1
|
Liu Q, Zhang BB, Zhang CS, Han JN, Wang ZX, Chen XY. Pnictogen bonding enabled photosynthesis of chiral selenium-containing pyridines from pyridylphosphonium salts. FUNDAMENTAL RESEARCH 2025; 5:654-662. [PMID: 40242517 PMCID: PMC11997580 DOI: 10.1016/j.fmre.2023.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/17/2023] [Accepted: 03/17/2023] [Indexed: 04/18/2025] Open
Abstract
Pyridylphosphonium salts, which are readily available and air and thermally stable, have been used to effectively synthesize structurally diverse pyridines. Herein, we report the pnictogen bonding (PnB) enabled photoactivation of pyridylphosphonium salts with catalytic potassium carbonate to generate pyridyl radical for pyridine synthesis. Remarkably, this light-driven transformation allowed chiral pool synthesis with excellent chirality retention, giving a wide range of chiral selenium-containing pyridines. On the basis of our combined computational and experimental studies, we propose that the PnB between pyridylphosphonium salts and potassium carbonate enables access to the photoactive charge transfer complex, which is able to undergo single electron transfer to generate pyridyl radical for its transformation.
Collapse
Affiliation(s)
- Qiang Liu
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Bei-Bei Zhang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chao-Shen Zhang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Nan Han
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou 256606, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou 256606, China
| |
Collapse
|
2
|
Wu L, Tan CH, Ye X. Applications of Antimony in Catalysis. ACS ORGANIC & INORGANIC AU 2025; 5:13-25. [PMID: 39927104 PMCID: PMC11803468 DOI: 10.1021/acsorginorgau.4c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 02/11/2025]
Abstract
Antimony is a fifth-period element in the nitrogen family, a silver-white metalloid with weak conductivity and thermal conductivity. It is stable at room temperature and does not react easily with oxygen and water in the air. Natural minerals are found in the form of sulfides. Current research and applications are mostly concentrated on material modification, utilizing the properties of antimony in traditional chemical industries, helping alloys improve their flame retardancy, stability, increasing semiconductor performance, etc. For example, to enhance the electronic conductivity, after coating or embedding antimony or its derivatives in thin layers in photonic nanomaterials, the performance of the original material in photoelectrochemical catalysis can be effectively increased, thereby expanding the efficiency of oxidation-reduction reactions accounting for the degradation of organic matter in wastewater. However, the catalytic reaction between the derivatives of antimony and organic compounds beside the material is less studied, and the mechanism of the studies in organic synthesis is relatively unclear. The reported organic synthesis related to antimony is mainly in the form of Lewis acid catalysts or dual-metal catalytic systems combined with other metals. This Review will focus on the application of antimony in photocatalysis, electrocatalysis, and other organic syntheses in the past 10 years.
Collapse
Affiliation(s)
- Lewen Wu
- College
of Pharmaceutical Science & Collaborative Innovation Center of
Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Choon-Hong Tan
- School
of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Xinyi Ye
- College
of Pharmaceutical Science & Collaborative Innovation Center of
Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| |
Collapse
|
3
|
Warring L, Westendorff KS, Bennett MT, Nam K, Stewart BM, Dickie DA, Paolucci C, Gunnoe TB, Gilliard RJ. Carbodicarbene-Stibenium Ion-Mediated Functionalization of C(sp 3)-H and C(sp)-H Bonds. Angew Chem Int Ed Engl 2025; 64:e202415070. [PMID: 39245628 DOI: 10.1002/anie.202415070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/10/2024]
Abstract
Main-group element-mediated C-H activation remains experimentally challenging and the development of clear concepts and design principles has been limited by the increased reactivity of relevant complexes, especially for the heavier elements. Herein, we report that the stibenium ion [(pyCDC)Sb][NTf2]3 (1) (pyCDC=bis-pyridyl carbodicarbene; NTf2=bis(trifluoromethanesulfonyl)imide) reacts with acetonitrile in the presence of the base 2,6-di-tert-butylpyridine to enable C(sp3)-H bond breaking to generate the stiba-methylene nitrile complex [(pyCDC)Sb(CH2CN)][NTf2]2 (2). Kinetic analyses were performed to elucidate the rate dependence for all the substrates involved in the reaction. Computational studies suggest that C-H activation proceeds via a mechanism in which acetonitrile first coordinates to the Sb center through the nitrogen atom in a κ1 fashion, thereby weakening the C-H bond which can then be deprotonated by base in solution. Further, we show that 1 reacts with terminal alkynes in the presence of 2,6-di-tert-butylpyridine to enable C(sp)-H bond breaking to form stiba-alkynyl adducts of the type [(pyCDC)Sb(CCR)][NTf2]2 (3 a-f). Compound 1 shows excellent specificity for the activation of the terminal C(sp)-H bond even across alkynes with diverse functionality. The resulting stiba-methylene nitrile and stiba-alkynyl adducts react with elemental iodine (I2) to produce iodoacetonitrile and iodoalkynes, while regenerating an Sb trication.
Collapse
Affiliation(s)
- Levi Warring
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA-02139, USA
| | - Karl S Westendorff
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA-02139, USA
- Department of Chemical Engineering, University of Virginia, 385 McCormick Road, Charlottesville, VA-22904, USA
| | - Marc T Bennett
- Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, VA-22904, USA
| | - Kijeong Nam
- Department of Chemical Engineering, University of Virginia, 385 McCormick Road, Charlottesville, VA-22904, USA
| | - Brennan M Stewart
- Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, VA-22904, USA
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, VA-22904, USA
| | - Christopher Paolucci
- Department of Chemical Engineering, University of Virginia, 385 McCormick Road, Charlottesville, VA-22904, USA
| | - T Brent Gunnoe
- Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, VA-22904, USA
| | - Robert J Gilliard
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA-02139, USA
| |
Collapse
|
4
|
Yang X, Zhao C, Sun C, Zeng Y. Carbon-Bromide Bond Activation by Bidentate Halogen, Chalcogen, Pnicogen, and Tetrel Bonds. J Phys Chem A 2024; 128:10534-10543. [PMID: 39584752 DOI: 10.1021/acs.jpca.4c06230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Halogen, chalcogen, pnictogen, and tetrel bonds in organocatalysis have gained noticeable attention. In this work, carbon-bromide bond activation in the Ritter reaction by bidentate imidazole-type halogen, chalcogen, pnicogen, and tetrel bond donors was studied by density functional theory. All of the above four kinds of catalysts exhibited excellent catalytic performance. σ-hole interactions were formed between the Br atom of the reactant and the halogen, chalcogen, pnicogen, and tetrel bond donors, which elongated the C-Br bond and caused the rearrangement of the electron density of the precomplexes, resulting in the breaking of the C-Br bond and Br abstraction. Notably, the catalytic activity of the chalcogen bond is the best, followed by that of the halogen bond. Although the catalytic activity of pnicogen and tetrel bond catalysts is not as good as that of the halogen bond and chalcogen bond, they can still be used as effective substitutes for the halogen bond and chalcogen bond, providing more choices for noncovalent catalysis. Furthermore, within the same group, the fifth-period atomic catalyst is more effective than the fourth-period one for halogen, chalcogen, pnicogen, and tetrel bond donor catalysts.
Collapse
Affiliation(s)
- Xu Yang
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang 050024, China
| | - Chang Zhao
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang 050024, China
| | - Cuihong Sun
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang 050024, China
- College of Chemical Engineering, Shijiazhuang University, Shijiazhuang 050035, China
| | - Yanli Zeng
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
5
|
Renno G, Chen D, Zhang QX, Gomila RM, Frontera A, Sakai N, Ward TR, Matile S. Pnictogen-Bonding Enzymes. Angew Chem Int Ed Engl 2024; 63:e202411347. [PMID: 38967094 DOI: 10.1002/anie.202411347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
The objective of this study was to create artificial enzymes that capitalize on pnictogen bonding, a σ-hole interaction that is essentially absent in biocatalysis. For this purpose, stibine catalysts were equipped with a biotin derivative and combined with streptavidin mutants to identify an efficient transfer hydrogenation catalyst for the reduction of a fluorogenic quinoline substrate. Increased catalytic activity from wild-type streptavidin to the best mutants coincides with the depth of the σ hole on the Sb(V) center, and the emergence of saturation kinetic behavior. Michaelis-Menten analysis reveals transition-state recognition in the low micromolar range, more than three orders of magnitude stronger than the millimolar substrate recognition. Carboxylates preferred by the best mutants contribute to transition-state recognition by hydrogen-bonded ion pairing and anion-π interactions with the emerging pyridinium product. The emergence of challenging stereoselectivity in aqueous systems further emphasizes compatibility of pnictogen bonding with higher order systems catalysis.
