1
|
Perras FA, Wang S, Mayer J, Halder M, Paterson AL, Culver DB, Rienstra CM. Removal of Homogeneous Broadening from 1H-Detected Multidimensional Solid-State NMR Spectra. Anal Chem 2025; 97:4653-4660. [PMID: 39961603 DOI: 10.1021/acs.analchem.4c06696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
1H-detected magic-angle spinning (MAS) NMR experiments have revolutionized the NMR studies of biological and inorganic solids by providing unparalleled sensitivity and resolution. Despite these gains, homogeneous broadening, originating from the incomplete removal of homonuclear dipolar interactions under fast MAS, remains highly prevalent and limits the achievable resolution. In direct analogy to super-resolution microscopy methods, we show that resolution beyond that currently achievable by fast MAS alone can be obtained by experiment-driven deconvolution. Following the acquisition of a single 2D NMR spectrum to measure the frequency-dependent homogeneous lineshapes, any number of 1H-detected spectra can be enhanced in resolution, yielding comparable spectra as obtained with twice the MAS frequency. The versatility of this approach is demonstrated in the enhancement of single- and double-quantum homonuclear correlation spectra, in addition to heteronuclear correlation spectra acquired on a surface organometallic complex and the protein GB1.
Collapse
Affiliation(s)
- Frédéric A Perras
- Chemical and Biological Sciences Division, Ames National Laboratory, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Songlin Wang
- National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Jacob Mayer
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Mita Halder
- Chemical and Biological Sciences Division, Ames National Laboratory, Ames, Iowa 50011, United States
| | - Alexander L Paterson
- National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Damien B Culver
- Chemical and Biological Sciences Division, Ames National Laboratory, Ames, Iowa 50011, United States
| | - Chad M Rienstra
- National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Biochemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
2
|
Zakeri F, Widdifield CM. 1H isotropic chemical shift metrics for NMR crystallography of powdered molecular organics. Phys Chem Chem Phys 2025; 27:4368-4382. [PMID: 39927488 DOI: 10.1039/d4cp04354e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Hydrogen magnetic shielding values from gauge including projector augmented wave (GIPAW) density functional theory (DFT) calculations, when combined with experimental solid-state 1H nuclear magnetic resonance (NMR) chemical shift data collected on powdered microcrystalline organics, have been used to perform various crystal structure characterization tasks (e.g., refinements, verifications, determinations). These tasks fall under the umbrella of 'NMR crystallography'. In several instances, an isotropic 1H chemical shift (δiso) root-mean-squared deviation (RMSD) metric has been applied during these studies (including the first de novo crystal structure determination: M. Baias, J.-N. Dumez, P. H. Svensson, S. Schantz, G. M. Day and L. Emsley, De Novo Determination of the Crystal Structure of a Large Drug Molecule by Crystal Structure Prediction-Based Powder NMR Crystallography, J. Am. Chem. Soc., 2013, 135, 17501-17507). While it is assumed that the 1H δiso RMSD metrics are converged, our study probes the robustness of these metrics. Specifically, we consider how the structure of the δiso(1H) RMSD metric varies depending on: (i) selected GIPAW DFT input parameters; (ii) the number of fitting parameters used during linear mapping; and (iii) the GIPAW DFT computational software. These δiso(1H) RMSD metrics were produced from a set of 24 benchmark crystal structures (428 crystallographically unique hydrogen atom environments). Interestingly, we find that the δiso(1H) RMSD metric structures are very robust to substantial degradation in the quality of the GIPAW DFT computations, which is unexplored in the NMR crystallography literature as prior studies focus on convergence rather than divergence. We then briefly consider the impact of our findings using the structure determination of thymol as an illustrative example and our results strongly suggest that if δiso(1H) RMSD metrics are being used, then the GIPAW DFT computations can be performed much more efficiently than at present. Overall, this should allow for more efficient NMR crystallography characterization tasks of important materials that contain 1H nuclei, such as organic pharmaceuticals.
