [DOI: 10.1039/d2nj01941h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Visible-light-promoted reactions have proven to be a decent strategy for the synthesis of complex molecules.
Collapse
Affiliation(s)
- B. Shriya Saikia
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati-781014, Assam, India
| | - Paran J. Borpatra
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati-781014, Assam, India
| | - Iftakur Rahman
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati-781014, Assam, India
| | - Mohit L. Deb
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati-781014, Assam, India
| | - Pranjal K. Baruah
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati-781014, Assam, India
| |
Collapse
|
44
|
Daliran S, Oveisi AR, Peng Y, López-Magano A, Khajeh M, Mas-Ballesté R, Alemán J, Luque R, Garcia H. Metal–organic framework (MOF)-, covalent-organic framework (COF)-, and porous-organic polymers (POP)-catalyzed selective C–H bond activation and functionalization reactions. Chem Soc Rev 2022; 51:7810-7882. [DOI: 10.1039/d1cs00976a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The review summarizes the state-of-the-art of C–H active transformations over crystalline and amorphous porous materials as new emerging heterogeneous (photo)catalysts.
Collapse
Affiliation(s)
- Saba Daliran
- Department of Chemistry, Faculty of Sciences, Department of Chemistry, University of Zabol, 98615-538 Zabol, Iran
| | - Ali Reza Oveisi
- Department of Chemistry, Faculty of Sciences, Department of Chemistry, University of Zabol, 98615-538 Zabol, Iran
| | - Yong Peng
- Instituto de Tecnología Química CSIC-UPV, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Alberto López-Magano
- Inorganic Chemistry Department, Módulo 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Mostafa Khajeh
- Department of Chemistry, Faculty of Sciences, Department of Chemistry, University of Zabol, 98615-538 Zabol, Iran
| | - Rubén Mas-Ballesté
- Inorganic Chemistry Department, Módulo 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José Alemán
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Rafael Luque
- Department of Organic Chemistry, University of Cordoba, Campus de Rabanales, EdificioMarie Curie (C-3), CtraNnal IV-A, Km 396, E14014 Cordoba, Spain
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya str., 117198, Moscow, Russia
| | - Hermenegildo Garcia
- Instituto de Tecnología Química CSIC-UPV, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|
45
|
Liu W, Yang Y, Yang X, Peng YL, Cheng P, Zhang Z, Chen Y. Template-Directed Fabrication of Highly Efficient Metal-Organic Framework Photocatalysts. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58619-58629. [PMID: 34860488 DOI: 10.1021/acsami.1c17925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photocatalysis is a powerful and versatile tool widely applied in the areas of synthesis chemistry. However, most of the photocatalysts currently used are homogeneous catalysts, which inevitably face issues such as product-catalyst separation and recyclability. Addressing this challenge, we utilized a homogeneous Ru photocatalyst as a structure-directing template to fabricate a series of isostructural photocatalyst-encapsulating metal-organic frameworks (photocatalyst@MOFs) with high porosity, robustness, and photocatalyst loading. The regular channels of MOF can disperse the encapsulated photocatalysts, promote the mass transfer of substrates and products, and provide an outstanding substrate confinement effect, thereby dramatically improving the catalytic activity and excellent recyclability toward valuable organic reactions. For instance, the MOF photocatalysts can catalyze the asymmetric Mannich reaction with ketones with high yields and excellent enantioselectivities (up to 99% ee), better than the reported photocatalyst. Significantly, this was the first case that heterogeneous MOF-based photocatalyst can catalyze the asymmetric Mannich reaction without cocatalysts under room temperature and visible light. This work not only explores an avenue to prepare heterogeneous photocatalysts but also broadens the application scope of MOF-based photocatalysts.
Collapse
Affiliation(s)
- Wansheng Liu
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yi Yang
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaojie Yang
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yun-Lei Peng
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Peng Cheng
- College of Chemistry, Nankai University, Tianjin 300071, China
- Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Zhenjie Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- College of Chemistry, Nankai University, Tianjin 300071, China
- Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- College of Pharmacy, Nankai University, Tianjin 300071, China
| |
Collapse
|
46
|
Recent Advances on the Halo- and Cyano-Trifluoromethylation of Alkenes and Alkynes. Molecules 2021; 26:molecules26237221. [PMID: 34885802 PMCID: PMC8659293 DOI: 10.3390/molecules26237221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 12/02/2022] Open
Abstract
Incorporation of fluorine into organic molecules is a well-established strategy in the design of advanced materials, agrochemicals, and pharmaceuticals. Among numerous modern synthetic approaches, functionalization of unsaturated bonds with simultaneous addition of trifluoromethyl group along with other substituents is currently one of the most attractive methods undergoing wide-ranging development. In this review article, we discuss the most significant contributions made in this area during the last decade (2012−2021). The reactions reviewed in this work include chloro-, bromo-, iodo-, fluoro- and cyano-trifluoromethylation of alkenes and alkynes.
Collapse
|
47
|
Jia JG, Zhao CC, Bao SS, Wu LQ, Wen GH, Jacobson AJ, Ma J, Zheng LM. Layer or Tube? Uncovering Key Factors Determining the Rolling-up of Layered Coordination Polymers. J Am Chem Soc 2021; 143:17587-17598. [PMID: 34644503 DOI: 10.1021/jacs.1c07517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nanotubular materials have garnered considerable attention since the discovery of carbon nanotubes. Although the layer-to-tube rolling up mechanism has been well recognized in explaining the formation of many inorganic nanotubes, it has not been generally applied to coordination polymers (CPs). To uncover the key factors that determine the rolling-up of layered CPs, we have chosen the Co/R-, S-Xpemp [Xpemp = (4-X-1-phenylethylamino)methylphosphonic acid, X = H, F, Cl, Br] systems and study how the weak interactions influence the formation of layered or tubular structures. Four pairs of homochiral isostructural compounds R-, S-Co(Xpemp)(H2O)2 [X = H (1H), F (2F), Cl (3Cl), Br (4Br)] were obtained with tubular structures. The inclusion of 3,3'-azobipyridine (ABP) guest molecules led to compounds R-, S-[Co(Xpemp)(H2O)2]4·ABP·H2O with layered structures when X was Cl (5Cl) and Br (6Br), but tubular compounds 1H and 2F when X was H and F. Layered structures were also obtained for racemic compounds meso-Co(Xpemp)(H2O)2 [X = F (7F), Cl (8Cl), Br (9Br)] using racemic XpempH2 as the reaction precursor, but not when X = H. A detailed study on R-6Br revealed that layer-to-tube transformation occurred upon removal of ABP under hydrothermal conditions, forming R-4Br with a tubular structure. Similar layer-to-tube conversion did not occur in organic solvents. The results demonstrate that weak interlayer interactions are a prerequisite but not sufficient for the rolling-up of the layers. In the present cases, water also provides a driving force in the layer-to-tube transformation. The experimental results were rationalized by theoretical calculations.
Collapse
Affiliation(s)
- Jia-Ge Jia
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, People's Republic of China
| | - Chen-Chen Zhao
- Theoretical and Computational Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, People's Republic of China
| | - Lan-Qing Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, People's Republic of China
| | - Ge-Hua Wen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, People's Republic of China
| | - Allan J Jacobson
- Department of Chemistry and Texas Center for Superconductivity, University of Houston, Houston, Texas 77204, United States
| | - Jing Ma
- Theoretical and Computational Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|