Collapse
Affiliation(s)
- Giacomo Renno
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering, BPR 1095, Basel, Switzerland
| | - Dongping Chen
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering, BPR 1095, Basel, Switzerland
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Qing-Xia Zhang
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering, BPR 1095, Basel, Switzerland
| | - Rosa M Gomila
- Departament de Química, Universitat de les Illes Balears, 07122, Palma de Mallorca, Spain
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, 07122, Palma de Mallorca, Spain
| | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering, BPR 1095, Basel, Switzerland
| | - Thomas R Ward
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering, BPR 1095, Basel, Switzerland
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering, BPR 1095, Basel, Switzerland
| |
Collapse
|
6
|
Culvyhouse J, Unruh DK, Lischka H, Aquino AJA, Krempner C. Facile Access to Organostibines via Selective Organic Superbase Catalyzed Antimony-Carbon Protonolysis. Angew Chem Int Ed Engl 2024; 63:e202407822. [PMID: 38763897 DOI: 10.1002/anie.202407822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
The selective formation of antimony-carbon bonds via organic superbase catalysis under metal- and salt-free conditions is reported. This novel approach utilizes electron-deficient stibine, Sb(C6F5)3, to give upon base-catalyzed reactions with weakly acidic aromatic and heteroaromatic hydrocarbons access to a range of new aromatic and heteroaromatic stibines, respectively, with loss of C6HF5. Also, the significantly less electron-deficient stibines, Ph2SbC6F5 and PhSb(C6F5)2 smoothly underwent base-catalyzed exchange reactions with a range of terminal alkynes to generate the stibines of formulae PhSb(C≡CPh)2, and Ph2SbC≡CR [R=C6H5, C6H4-NO2, COOEt, CH2Cl, CH2NEt2, CH2OSiMe3, Sb(C6H5)2], respectively. These formal substitution reactions proceed with high selectivity as only the C6F5 groups serve as a leaving group to be liberated as C6HF5 upon formal proton transfer from the alkyne. Kinetic studies of the base-catalyzed reaction of Ph2SbC6F5 with phenyl acetylene to form Ph2SbC≡CPh and C6HF5 suggested the empirical rate law to exhibit a first-order dependence with respect to the base catalyst, alkyne and stibine. DFT calculations support a pathway proceeding via a concerted σ-bond metathesis transition state, where the base catalyst activates the Sb-C6F5 bond sequence through secondary bond interactions.
Collapse
Affiliation(s)
- Jacob Culvyhouse
- Department of Chemistry & Biochemistry, Texas Tech University, Memorial Dr. & Boston, Lubbock, Texas, 79409, United States
| | - Daniel K Unruh
- Department of Chemistry & Biochemistry, Texas Tech University, Memorial Dr. & Boston, Lubbock, Texas, 79409, United States
| | - Hans Lischka
- Department of Chemistry & Biochemistry, Texas Tech University, Memorial Dr. & Boston, Lubbock, Texas, 79409, United States
| | - Adelia J A Aquino
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas, 79409-1021, United States
| | - Clemens Krempner
- Department of Chemistry & Biochemistry, Texas Tech University, Memorial Dr. & Boston, Lubbock, Texas, 79409, United States
| |
Collapse
|
7
|
Jovanovic D, Poliyodath Mohanan M, Huber SM. Halogen, Chalcogen, Pnictogen, and Tetrel Bonding in Non-Covalent Organocatalysis: An Update. Angew Chem Int Ed Engl 2024; 63:e202404823. [PMID: 38728623 DOI: 10.1002/anie.202404823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024]
Abstract
The use of noncovalent interactions based on electrophilic halogen, chalcogen, pnictogen, or tetrel centers in organocatalysis has gained noticeable attention. Herein, we provide an overview on the most important developments in the last years with a clear focus on experimental studies and on catalysts which act via such non-transient interactions.
Collapse
Affiliation(s)
- Dragana Jovanovic
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Meghana Poliyodath Mohanan
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Stefan M Huber
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
8
|
Beckmann JL, Tiessen N, Neumann B, Stammler HG, Hoge B, Mitzel NW. Polydentate chalcogen bonding: anion trapping with a water-stable host compound carrying Se-CF 3 functions. Dalton Trans 2024; 53:12234-12239. [PMID: 38979556 DOI: 10.1039/d4dt01730g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Bidentate and tetradentate chalcogen bonding host systems with SeCF3 functions as σ-hole donors in close proximity at the alkyne functions of 1,8-diethynylanthracene and its syn-dimer were prepared in quantitative yield by tin-selenium exchange reactions of the corresponding trimethylstannyl precursors with ClSeCF3. The bidentate system shows chalcogen bonding interactions with THF, but does not bind halide ions. The tetradentate system cooperatively chelates chloride, bromide and iodide ions with its four CC-SeCF3 units by rotating the four σ-holes towards the halide ion. The structures of these halide ion adducts were determined by X-ray diffraction. The hydrobromide and -iodide salts of the ethyl derivative of Schwesinger's phosphazene superbase served as halide salts with very weakly coordinating cations.
Collapse
Affiliation(s)
- J Louis Beckmann
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Natalia Tiessen
- Inorganic Chemistry ACII, Center for Molecular Materials CM2, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Beate Neumann
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Hans-Georg Stammler
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Berthold Hoge
- Inorganic Chemistry ACII, Center for Molecular Materials CM2, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Norbert W Mitzel
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| |
Collapse
|
9
|
Liu J, Deng R, Liang X, Zhou M, Zheng P, Chi YR. Carbene-Catalyzed and Pnictogen Bond-Assisted Access to P III-Stereogenic Compounds. Angew Chem Int Ed Engl 2024; 63:e202404477. [PMID: 38669345 DOI: 10.1002/anie.202404477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 04/28/2024]
Abstract
Intermolecular pnictogen bonding (PnB) catalysis has received increased interest in non-covalent organocatalysis. It has been demonstrated that organic electron-deficient pnictogen atoms can act as prospective Lewis acids. Here, we present a catalytic approach for the asymmetric synthesis of chiral PIII compounds by combining intramolecular PnB interactions and carbene catalysis. Our design features a pre-chiral phosphorus molecule bearing two electron-withdrawing benzoyl groups, resulting in the formation of a σ-hole at the P atom. X-ray and non-covalent interaction (NCI) analysis indicate that the model substrates exhibit intrinsic PnB interaction between the oxygen atom of the formyl group and the phosphorus atom. This induces a conformational locking effect, leading to the crystallization of the phosphorus substrate in a preferred conformation (P212121 chiral group). Under the catalysis of N-heterocyclic carbene, the aldehyde moiety activated by the pnictogen bond selectively reacts with an alcohol to yield the corresponding chiral monoester/phosphorus product with excellent enantioselectivity. This Lewis acidic phosphorus center, aroused by the non-polarized intramolecular pnictogen bond interaction, assists in conformational and selective regulations, providing unique opportunities for catalysis and beyond.