Collapse
Affiliation(s)
- Fatemeh Zakeri
- Department of Chemistry & Biochemistry, University of Regina, 3737 Wascana Pkwy, Regina, SK S4S 0A2, Canada.
| | - Cory M Widdifield
- Department of Chemistry & Biochemistry, University of Regina, 3737 Wascana Pkwy, Regina, SK S4S 0A2, Canada.
| |
Collapse
|
3
|
Emsley L. Spiers Memorial Lecture: NMR crystallography. Faraday Discuss 2025; 255:9-45. [PMID: 39405130 PMCID: PMC11477664 DOI: 10.1039/d4fd00151f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024]
Abstract
Chemical function is directly related to the spatial arrangement of atoms. Consequently, the determination of atomic-level three-dimensional structures has transformed molecular and materials science over the past 60 years. In this context, solid-state NMR has emerged to become the method of choice for atomic-level characterization of complex materials in powder form. In the following we present an overview of current methods for chemical shift driven NMR crystallography, illustrated with applications to complex materials.
Collapse
Affiliation(s)
- Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
4
|
Torodii D, Holmes JB, Moutzouri P, Nilsson Lill SO, Cordova M, Pinon AC, Grohe K, Wegner S, Putra OD, Norberg S, Welinder A, Schantz S, Emsley L. Crystal structure validation of verinurad via proton-detected ultra-fast MAS NMR and machine learning. Faraday Discuss 2025; 255:143-158. [PMID: 39297322 PMCID: PMC11411500 DOI: 10.1039/d4fd00076e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/07/2024] [Indexed: 09/25/2024]
Abstract
The recent development of ultra-fast magic-angle spinning (MAS) (>100 kHz) provides new opportunities for structural characterization in solids. Here, we use NMR crystallography to validate the structure of verinurad, a microcrystalline active pharmaceutical ingredient. To do this, we take advantage of 1H resolution improvement at ultra-fast MAS and use solely 1H-detected experiments and machine learning methods to assign all the experimental proton and carbon chemical shifts. This framework provides a new tool for elucidating chemical information from crystalline samples with limited sample volume and yields remarkably faster acquisition times compared to 13C-detected experiments, without the need to employ dynamic nuclear polarization.
Collapse
Affiliation(s)
- Daria Torodii
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Jacob B Holmes
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
- National Centre for Computational Design and Discovery of Novel Materials MARVEL, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Pinelopi Moutzouri
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Sten O Nilsson Lill
- Data Science & Modelling, Pharmaceutical Sciences, R&D, AstraZeneca, 43183 Gothenburg, Sweden
| | - Manuel Cordova
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
- National Centre for Computational Design and Discovery of Novel Materials MARVEL, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Arthur C Pinon
- Swedish NMR Center, Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Kristof Grohe
- Bruker BioSpin GmbH & Co KG, 76275 Ettlingen, Germany
| | | | - Okky Dwichandra Putra
- Early Product Development and Manufacturing, Pharmaceutical Sciences, R&D, AstraZeneca, 43183 Gothenburg, Sweden
| | - Stefan Norberg
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, 43183 Gothenburg, Sweden
| | - Anette Welinder
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, 43183 Gothenburg, Sweden
| | - Staffan Schantz
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, 43183 Gothenburg, Sweden
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
- National Centre for Computational Design and Discovery of Novel Materials MARVEL, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
5
|
Schröder N, Bartalucci E, Wiegand T. Probing Noncovalent Interactions by Fast Magic-Angle Spinning NMR at 100 kHz and More. Chemphyschem 2024; 25:e202400537. [PMID: 39129653 DOI: 10.1002/cphc.202400537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/19/2024] [Indexed: 08/13/2024]
Abstract
Noncovalent interactions are the basis for a large number of chemical and biological molecular-recognition processes, such as those occurring in supramolecular chemistry, catalysis, solid-state reactions in mechanochemistry, protein folding, protein-nucleic acid binding, and biomolecular phase separation processes. In this perspective article, some recent developments in probing noncovalent interactions by proton-detected solid-state Nuclear Magnetic Resonance (NMR) spectroscopy at Magic-Angle Spinning (MAS) frequencies of 100 kHz and more are reviewed. The development of MAS rotors with decreasing outer diameters, combined with the development of superconducting magnets operating at high static magnetic-field strengths up to 28.2 T (1200 MHz proton Larmor frequency) improves resolution and sensitivity in proton-detected solid-state NMR, which is the fundamental requirement for shedding light on noncovalent interactions in solids. The examples reported in this article range from protein-nucleic acid binding in large ATP-fueled motor proteins to a hydrogen-π interaction in a calixarene-lanthanide complex.
Collapse
Affiliation(s)
- Nina Schröder
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Ettore Bartalucci
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
| | - Thomas Wiegand
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
| |
Collapse
|
6
|
Perras FA. Elimination of homogeneous broadening in 1H solid-state NMR. Chem Commun (Camb) 2024; 60:6552-6555. [PMID: 38842442 DOI: 10.1039/d4cc02191f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
1H solid-state NMR spectra are plagued by low resolution, necessitating the use of complex pulse sequences or specialized equipment. We introduce a new resolution enhancement method, inspired by super-resolution microscopy, that uses a 2D Hahn-echo experiment to constrain deconvolution. The result is an effective doubling of the MAS frequency.
Collapse
Affiliation(s)
- Frédéric A Perras
- Chemical and Biological Sciences Division, Ames National Laboratory, Ames, IA 50011, USA.
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
7
|
Badoni S, Berruyer P, Emsley L. Optimal sensitivity for 1H detected relayed DNP of organic solids at fast MAS. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 360:107645. [PMID: 38401477 DOI: 10.1016/j.jmr.2024.107645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/30/2024] [Accepted: 02/09/2024] [Indexed: 02/26/2024]
Abstract
Dynamic nuclear polarization (DNP) combined with high magnetic fields and fast magic angle spinning (MAS) has opened up a new avenue for the application of exceptionally sensitive 1H NMR detection schemes to study protonated solids. Recently, it has been shown that DNP experiments at fast MAS rates lead to slower spin diffusion and hence reduced DNP enhancements for impregnated materials. However, DNP enhancements alone do not determine the overall sensitivity of a NMR experiment. Here we measure the overall sensitivity of one-dimensional 1H detected relayed DNP experiments as a function of the MAS rate in the 20-60 kHz regime using 0.7 mm diameter rotors at 21.2 T. Although faster MAS rates are detrimental for the DNP enhancement on the target material, due to slower spin diffusion, we find that with increasing spinning rates the gain in sensitivity due to 1H line-narrowing and the folding-in of sideband intensity compensates a large part of the loss of overall hyperpolarization. We find that sensitivity depends on the atomic site in the molecule, and is maximised at between 40 and 50 kHz MAS for the sample of L-histidine.HCl·H2O studied here. There is a 10-20 % difference in sensitivity between the optimum MAS rate and the fastest rate currently accessible (60 kHz).
Collapse
Affiliation(s)
- Saumya Badoni
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Pierrick Berruyer
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
8
|
Stirk AJ, Holmes ST, Souza FES, Hung I, Gan Z, Britten JF, Rey AW, Schurko RW. An unusual ionic cocrystal of ponatinib hydrochloride: characterization by single-crystal X-ray diffraction and ultra-high field NMR spectroscopy. CrystEngComm 2024; 26:1219-1233. [PMID: 38419975 PMCID: PMC10897533 DOI: 10.1039/d3ce01062g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024]
Abstract
This study describes the discovery of a unique ionic cocrystal of the active pharmaceutical ingredient (API) ponatinib hydrochloride (pon·HCl), and characterization using single-crystal X-ray diffraction (SCXRD) and solid-state NMR (SSNMR) spectroscopy. Pon·HCl is a multicomponent crystal that features an unusual stoichiometry, with an asymmetric unit containing both monocations and dications of the ponatinib molecule, three water molecules, and three chloride ions. Structural features include (i) a charged imidazopyridazine moiety that forms a hydrogen bond between the ponatinib monocations and dications and (ii) a chloride ion that does not feature hydrogen bonds involving any organic moiety, instead being situated in a "square" arrangement with three water molecules. Multinuclear SSNMR, featuring high and ultra-high fields up to 35.2 T, provides the groundwork for structural interpretation of complex multicomponent crystals in the absence of diffraction data. A 13C CP/MAS spectrum confirms the presence of two crystallographically distinct ponatinib molecules, whereas 1D 1H and 2D 1H-1H DQ-SQ spectra identify and assign the unusually deshielded imidazopyridazine proton. 1D 35Cl spectra obtained at multiple fields confirm the presence of three distinct chloride ions, with density functional theory calculations providing key relationships between the SSNMR spectra and H⋯Cl- hydrogen bonding arrangements. A 2D 35Cl → 1H D-RINEPT spectrum confirms the spatial proximities between the chloride ions, water molecules, and amine moieties. This all suggests future application of multinuclear SSNMR at high and ultra-high fields to the study of complex API solid forms for which SCXRD data are unavailable, with potential application to heterogeneous mixtures or amorphous solid dispersions.