Collapse
Affiliation(s)
- Jianjian Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, 550025, Guiyang, China
| | - Rui Deng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, 550025, Guiyang, China
| | - Xuyang Liang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, 550025, Guiyang, China
| | - Mali Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, 550025, Guiyang, China
| | - Pengcheng Zheng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, 550025, Guiyang, China
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, 550025, Guiyang, China
- School of chemistry, chemical engineering, and biotechnology, Nanyang Technological University, 637371, Singapore, Singapore
| |
Collapse
|
10
|
Sen N, Sarkar P, Meena Y, Tothadi S, Pati SK, Khan S. Synthesis and catalytic application of a donor-free bismuthenium cation. Chem Commun (Camb) 2024; 60:6877-6880. [PMID: 38873969 DOI: 10.1039/d4cc01805b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Herein, we report the synthesis and catalytic application of a new N,N'-dineopentyl-1,2-phenylenediamine-based bismuthenium cation (3). 3 has been synthesized via the treatment of chlorobismuthane LBiCl [L = 1,2-C6H4{N(CH2tBu)}2] (2) with AgSbF6, and was further used as a robust catalyst for the cyanosilylation of ketones under mild reaction conditions. Experimental studies and DFT calculations were performed to understand the mechanistic pathway.
Collapse
Affiliation(s)
- Nilanjana Sen
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Pallavi Sarkar
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-560064, India.
| | - Yadram Meena
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Srinu Tothadi
- CSIR-Central Salt and Marine Chemicals Research (AcSIR), Ghaziabad-201002, UP, India
| | - Swapan K Pati
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-560064, India.
| | - Shabana Khan
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| |
Collapse
|
11
|
Yaghoobi F, Salehzadeh S. Catalysis of the Nitroso-Diels-Alder cycloaddition reaction between CH 3N=O and cis-1,3-butadiene by pnictogen bonding, a theoretical study. J Mol Graph Model 2023; 125:108583. [PMID: 37582304 DOI: 10.1016/j.jmgm.2023.108583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/13/2023] [Accepted: 07/28/2023] [Indexed: 08/17/2023]
Abstract
Density functional theory calculations at the M06-2X/aug-cc-pVTZ level of theory have been used to examine the Nitroso-Diels-Alder (N-D-A) cycloaddition reaction between the CH3N=O and cis-1,3-butadiene in the presence of PO2X (X=F, Cl, OH) as a catalyst. The effect of the above PO2X compounds on the activation energy of the N-D-A reaction, has been studied here. In the first stage, the energies of two different bonding interactions, via P⋯N versus P⋯O binding, between the PO2X and CH3N=O molecules were calculated. The results showed that the largest values of the interaction energy between the above molecules belong to the PO2F, when connects to the nitrogen atom of the CH3N=O. Also, calculations showed that all the above PO2X compounds, decrease the activation energies of N-D-A reaction studied here via both P⋯N and P⋯O interactions. However, the largest effect on activation energies of the reaction belongs to the PO2F catalyst when acts via P⋯N bonding. The activation strain model (ASM) was used to analyze the influence of the PO2X catalyst on the studied reaction. The quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) analysis were performed to understand the nature of forming interactions at the TS structures. The results of this study showed that the PO2X (X=F, Cl, OH) compounds may be suggested as efficient catalysts for N-D-A reactions.
Collapse
Affiliation(s)
- Fereshteh Yaghoobi
- Nahavand Higher Education Complex, Bu-Ali Sina University, Hamedan, Iran.
| | | |
Collapse
|
12
|
Beckmann JL, Krieft J, Vishnevskiy YV, Neumann B, Stammler HG, Mitzel NW. Poly-pnictogen bonding: trapping halide ions by a tetradentate antimony(iii) Lewis acid. Chem Sci 2023; 14:13551-13559. [PMID: 38033898 PMCID: PMC10685332 DOI: 10.1039/d3sc04594c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
A highly halide affine, tetradentate pnictogen-bonding host-system based on the syn-photodimer of 1,8-diethynylanthracene was synthesized by a selective tin-antimony exchange reaction. The host carries four C[triple bond, length as m-dash]C-Sb(C2F5)2 units and has been investigated regarding its ability to act as a Lewis acidic host component for the cooperative trapping of halide ions (F-, Cl-, Br-, I-). The chelating effect makes this host-system superior to its bidentate derivative in competition experiments. It represents a charge-reversed crown-4 and has the ability to dissolve otherwise poorly soluble salts like tetra-methyl-ammonium chloride. Its NMR-spectroscopic properties make it a potential probe for halide ions in solution. Insights into the structural properties of the halide adducts by X-ray diffraction and computational methods (DFT, QTAIM, IQA) reveal a complex interplay of attractive pnictogen bonding interactions and Coulomb repulsion.
Collapse
Affiliation(s)
- J Louis Beckmann
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University Universitätsstrasse 25 Bielefeld 33615 Germany
| | - Jonas Krieft
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University Universitätsstrasse 25 Bielefeld 33615 Germany
| | - Yury V Vishnevskiy
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University Universitätsstrasse 25 Bielefeld 33615 Germany
| | - Beate Neumann
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University Universitätsstrasse 25 Bielefeld 33615 Germany
| | - Hans-Georg Stammler
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University Universitätsstrasse 25 Bielefeld 33615 Germany
| | - Norbert W Mitzel
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University Universitätsstrasse 25 Bielefeld 33615 Germany
| |
Collapse
|
13
|
Beckmann JL, Krieft J, Vishnevskiy YV, Neumann B, Stammler HG, Mitzel NW. A Bidentate Antimony Pnictogen Bonding Host System. Angew Chem Int Ed Engl 2023; 62:e202310439. [PMID: 37773008 DOI: 10.1002/anie.202310439] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023]
Abstract
A bidentate pnictogen bonding host-system based on 1,8-diethynylanthracene was synthesized by a selective tin-antimony exchange reaction and investigated regarding its ability to act as a Lewis acidic host component for the complexation of Lewis basic or anionic guests. In this work, the novel C≡C-Sb(C2 F5 )2 unit was established to study the potential of antimony(III) sites as representatives for the scarcely explored pnictogen bonding donors. The capability of this partly fluorinated host system was investigated towards halide anions (Cl- , Br- , I- ), dimethyl chalcogenides Me2 Y (Y=O, S, Se, Te), and nitrogen heterocycles (pyridine, pyrimidine). Insights into the adduct formation behavior as well as the bonding situation of such E⋅⋅⋅Sb-CF moieties were obtained in solution by means of NMR spectroscopy, in the solid state by X-ray diffraction, by elemental analyses, and by computational methods (DFT, QTAIM, IQA), respectively.
Collapse
Affiliation(s)
- J Louis Beckmann
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Jonas Krieft
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Yury V Vishnevskiy
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Beate Neumann
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Hans-Georg Stammler
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Norbert W Mitzel
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| |
Collapse
|
14
|
Lan X, Zhang X, Mei Y, Hu C, Liu LL. Utilizing bis(imino)dihydroacridanide pincer ligands in p-block chemistry: synthesis and catalysis of an antimony monocation salt. Dalton Trans 2023; 52:15660-15664. [PMID: 37859530 DOI: 10.1039/d3dt03310d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
We present the synthesis and characterization of an Sb(III) monocation salt stabilized by a bulky bis(imino)dihydroacridanide pincer ligand. The Lewis acidity of the Sb cation is quantified using the Guttmann-Beckett method and confirmed by its reaction with 4-dimethylaminopyridine, which forms a Lewis acid-base adduct. This Sb cation exhibits catalytic activity in the cyanosilylation of arylketones. The electronic structure of the Sb cation as well as the mechanism of the catalytic transformation are explored by density functional theory computations.
Collapse
Affiliation(s)
- Xiaofang Lan
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xin Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yanbo Mei
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Chaopeng Hu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Liu Leo Liu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
15
|
Tu YL, Zhang BB, Qiu BS, Wang ZX, Chen XY. Cross-Electrophile C-P III Coupling of Chlorophosphines with Organic Halides: Photoinduced P III and Aminoalkyl Radical Generation Enabled by Pnictogen Bonding. Angew Chem Int Ed Engl 2023; 62:e202310764. [PMID: 37668107 DOI: 10.1002/anie.202310764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/06/2023]
Abstract
Pnictogen bonding (PnB) has gained recognition as an appealing strategy for constructing novel architectures and unlocking new properties. Within the synthetic community, the development of a straightforward and much simpler protocol for cross-electrophile C-PIII coupling remains an ongoing challenge with organic halides. In this study, we present a simple strategy for photoinduced PnB-enabled cross-electrophile C-PIII couplings using readily available chlorophosphines and organic halides via merging single electron transfer (SET) and halogen atom transfer (XAT) processes. In this photomediated transformation, the PnB formed between chlorophosphines and alkyl amines facilitates the photogeneration of PIII radicals and α-aminoalkyl radicals through SET. Subsequently, the resulting α-aminoalkyl radicals activate C-X bonds via XAT, leading to the formation of carbon radicals. This methodology offers operational simplicity and compatibility with both aliphatic and aromatic chlorophosphines and organic halides.
Collapse
Affiliation(s)
- Yong-Liang Tu
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Bei-Bei Zhang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing-Sheng Qiu
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province, 256606, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province, 256606, China
| |
Collapse
|
16
|
Ren XJ, Liao PW, Sheng H, Wang ZX, Chen XY. N-Heterocyclic Nitrenium-Catalyzed Photohomolysis of CF 3SO 2Cl for Alkene Trifluoromethylation. Org Lett 2023; 25:6189-6194. [PMID: 37578296 DOI: 10.1021/acs.orglett.3c02380] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
N-Heterocyclic nitreniums (NHNs) have been utilized as Lewis acid catalysts to activate substrates with lone pairs. Alternative to their conventional applications, we have discovered that NHNs can also serve as charge transfer complex catalysts. Herein, we present another potential of NHNs by utilizing a weak interaction between NHNs and CF3SO2Cl. The method promotes CF3SO2Cl to undergo photohomolysis, resulting in the CF3 radical. Mechanistic studies suggested that the weak interaction could be due to the π-hole effect of NHNs.
Collapse
Affiliation(s)
- Xiao-Jian Ren
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng-Wei Liao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Sheng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| |
Collapse
|
17
|
Chen Q, Zhu Y, Shi X, Huang R, Jiang C, Zhang K, Liu G. Light-driven redox deracemization of indolines and tetrahydroquinolines using a photocatalyst coupled with chiral phosphoric acid. Chem Sci 2023; 14:1715-1723. [PMID: 36819858 PMCID: PMC9930931 DOI: 10.1039/d2sc06340a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/09/2023] [Indexed: 01/11/2023] Open
Abstract
The integration of oxidation and enantioselective reduction enables a redox deracemization to directly access enantioenriched products from their corresponding racemates. However, the solution of the kinetically microscopic reversibility of substrates used in this oxidation/reduction unidirectional event is a great challenge. To address this issue, we have developed a light-driven strategy to enable an efficient redox deracemization of cyclamines. The method combines a photocatalyst and a chiral phosphoric acid in a toluene/aqueous cyclodextrin emulsion biphasic co-solvent system to drive the cascade out-of-equilibrium. Systemic optimizations achieve a feasible oxidation/reduction cascade sequence, and mechanistic investigations demonstrate a unidirectional process. This single-operation cascade route, which involves initial photocatalyzed oxidation of achiral cyclamines to cyclimines and subsequent chiral phosphoric acid-catalyzed enantioselective reduction of cyclimines to chiral cyclamines, is suitable for constructing optically pure indolines and tetrahydroquinolines.
Collapse
Affiliation(s)
- Qipeng Chen
- International Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University Shanghai 200234 P. R. China
| | - Yuanli Zhu
- International Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University Shanghai 200234 P. R. China
| | - Xujing Shi
- International Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University Shanghai 200234 P. R. China
| | - Renfu Huang
- International Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University Shanghai 200234 P. R. China
| | - Chuang Jiang
- International Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University Shanghai 200234 P. R. China
| | - Kun Zhang
- International Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University Shanghai 200234 P. R. China
| | - Guohua Liu
- International Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University Shanghai 200234 P. R. China
| |
Collapse
|
18
|
Yang X, Li S, He Y, Dai D, Bao M, Luo Z, Liu X, Geng Y, Fan L. Rhodium(III)-catalyzed oxidative cross-coupling of benzoxazinones with styrenes via C-H activation. Org Biomol Chem 2023; 21:797-806. [PMID: 36594562 DOI: 10.1039/d2ob01655a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vinylarenes represent an important class of core skeleton embedded in natural products, organic materials, and pharmaceutical molecules. Therefore, numerous efforts have been devoted to developing efficient methods for their preparation. Among them, transition-metal-catalyzed oxidative coupling of arenes and alkenes has proved to be a powerful method due to its high atom and step economy. Although a wide range of oxidative alkenylations of arenes have been developed, the alkenes employed in most cases are still limited to electron-deficient alkenes. Reported herein is a Rh(III)-catalyzed C-H cross-coupling of benzoxazinones and simple unactivated styrenes to furnish a variety of vinylarene scaffolds. This established protocol is characterized by wide functional group compatibility, high yields, and excellent regio- and chemo-selectivity. Mechanistic studies and gram-scale experiments on this high-value conversion are disclosed. Moreover, the potential utility of this method was highlighted by a series of further transformations.
Collapse
Affiliation(s)
- Xifa Yang
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Song Li
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Yuhao He
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Danhua Dai
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Mengyao Bao
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Ziyang Luo
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Xiangyang Liu
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Yuehua Geng
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Liangxin Fan
- College of Sciences, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
19
|
Warring LS, Walley JE, Dickie DA, Tiznado W, Pan S, Gilliard RJ. Lewis Superacidic Heavy Pnictaalkene Cations: Comparative Assessment of Carbodicarbene-Stibenium and Carbodicarbene-Bismuthenium Ions. Inorg Chem 2022; 61:18640-18652. [DOI: 10.1021/acs.inorgchem.2c03135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Levi S. Warring
- Department of Chemistry, University of Virginia, McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| | - Jacob E. Walley
- Department of Chemistry, University of Virginia, McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| | - Diane A. Dickie
- Department of Chemistry, University of Virginia, McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| | - William Tiznado
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, República 270, Santiago 8370146, Chile
| | - Sudip Pan
- Philipps-Universität Marburg Hans-Meerwein-Straße, Marburg 35032, Germany
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130023, China
| | - Robert J. Gilliard
- Department of Chemistry, University of Virginia, McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| |
Collapse
|
20
|
Binuclear Triphenylantimony(V) Catecholates through N-Donor Linkers: Structural Features and Redox Properties. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196484. [PMID: 36235022 PMCID: PMC9573088 DOI: 10.3390/molecules27196484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022]
Abstract
A series of binuclear triphenylantimony(V) bis-catecholato complexes 1–11 of the type (Cat)Ph3Sb-linker-SbPh3(Cat) was prepared by a reaction of the corresponding mononuclear catecholates (Cat)SbPh3 with a neutral bidentate donor linker ligands pyrazine (Pyr), 4,4′-dipyridyl (Bipy), bis-(pyridine-4-yl)-disulfide (PySSPy), and diazobicyclo[2,2,2]octane (DABCO) in a dry toluene: Cat = 3,6-di-tert-butyl-catecholate (3,6-DBCat), linker = Pyr (1); PySSPy (2); Bipy (3); DABCO (4); Cat = 3,5-di-tert-butyl-catecholate (3,5-DBCat), linker = Bipy (5); DABCO (9); Cat = 4,5-(piperazine-1,4-diyl)-3,6-di-tert-butylcatecholate (pip-3,6-DBCat), linker = Bipy (6); DABCO (10); Cat = 4,5-dichloro-3,6-di-tert-butylcatecholate (4,5-Cl2-3,6-DBCat), linker = Bipy (7); DABCO (11); and Cat = 4,5-dimethoxy-3,6-di-tert-butylcatecholate (4,5-(MeO)2-3,6-DBCat), linker = Bipy (8). The same reaction of (4,5-Cl2-3,6-DBCat)SbPh3 with DABCO in an open atmosphere results in a formation of 1D coordination polymer {[(4,5-Cl2-3,6-DBCat)SbPh3·H2O]·DABCO}n (12). Bis-catecholate complex Ph3Sb(Cat-Spiro-Cat)SbPh3 reacts with Bipy as 1:1 yielding a rare macrocyclic tetranuclear compound {Ph3Sb(Cat-Spiro-Cat)SbPh3∙(Bipy)}2 (13). The molecular structures of 1, 3, 4, 5, 8, 10, 12, and 13 in crystal state were established by single-crystal X-ray analysis. Complexes demonstrate different types of relative spatial positions of mononuclear moieties. The nature of chemical bonds, charges distribution, and the energy of Sb...N interaction were investigated in the example of complex 5. The electrochemical behavior of the complexes depends on the coordinated N-donor ligand. The coordination of pyrazine, Bipy, and PySSPy at the antimony atom changes their mechanism of electrooxidation: instead of two successive redox stages Cat/SQ and SQ/Cat, one multielectron stage was observed. The coordination of the DABCO ligand is accompanied by a significant shift in the oxidation potentials of the catecholate ligand to the cathodic region (by 0.4 V), compared to the initial complex.