Collapse
Affiliation(s)
| | - Sean T Holmes
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | | | - Ivan Hung
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Zhehong Gan
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - James F Britten
- MAX Diffraction Facility, McMaster University Hamilton ON L8S 4M1 Canada
| | - Allan W Rey
- Apotex Pharmachem Inc. Brantford ON N3T 6B8 Canada
| | - Robert W Schurko
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| |
Collapse
|
9
|
Yan Z, Zhao P, Yan X, Zhang R. Using Abundant 1H Polarization to Enhance the Sensitivity of Solid-State NMR Spectroscopy. J Phys Chem Lett 2024; 15:1866-1878. [PMID: 38343090 DOI: 10.1021/acs.jpclett.3c03532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Solid-state NMR spectroscopy has been playing a significant role in elucidating the structures and dynamics of materials and proteins at the atomic level for decades. As an extremely abundant nucleus with a very high gyromagnetic ratio, protons are widely present in most organic/inorganic materials. Thus, this Perspective highlights the advantages of proton detection at fast magic-angle spinning (MAS) and presents strategies to utilize and exhaust 1H polarization to achieve signal sensitivity enhancement of solid-state NMR spectroscopy, enabling substantial time savings and extraction of more structural and dynamics information per unit time. Those strategies include developing sensitivity-enhanced single-channel 1H multidimensional NMR spectroscopy, implementing multiple polarization transfer steps in each scan to enhance low-γ nuclei signals, and making full use of 1H polarization to obtain homonuclear and heteronuclear chemical shift correlation spectra in a single experiment. Finally, outlooks and perspectives are provided regarding the challenges and future for the further development of sensitivity-enhanced proton-based solid-state NMR spectroscopy.
Collapse
Affiliation(s)
- Zhiwei Yan
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter (SESM), South China University of Technology, Guangzhou 510640, P. R. China
| | - Peizhi Zhao
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter (SESM), South China University of Technology, Guangzhou 510640, P. R. China
| | - Xiaojing Yan
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter (SESM), South China University of Technology, Guangzhou 510640, P. R. China
| | - Rongchun Zhang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter (SESM), South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
10
|
Simões de Almeida B, Torodii D, Moutzouri P, Emsley L. Barriers to resolution in 1H NMR of rotating solids. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 355:107557. [PMID: 37776831 DOI: 10.1016/j.jmr.2023.107557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/02/2023]
Abstract
The role of 1H solid-state NMR in structure elucidation of solids is becoming more preponderant, particularly as faster magic-angle spinning rates (MAS) become available which improve 1H detected assignment strategies. However, current 1H spectral resolution is still relatively poor, with linewidths of typically a few hundred Hz, even at the fastest rates available today. Here we detail and assess the factors limiting proton linewidths and line shapes in MAS experiments with five different samples, exemplifying the different sources of broadening that affect the residual linewidth. We disentangle the different contributions through one- and two-dimensional experiments: by using dilution to identify the contribution of ABMS; by using extensive deuteration to identify the dipolar contributions; and by using variable MAS rates to determine the ratio between homogeneous and inhomogeneous components. We find that the overall widths and the nature of the different contributions to the linewidths can vary very considerably. While we find that faster spinning always yields narrower lines and longer coherence lifetimes, we also find that for some resonances the dipolar contribution is no longer dominant at 100 kHz MAS. When the inhomogeneous sources of broadening, such as ABMS and chemical shift disorder, are dominant, two-dimensional 1H-1H correlation experiments yield better resolution for assignment. Particularly the extraction of the antidiagonal of a 2D peak will remove any correlated inhomogeneous broadening, giving substantially narrower 1H linewidths.
Collapse
Affiliation(s)
- Bruno Simões de Almeida
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Daria Torodii
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Pinelopi Moutzouri
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| |
Collapse
|
11
|
Bartalucci E, Malär AA, Mehnert A, Kleine Büning JB, Günzel L, Icker M, Börner M, Wiebeler C, Meier BH, Grimme S, Kersting B, Wiegand T. Probing a Hydrogen-π Interaction Involving a Trapped Water Molecule in the Solid State. Angew Chem Int Ed Engl 2023; 62:e202217725. [PMID: 36630178 DOI: 10.1002/anie.202217725] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/12/2023]
Abstract
The detection and characterization of trapped water molecules in chemical entities and biomacromolecules remains a challenging task for solid materials. We herein present proton-detected solid-state Nuclear Magnetic Resonance (NMR) experiments at 100 kHz magic-angle spinning and at high static magnetic-field strengths (28.2 T) enabling the detection of a single water molecule fixed in the calix[4]arene cavity of a lanthanide complex by a combination of three types of non-covalent interactions. The water proton resonances are detected at a chemical-shift value close to zero ppm, which we further confirm by quantum-chemical calculations. Density Functional Theory calculations pinpoint to the sensitivity of the proton chemical-shift value for hydrogen-π interactions. Our study highlights how proton-detected solid-state NMR is turning into the method-of-choice in probing weak non-covalent interactions driving a whole branch of molecular-recognition events in chemistry and biology.
Collapse
Affiliation(s)
- Ettore Bartalucci
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim an der Ruhr, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | | | - Anne Mehnert
- Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Julius B Kleine Büning
- Mulliken Center for Theoretical Chemistry, Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstraße 4, 53115, Bonn, Germany
| | - Lennart Günzel
- Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Maik Icker
- Institute of Organic Chemistry, Leipzig University Linnéstraße 3, 04103, Leipzig, Germany
| | - Martin Börner
- Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Christian Wiebeler
- Institute of Analytic Chemistry, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany.,Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, Leipzig University, Linnéstraße 2, 04103, Leipzig, Germany
| | - Beat H Meier
- Physical Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstraße 4, 53115, Bonn, Germany
| | - Berthold Kersting
- Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Thomas Wiegand
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim an der Ruhr, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany.,previous address: Physical Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| |
Collapse
|
12
|
Cordova M, Moutzouri P, Simões de Almeida B, Torodii D, Emsley L. Pure Isotropic Proton NMR Spectra in Solids using Deep Learning. Angew Chem Int Ed Engl 2023; 62:e202216607. [PMID: 36562545 PMCID: PMC10107932 DOI: 10.1002/anie.202216607] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The resolution of proton solid-state NMR spectra is usually limited by broadening arising from dipolar interactions between spins. Magic-angle spinning alleviates this broadening by inducing coherent averaging. However, even the highest spinning rates experimentally accessible today are not able to completely remove dipolar interactions. Here, we introduce a deep learning approach to determine pure isotropic proton spectra from a two-dimensional set of magic-angle spinning spectra acquired at different spinning rates. Applying the model to 8 organic solids yields high-resolution 1 H solid-state NMR spectra with isotropic linewidths in the 50-400 Hz range.
Collapse
Affiliation(s)
- Manuel Cordova
- Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
- National Centre for Computational Design and Discovery of Novel Materials MARVELEcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - Pinelopi Moutzouri
- Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - Bruno Simões de Almeida
- Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - Daria Torodii
- Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
- National Centre for Computational Design and Discovery of Novel Materials MARVELEcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| |
Collapse
|
13
|
Nishiyama Y, Hou G, Agarwal V, Su Y, Ramamoorthy A. Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy: Advances in Methodology and Applications. Chem Rev 2023; 123:918-988. [PMID: 36542732 PMCID: PMC10319395 DOI: 10.1021/acs.chemrev.2c00197] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Solid-state NMR spectroscopy is one of the most commonly used techniques to study the atomic-resolution structure and dynamics of various chemical, biological, material, and pharmaceutical systems spanning multiple forms, including crystalline, liquid crystalline, fibrous, and amorphous states. Despite the unique advantages of solid-state NMR spectroscopy, its poor spectral resolution and sensitivity have severely limited the scope of this technique. Fortunately, the recent developments in probe technology that mechanically rotate the sample fast (100 kHz and above) to obtain "solution-like" NMR spectra of solids with higher resolution and sensitivity have opened numerous avenues for the development of novel NMR techniques and their applications to study a plethora of solids including globular and membrane-associated proteins, self-assembled protein aggregates such as amyloid fibers, RNA, viral assemblies, polymorphic pharmaceuticals, metal-organic framework, bone materials, and inorganic materials. While the ultrafast-MAS continues to be developed, the minute sample quantity and radio frequency requirements, shorter recycle delays enabling fast data acquisition, the feasibility of employing proton detection, enhancement in proton spectral resolution and polarization transfer efficiency, and high sensitivity per unit sample are some of the remarkable benefits of the ultrafast-MAS technology as demonstrated by the reported studies in the literature. Although the very low sample volume and very high RF power could be limitations for some of the systems, the advantages have spurred solid-state NMR investigation into increasingly complex biological and material systems. As ultrafast-MAS NMR techniques are increasingly used in multidisciplinary research areas, further development of instrumentation, probes, and advanced methods are pursued in parallel to overcome the limitations and challenges for widespread applications. This review article is focused on providing timely comprehensive coverage of the major developments on instrumentation, theory, techniques, applications, limitations, and future scope of ultrafast-MAS technology.