Collapse
|
21
|
Scheiner S, Michalczyk M, Zierkiewicz W. Involvement of Arsenic Atom of AsF 3 in Five Pnicogen Bonds: Differences between X-ray Structure and Theoretical Models. Molecules 2022; 27:6486. [PMID: 36235021 PMCID: PMC9572024 DOI: 10.3390/molecules27196486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Bonding within the AsF3 crystal is analyzed via quantum chemical methods so as to identify and quantify the pnicogen bonds that are present. The structure of a finite crystal segment containing nine molecules is compared with that of a fully optimized cluster of the same size. The geometries are qualitatively different, with a much larger binding energy within the optimized nonamer. Although the total interaction energy of a central unit with the remaining peripheral molecules is comparable for the two structures, the binding of the peripherals with one another is far larger in the optimized cluster. This distinction of much stronger total binding within the optimized cluster is not limited to the nonamer but repeats itself for smaller aggregates as well. The average binding energy of the cluster rises quickly with size, asymptotically approaching a value nearly triple that of the dimer.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA
| | - Mariusz Michalczyk
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Wiktor Zierkiewicz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
22
|
Sharma D, Benny A, Gupta R, Jemmis ED, Venugopal A. Crystallographic evidence for a continuum and reversal of roles in primary-secondary interactions in antimony Lewis acids: applications in carbonyl activation. Chem Commun (Camb) 2022; 58:11009-11012. [PMID: 36097954 DOI: 10.1039/d2cc04027a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Primary and secondary interactions form the basis of substrate activation in Lewis-acid mediated catalysis, with most substrate activations occurring at the secondary binding site. We explore two series of antimony cations, [(NMe2CH2C6H4)(mesityl)Sb]+ (A) and [(NMe2C6H4)(mesityl)Sb]+ (B), by coordinating ligands with varying nucleophilicity at the position trans to the N-donor. The decreased nucleophilicity of the incoming ligands leads to reversal from a primary bond to a secondary interaction in A, whereas a constrained N-coordination in B diminishes the border between primary and secondary bonding. Investigations on carbonyl olefin metathesis reactions and carbonyl reduction demonstrate increased reactivity of a Lewis acid when the substrate activation occurs at the primary binding site.
Collapse
Affiliation(s)
- Deepti Sharma
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, 695551, India.
| | - Annabel Benny
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, 695551, India.
| | - Radhika Gupta
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Eluvathingal D Jemmis
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Ajay Venugopal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, 695551, India.
| |
Collapse
|
23
|
Chishiro A, Akioka I, Sumida A, Oka K, Tohnai N, Yumura T, Imoto H, Naka K. Tetrachlorocatecholates of triarylarsines as a novel class of Lewis acids. Dalton Trans 2022; 51:13716-13724. [PMID: 36004500 DOI: 10.1039/d2dt02145e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pnictogen-mediated Lewis acidity is an emerging research subject in organic chemistry, supramolecular chemistry, etc. In contrast to the extensive studies on phosphorus and antimony, the diversity of arsenic-Lewis acids was quite limited. Herein, tetrachlorocatecholates of triarylarsines were newly synthesized. Their structures, electronic properties, and Lewis acidities were experimentally and computationally examined and compared with the corresponding phosphorus and antimony analogs. This is the first systematic study on the relationship between the structure and Lewis acidity of arsenic-mediated Lewis acids.
Collapse
Affiliation(s)
- Akane Chishiro
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Ippei Akioka
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Akifumi Sumida
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Kouki Oka
- Center for Future Innovation (Cfi) and Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Norimitsu Tohnai
- Center for Future Innovation (Cfi) and Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takashi Yumura
- Faculty of Material Science and Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan. .,Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
24
|
Peluso P, Chankvetadze B. Recognition in the Domain of Molecular Chirality: From Noncovalent Interactions to Separation of Enantiomers. Chem Rev 2022; 122:13235-13400. [PMID: 35917234 DOI: 10.1021/acs.chemrev.1c00846] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It is not a coincidence that both chirality and noncovalent interactions are ubiquitous in nature and synthetic molecular systems. Noncovalent interactivity between chiral molecules underlies enantioselective recognition as a fundamental phenomenon regulating life and human activities. Thus, noncovalent interactions represent the narrative thread of a fascinating story which goes across several disciplines of medical, chemical, physical, biological, and other natural sciences. This review has been conceived with the awareness that a modern attitude toward molecular chirality and its consequences needs to be founded on multidisciplinary approaches to disclose the molecular basis of essential enantioselective phenomena in the domain of chemical, physical, and life sciences. With the primary aim of discussing this topic in an integrated way, a comprehensive pool of rational and systematic multidisciplinary information is provided, which concerns the fundamentals of chirality, a description of noncovalent interactions, and their implications in enantioselective processes occurring in different contexts. A specific focus is devoted to enantioselection in chromatography and electromigration techniques because of their unique feature as "multistep" processes. A second motivation for writing this review is to make a clear statement about the state of the art, the tools we have at our disposal, and what is still missing to fully understand the mechanisms underlying enantioselective recognition.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB, CNR, Sede secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, I-07100 Sassari, Italy
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Avenue 3, 0179 Tbilisi, Georgia
| |
Collapse
|
25
|
Peluso P, Mamane V. Stereoselective Processes Based on σ-Hole Interactions. Molecules 2022; 27:molecules27144625. [PMID: 35889497 PMCID: PMC9323542 DOI: 10.3390/molecules27144625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
The σ-hole interaction represents a noncovalent interaction between atoms with σ-hole(s) on their surface (such as halogens and chalcogens) and negative sites. Over the last decade, significant developments have emerged in applications where the σ-hole interaction was demonstrated to play a key role in the control over chirality. The aim of this review is to give a comprehensive overview of the current advancements in the use of σ-hole interactions in stereoselective processes, such as formation of chiral supramolecular assemblies, separation of enantiomers, enantioselective complexation and asymmetric catalysis.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB, CNR, Sede Secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, 07100 Sassari, Italy
- Correspondence: (P.P.); (V.M.)
| | - Victor Mamane
- Institut de Chimie de Strasbourg, UMR CNRS 7177, Equipe LASYROC, 1 Rue Blaise Pascal, 67008 Strasbourg, France
- Correspondence: (P.P.); (V.M.)
| |
Collapse
|
26
|
The Relevance of Experimental Charge Density Analysis in Unraveling Noncovalent Interactions in Molecular Crystals. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123690. [PMID: 35744821 PMCID: PMC9229234 DOI: 10.3390/molecules27123690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/22/2022] [Accepted: 05/29/2022] [Indexed: 11/17/2022]
Abstract
The work carried out by our research group over the last couple of decades in the context of quantitative crystal engineering involves the analysis of intermolecular interactions such as carbon (tetrel) bonding, pnicogen bonding, chalcogen bonding, and halogen bonding using experimental charge density methodology is reviewed. The focus is to extract electron density distribution in the intermolecular space and to obtain guidelines to evaluate the strength and directionality of such interactions towards the design of molecular crystals with desired properties. Following the early studies on halogen bonding interactions, several "sigma-hole" interaction types with similar electrostatic origins have been explored in recent times for their strength, origin, and structural consequences. These include interactions such as carbon (tetrel) bonding, pnicogen bonding, chalcogen bonding, and halogen bonding. Experimental X-ray charge density analysis has proved to be a powerful tool in unraveling the strength and electronic origin of such interactions, providing insights beyond the theoretical estimates from gas-phase molecular dimer calculations. In this mini-review, we outline some selected contributions from the X-ray charge density studies to the field of non-covalent interactions (NCIs) involving elements of the groups 14-17 of the periodic table. Quantitative insights into the nature of these interactions obtained from the experimental electron density distribution and subsequent topological analysis by the quantum theory of atoms in molecules (QTAIM) have been discussed. A few notable examples of weak interactions have been presented in terms of their experimental charge density features. These examples reveal not only the strength and beauty of X-ray charge density multipole modeling as an advanced structural chemistry tool but also its utility in providing experimental benchmarks for the theoretical studies of weak interactions in crystals.
Collapse
|
27
|
Lim B, Kato T, Besnard C, Poblador Bahamonde AI, Sakai N, Matile S. Pnictogen-Centered Cascade Exchangers for Thiol-Mediated Uptake: As(III)-, Sb(III)-, and Bi(III)-Expanded Cyclic Disulfides as Inhibitors of Cytosolic Delivery and Viral Entry. JACS AU 2022; 2:1105-1114. [PMID: 35615714 PMCID: PMC9063988 DOI: 10.1021/jacsau.2c00017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 05/19/2023]
Abstract
Dynamic covalent exchange cascades with cellular thiols are of interest to deliver substrates to the cytosol and to inhibit the entry of viruses. The best transporters and inhibitors known today are cyclic cascade exchangers (CAXs), producing a new exchanger with every exchange, mostly cyclic oligochalcogenides, particularly disulfides. The objective of this study was to expand the dynamic covalent chalcogen exchange cascades in thiol-mediated uptake by inserting pnictogen relays. A family of pnictogen-expanded cyclic disulfides covering As(III), Sb(III), and Bi(III) is introduced. Their ability to inhibit thiol-mediated cytosolic delivery is explored with fluorescently labeled CAXs as transporters. The promise of inhibiting viral entry is assessed with SARS-CoV-2 lentiviral vectors. Oxygen-bridged seven-membered 1,3,2-dithiabismepane rings are identified as privileged scaffolds. The same holds for six-membered 1,3,2-dithiarsinane rings made from asparagusic acid and para-aminophenylarsine oxide, which are inactive or toxic when used alone. These chemically complementary Bi(III) and As(III) cascade exchangers inhibit both thiol-mediated cytosolic delivery and SARS-CoV-2 lentivector uptake at concentrations of 10 μM or lower. Crystal structures, computational models, and exchange kinetics support that lentivector entry inhibition of the contracted dithiarsinane and the expanded dithiabismepane rings coincides with exchange cascades that occur without the release of the pnictogen relay and benefit from noncovalent pnictogen bonds. The identified leads open perspectives regarding drug delivery as well as unorthodox approaches toward dynamic covalent inhibition of cellular entry.
Collapse
Affiliation(s)
- Bumhee Lim
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Takehiro Kato
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Celine Besnard
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | | | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
28
|
Kuziola J, Magre M, Nöthling N, Cornella J. Synthesis and Structure of Mono-, Di-, and Trinuclear Fluorotriarylbismuthonium Cations. Organometallics 2022; 41:1754-1762. [PMID: 36156903 PMCID: PMC9490813 DOI: 10.1021/acs.organomet.2c00135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A series of cationic
fluorotriarylbismuthonium salts bearing differently
substituted aryl groups (Ar = 9,9-Me2-9H-xanthene, Ph,
Mes, and 3,5-tBu-C6H3) have
been synthesized and characterized. While the presence of simple phenyl
substituents around the Bi center results in a polymeric structure
with three Bi centers in the repeating monomer, substituents at the ortho- and meta-positions lead to cationic
mono- and dinuclear fluorobismuthonium complexes, respectively. Preparation
of all compounds is accomplished by fluoride abstraction from the
parent triaryl Bi(V) difluorides using NaBArF (BArF– = B[C6H3-3,5-(CF3)2]4–). Structural
parameters were obtained via single crystal X-ray diffraction (XRD),
and their behavior in solution was studied by NMR spectroscopy. Trinuclear
and binuclear complexes are held together through one bridging fluoride
(μ-F) between two Bi(V) centers. In contrast, the presence of
Me groups in both ortho-positions of the aryl ring
provides the adequate steric encumbrance to isolate a unique mononuclear
nonstabilized fluorotriarylbismuthonium cation. This compound features
a distorted tetrahedral geometry and is remarkably stable at room
temperature both in solution (toluene, benzene and THF) and in the
solid state.
Collapse
Affiliation(s)
- Jennifer Kuziola
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Marc Magre
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Nils Nöthling
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
29
|
Tong Q, Zhao Z, Wang Y. A Se···O bonding catalysis approach to the synthesis of calix[4]pyrroles. Beilstein J Org Chem 2022; 18:325-330. [PMID: 35368584 PMCID: PMC8941317 DOI: 10.3762/bjoc.18.36] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/09/2022] [Indexed: 12/11/2022] Open
Abstract
Described herein is a chalcogen bonding catalysis approach to the synthesis of calix[4]pyrrole derivatives. The Se···O bonding interactions between selenide catalysts and ketones gave rise to the catalytic activity in the condensation reactions between pyrrole and ketones, leading to the generation of calix[4]pyrrole derivatives in moderate to high yields. This chalcogen bonding catalysis approach was efficient since only 5 mol % catalyst loading was used to promote the consecutive condensation processes while the reactions could be carried out at room temperature, thus highlighting the potential of this type of nonclassical interactions in catalyzing relative complex transformations.
Collapse
Affiliation(s)
- Qingzhe Tong
- School of Chemistry and Chemical Engineering, Key Laboratory of the Colloid and Interface Chemistry, Shandong University, Jinan 250100, China
| | - Zhiguo Zhao
- School of Chemistry and Chemical Engineering, Key Laboratory of the Colloid and Interface Chemistry, Shandong University, Jinan 250100, China
| | - Yao Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of the Colloid and Interface Chemistry, Shandong University, Jinan 250100, China
| |
Collapse
|
30
|
The synthesis, structure, and spectral properties of antimony(III) phthalocyanine obtained under iodine vapor atmosphere: (SbIIIPc)(I3) ½(I2). Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Chen H, Li TR, Sakai N, Besnard C, Guénée L, Pupier M, Viger-Gravel J, Tiefenbacher K, Matile S. Decoded fingerprints of hyperresponsive, expanding product space: polyether cascade cyclizations as tools to elucidate supramolecular catalysis. Chem Sci 2022; 13:10273-10280. [PMID: 36277630 PMCID: PMC9473502 DOI: 10.1039/d2sc03991e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022] Open
Abstract
Simple enough to be understood and complex enough to be revealing, cascade cyclizations of diepoxides are introduced as new tools to characterize supramolecular catalysis. Decoded product fingerprints are provided for a consistent set of substrate stereoisomers, and shown to report on chemo-, diastereo- and enantioselectivity, mechanism and even autocatalysis. Application of the new tool to representative supramolecular systems reveals, for instance, that pnictogen-bonding catalysis is not only best in breaking the Baldwin rules but also converts substrate diastereomers into completely different products. Within supramolecular capsules, new cyclic hemiacetals from House–Meinwald rearrangements are identified, and autocatalysis on anion–π catalysts is found to be independent of substrate stereochemistry. Decoded product fingerprints further support that the involved epoxide-opening polyether cascade cyclizations are directional, racemization-free, and interconnected, at least partially. The discovery of unique characteristics for all catalysts tested would not have been possible without decoded cascade cyclization fingerprints, thus validating the existence and significance of privileged platforms to elucidate supramolecular catalysis. Once decoded, cascade cyclization fingerprints are easily and broadly applicable, ready for use in the community. Hyperresponsive XL product space identifies polyether cascade fingerprinting as an attractive tool to elucidate supramolecular catalysis, including pnictogen-bonding, capsule and anion–π catalysts.![]()
Collapse
Affiliation(s)
- Hao Chen
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering, BPR 1095, Basel, Switzerland
- School of Chemistry and Biochemistry University of Geneva, Geneva, Switzerland
| | - Tian-Ren Li
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering, BPR 1095, Basel, Switzerland
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Naomi Sakai
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering, BPR 1095, Basel, Switzerland
- School of Chemistry and Biochemistry University of Geneva, Geneva, Switzerland
| | - Celine Besnard
- School of Chemistry and Biochemistry University of Geneva, Geneva, Switzerland
| | - Laure Guénée
- School of Chemistry and Biochemistry University of Geneva, Geneva, Switzerland
| | - Marion Pupier
- School of Chemistry and Biochemistry University of Geneva, Geneva, Switzerland
| | | | - Konrad Tiefenbacher
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering, BPR 1095, Basel, Switzerland
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH, Zurich, Basel, Switzerland
| | - Stefan Matile
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering, BPR 1095, Basel, Switzerland
- School of Chemistry and Biochemistry University of Geneva, Geneva, Switzerland
| |
Collapse
|
32
|
Bhosale VA, Nigríni M, Dračínský M, Císařová I, Veselý J. Enantioselective Desymmetrization of 3-Substituted Oxetanes: An Efficient Access to Chiral 3,4-Dihydro-2 H-1,4-benzoxazines. Org Lett 2021; 23:9376-9381. [PMID: 34817183 DOI: 10.1021/acs.orglett.1c03419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we describe a versatile transition metal/oxidant free synthesis of the chiral 2H-1,4-benzoxazines through chiral phosphoric acid (CPA) catalyzed enantioselective desymmetrization of prochiral oxetanes (30 examples) in up to 99% yield and 99% enantioselectivity under mild reaction conditions. The reported strategy not only complements the conventional 2H-1,4-benzoxazine synthetic strategies but also provides access to key intermediates of therapeutic candidates, i.e., prostaglandin D2 receptor antagonist and M1 positive allosteric modulator (PAM) compound VU0486846.
Collapse
Affiliation(s)
- Viraj A Bhosale
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague, Czech Republic
| | - Martin Nigríni
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague, Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague, Czech Republic
| | - Jan Veselý
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague, Czech Republic
| |
Collapse
|
33
|
Liu Q, Lu Y, Sheng H, Zhang C, Su X, Wang Z, Chen X. Visible‐Light‐Induced Selective Photolysis of Phosphonium Iodide Salts for Monofluoromethylations. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Qiang Liu
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Yu Lu
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - He Sheng
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Chao‐Shen Zhang
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiao‐Di Su
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhi‐Xiang Wang
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiang‐Yu Chen
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
34
|
Frontera A, Bauza A. On the Importance of Pnictogen and Chalcogen Bonding Interactions in Supramolecular Catalysis. Int J Mol Sci 2021; 22:12550. [PMID: 34830432 PMCID: PMC8623369 DOI: 10.3390/ijms222212550] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
In this review, several examples of the application of pnictogen (Pn) (group 15) and chalcogen (Ch) bonding (group 16) interactions in organocatalytic processes are gathered, backed up with Molecular Electrostatic Potential surfaces of model systems. Despite the fact that the use of catalysts based on pnictogen and chalcogen bonding interactions is taking its first steps, it should be considered and used by the scientific community as a novel, promising tool in the field of organocatalysis.
Collapse
Affiliation(s)
| | - Antonio Bauza
- Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain;
| |
Collapse
|
35
|
Volpe C, Meninno S, Crescenzi C, Mancinelli M, Mazzanti A, Lattanzi A. Catalytic Enantioselective Access to Dihydroquinoxalinones via Formal α‐Halo Acyl Halide Synthon in One Pot. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chiara Volpe
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno Via Giovanni Paolo II 132-84084 Fisciano Italy
| | - Sara Meninno
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno Via Giovanni Paolo II 132-84084 Fisciano Italy
| | - Carlo Crescenzi
- Dipartimento di Farmacia Università di Salerno Via Giovanni Paolo II 132-84084 Fisciano Italy
| | - Michele Mancinelli
- Dipartimento di Chimica Industriale Università di Bologna Viale Risorgimento 4-40136 Bologna Italy
| | - Andrea Mazzanti
- Dipartimento di Chimica Industriale Università di Bologna Viale Risorgimento 4-40136 Bologna Italy
| | - Alessandra Lattanzi
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno Via Giovanni Paolo II 132-84084 Fisciano Italy
| |
Collapse
|
36
|
Humeniuk H, Gini A, Hao X, Coelho F, Sakai N, Matile S. Pnictogen-Bonding Catalysis and Transport Combined: Polyether Transporters Made In Situ. JACS AU 2021; 1:1588-1593. [PMID: 34723261 PMCID: PMC8549043 DOI: 10.1021/jacsau.1c00345] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 05/16/2023]
Abstract
The combination of catalysis and transport across lipid bilayer membranes promises directional access to a solvent-free and structured nanospace that could accelerate, modulate, and, at best, enable new chemical reactions. To elaborate on these expectations, anion transport and catalysis with pnictogen and tetrel bonds are combined with polyether cascade cyclizations into bioinspired cation transporters. Characterized separately, synergistic anion and cation transporters of very high activity are identified. Combined for catalysis in membranes, cascade cyclizations are found to occur with a formal rate enhancement beyond one million compared to bulk solution and product formation is detected in situ as an increase in transport activity. With this operational system in place, intriguing perspectives open up to exploit all aspects of this unique nanospace for important chemical transformations.
Collapse
|
37
|
Volpe C, Meninno S, Crescenzi C, Mancinelli M, Mazzanti A, Lattanzi A. Catalytic Enantioselective Access to Dihydroquinoxalinones via Formal α-Halo Acyl Halide Synthon in One Pot. Angew Chem Int Ed Engl 2021; 60:23819-23826. [PMID: 34437760 PMCID: PMC8596509 DOI: 10.1002/anie.202110173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Indexed: 11/25/2022]
Abstract
An enantioselective one-pot catalytic strategy to dihydroquinoxalinones, featuring novel 1-phenylsulfonyl-1-cyano enantioenriched epoxides as masked α-halo acyl halide synthons, followed by a domino ring-opening cyclization (DROC), is documented. A popular quinine-derived urea served as the catalyst in two out of the three steps performed in the same solvent using commercially available aldehydes, (phenylsulfonyl)acetonitrile, cumyl hydroperoxide and 1,2-phenylendiamines. Medicinally relevant 3-aryl/alkyl-substituted heterocycles are isolated in generally good to high overall yield and high enantioselectivity (up to 99 % ee). A rare example of excellent reusability of an organocatalyst at higher scale, subjected to oxidative conditions, is demonstrated. Mechanistically, labile α-ketosulfone has been detected as the intermediate involved in the DROC process. Theoretical calculations on the key epoxidation step rationalize the observed stereocontrol, highlighting the important role played by the sulfone group.
Collapse
Affiliation(s)
- Chiara Volpe
- Dipartimento di Chimica e Biologia “A. Zambelli”Università di SalernoVia Giovanni Paolo II132-84084FiscianoItaly
| | - Sara Meninno
- Dipartimento di Chimica e Biologia “A. Zambelli”Università di SalernoVia Giovanni Paolo II132-84084FiscianoItaly
| | - Carlo Crescenzi
- Dipartimento di FarmaciaUniversità di SalernoVia Giovanni Paolo II132-84084FiscianoItaly
| | - Michele Mancinelli
- Dipartimento di Chimica IndustrialeUniversità di BolognaViale Risorgimento4-40136BolognaItaly
| | - Andrea Mazzanti
- Dipartimento di Chimica IndustrialeUniversità di BolognaViale Risorgimento4-40136BolognaItaly
| | - Alessandra Lattanzi
- Dipartimento di Chimica e Biologia “A. Zambelli”Università di SalernoVia Giovanni Paolo II132-84084FiscianoItaly
| |
Collapse
|
38
|
Liu Q, Lu Y, Sheng H, Zhang CS, Su XD, Wang ZX, Chen XY. Visible-Light-Induced Selective Photolysis of Phosphonium Iodide Salts for Monofluoromethylations. Angew Chem Int Ed Engl 2021; 60:25477-25484. [PMID: 34490742 DOI: 10.1002/anie.202111006] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 11/09/2022]
Abstract
The sigma (σ)-hole effect has emerged as a promising tool to construct novel architectures endowed with new properties. A simple yet effective strategy for the generation of monofluoromethyl radicals is a continuing challenge within the synthetic community. Fluoromethylphosphonium salts are easily available, air- and thermally stable, as well as simple-to-handle. Herein, we report the ability of the σ-hole effect to facilitate the visible-light-triggered photolysis of phosphonium iodide salts, a charge-transfer complex, selectively giving fluoromethyl radicals. The usefulness and versatility of this new protocol are demonstrated through the mono-, di-, and trifluoromethylation of a variety of alkenes.
Collapse
Affiliation(s)
- Qiang Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Lu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - He Sheng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao-Shen Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Di Su
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
39
|
Hao X, Li TR, Chen H, Gini A, Zhang X, Rosset S, Mazet C, Tiefenbacher K, Matile S. Bioinspired Ether Cyclizations within a π-Basic Capsule Compared to Autocatalysis on π-Acidic Surfaces and Pnictogen-Bonding Catalysts. Chemistry 2021; 27:12215-12223. [PMID: 34060672 PMCID: PMC8456975 DOI: 10.1002/chem.202101548] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Indexed: 12/15/2022]
Abstract
While the integration of supramolecular principles in catalysis attracts increasing attention, a direct comparative assessment of the resulting systems catalysts to work out distinct characteristics is often difficult. Herein is reported how the broad responsiveness of ether cyclizations to diverse inputs promises to fill this gap. Cyclizations in the confined, π-basic and Brønsted acidic interior of supramolecular capsules, for instance, are found to excel with speed (exceeding general Brønsted acid and hydrogen-bonding catalysts by far) and selective violations of the Baldwin rules (as extreme as the so far unique pnictogen-bonding catalysts). The complementary cyclization on π-acidic aromatic surfaces remains unique with regard to autocatalysis, which is shown to be chemo- and diastereoselective with regard to product-like co-catalysts but, so far, not enantioselective.
Collapse
Affiliation(s)
- Xiaoyu Hao
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1121, Geneva, Switzerland.,NCCR Molecular Systems Engineering BPR 1095, Mattenstrasse 24a, CH-4058, Basel, Switzerland.,College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, 1 Dongsan Road Erxianqiao, Chengdu, 610059, P.R. China
| | - Tian-Ren Li
- NCCR Molecular Systems Engineering BPR 1095, Mattenstrasse 24a, CH-4058, Basel, Switzerland.,Department of Chemistry, University of Basel, Mattenstrasse 24a, CH-4058, Basel, Switzerland
| | - Hao Chen
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1121, Geneva, Switzerland.,NCCR Molecular Systems Engineering BPR 1095, Mattenstrasse 24a, CH-4058, Basel, Switzerland
| | - Andrea Gini
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1121, Geneva, Switzerland.,NCCR Molecular Systems Engineering BPR 1095, Mattenstrasse 24a, CH-4058, Basel, Switzerland
| | - Xiang Zhang
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1121, Geneva, Switzerland.,NCCR Molecular Systems Engineering BPR 1095, Mattenstrasse 24a, CH-4058, Basel, Switzerland.,Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Science, Northwest A&F University, Xianyang Shi, Yangling, 712100, P. R. China
| | - Stéphane Rosset
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1121, Geneva, Switzerland
| | - Clément Mazet
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1121, Geneva, Switzerland
| | - Konrad Tiefenbacher
- NCCR Molecular Systems Engineering BPR 1095, Mattenstrasse 24a, CH-4058, Basel, Switzerland.,Department of Chemistry, University of Basel, Mattenstrasse 24a, CH-4058, Basel, Switzerland.,Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1121, Geneva, Switzerland.,NCCR Molecular Systems Engineering BPR 1095, Mattenstrasse 24a, CH-4058, Basel, Switzerland
| |
Collapse
|
40
|
Scheiner S. Dissection of the Origin of π-Holes and the Noncovalent Bonds in Which They Engage. J Phys Chem A 2021; 125:6514-6528. [PMID: 34310147 DOI: 10.1021/acs.jpca.1c05431] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Accompanying the rapidly growing list of σ-hole bonds has come the acknowledgment of parallel sorts of noncovalent bonds which owe their stability in large part to a deficiency of electron density in the area above the molecular plane, known as a π-hole. The origins of these π-holes are probed for a wide series of molecules, comprising halogen, chalcogen, pnicogen, tetrel, aerogen, and spodium bonds. Much like in the case of their σ-hole counterparts, formation of the internal covalent π-bond in the Lewis acid molecule pulls density toward the bond midpoint and away from its extremities. This depletion of density above the central atom is amplified by an electron-withdrawing substituent. At the same time, the amplitude of the π*-orbital is enhanced in the region of the density-depleted π-hole, facilitating a better overlap with the nucleophile's lone pair orbital and a stabilizing n → π* charge transfer. The presence of lone pairs on the central atom acts to attenuate the π-hole and shift its position somewhat, resulting in an overall weakening of the π-hole bond. There is a tendency for π-hole bonds to include a higher fraction of induction energy than σ-bonds with proportionately smaller electrostatic and dispersion components, but this distinction is less a product of the σ- or π-character and more a function of the overall bond strength.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
41
|
Moaven S, Watson BT, Polaske TJ, Karl BM, Unruh DK, Bowling NP, Cozzolino AF. Self-Assembly of Complementary Components Using a Tripodal Bismuth Compound: Pnictogen Bonding or Coordination Chemistry? Inorg Chem 2021; 60:11242-11250. [DOI: 10.1021/acs.inorgchem.1c01232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shiva Moaven
- Department of Chemistry and Biochemistry, Texas Tech University, 1204 Boston Avenue, Lubbock, Texas 79409-1061, United States
| | - Brandon T. Watson
- Department of Chemistry and Biochemistry, Texas Tech University, 1204 Boston Avenue, Lubbock, Texas 79409-1061, United States
| | - Thomas J. Polaske
- Department of Chemistry, University of Wisconsin—Stevens Point, 2101 Fourth Avenue, Stevens Point, Wisconsin 54481, United States
| | - Brian M. Karl
- Department of Chemistry, University of Wisconsin—Stevens Point, 2101 Fourth Avenue, Stevens Point, Wisconsin 54481, United States
| | - Daniel K. Unruh
- Department of Chemistry and Biochemistry, Texas Tech University, 1204 Boston Avenue, Lubbock, Texas 79409-1061, United States
| | - Nathan P. Bowling
- Department of Chemistry, University of Wisconsin—Stevens Point, 2101 Fourth Avenue, Stevens Point, Wisconsin 54481, United States
| | - Anthony F. Cozzolino
- Department of Chemistry and Biochemistry, Texas Tech University, 1204 Boston Avenue, Lubbock, Texas 79409-1061, United States
| |
Collapse
|
42
|
Feng X, Du H. Asymmetric Transfer Hydrogenation via a Chiral Antimony(V) Cation/Anion Pair. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202100057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|