Collapse
Affiliation(s)
- Yusuke Nishiyama
- JEOL Ltd., Akishima, Tokyo196-8558, Japan
- RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa230-0045, Japan
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian116023, China
| | - Vipin Agarwal
- Tata Institute of Fundamental Research, Sy. No. 36/P, Gopanpally, Hyderabad500 046, India
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey07065, United States
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan41809-1055, United States
| |
Collapse
|
14
|
Tognetti J, Franks WT, Lewandowski JR, Brown SP. Optimisation of 1H PMLG homonuclear decoupling at 60 kHz MAS to enable 15N- 1H through-bond heteronuclear correlation solid-state NMR spectroscopy. Phys Chem Chem Phys 2022; 24:20258-20273. [PMID: 35975627 PMCID: PMC9429863 DOI: 10.1039/d2cp01041k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/15/2022] [Indexed: 11/21/2022]
Abstract
The Lee-Goldburg condition for homonuclear decoupling in 1H magic-angle spinning (MAS) solid-state NMR sets the angle θ, corresponding to arctan of the ratio of the rf nutation frequency, ν1, to the rf offset, to be the magic angle, θm, equal to tan-1(√2) = 54.7°. At 60 kHz MAS, we report enhanced decoupling compared to MAS alone in a 1H spectrum of 15N-glycine with at θ = 30° for a ν1 of ∼100 kHz at a 1H Larmor frequency, ν0, of 500 MHz and 1 GHz, corresponding to a high chemical shift scaling factor (λCS) of 0.82. At 1 GHz, we also demonstrate enhanced decoupling compared to 60 kHz MAS alone for a lower ν1 of 51 kHz, i.e., a case where the nutation frequency is less than the MAS frequency, with θ = 18°, λCS = 0.92. The ratio of the rotor period to the decoupling cycle time, Ψ = τr/τc, is in the range 0.53 to 0.61. Windowed decoupling using the optimised parameters for a ν1 of ∼100 kHz also gives good performance in a 1H spin-echo experiment, enabling implementation in a 1H-detected 15N-1H cross polarisation (CP)-refocused INEPT heteronuclear correlation NMR experiment. Specifically, initial 15N transverse magnetisation as generated by 1H-15N CP is transferred back to 1H using a refocused INEPT pulse sequence employing windowed 1H decoupling. Such an approach ensures the observation of through-bond N-H connectivities. For 15N-glycine, while the CP-refocused INEPT experiment has a lower sensitivity (∼50%) as compared to a double CP experiment (with a 200 μs 15N to 1H CP contact time), there is selectivity for the directly bonded NH3+ moiety, while intensity is observed for the CH21H resonances in the double CP experiment. Two-dimensional 15N-1H correlation MAS NMR spectra are presented for the dipeptide β-AspAla and the pharmaceutical cimetidine at 60 kHz MAS, both at natural isotopic abundance. For the dipeptide β-AspAla, different build-up dependence on the first spin-echo duration is observed for the NH and NH3+ moieties demonstrating that the experiment could be used to distinguish resonances for different NHx groups.
Collapse
Affiliation(s)
- Jacqueline Tognetti
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK.
| | - W Trent Franks
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK.
| | | | - Steven P Brown
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
15
|
Malär AA, Sun Q, Zehnder J, Kehr G, Erker G, Wiegand T. Proton-phosphorous connectivities revealed by high-resolution proton-detected solid-state NMR. Phys Chem Chem Phys 2022; 24:7768-7778. [DOI: 10.1039/d2cp00616b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proton-detected solid-state NMR enables atomic-level insight in solid-state reactions, for instance in heterogeneous catalysis, which is fundamental for deciphering chemical reaction mechanisms. We herein introduce a phosphorus-31 radiofrequency channel in...
Collapse
|
16
|
Simões de Almeida B, Moutzouri P, Stevanato G, Emsley L. Theory and simulations of homonuclear three-spin systems in rotating solids. J Chem Phys 2021; 155:084201. [PMID: 34470347 DOI: 10.1063/5.0055583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The homonuclear dipolar coupling is the internal spin interaction that contributes the most to the line shapes in magic-angle-spinning (MAS) 1H NMR spectra of solids, and linewidths typically extend over several hundred Hertz, limiting the 1H resolution. Understanding and reducing this contribution could provide rich structural information for organic solids. Here, we use average Hamiltonian theory to study two- and three-spin systems in the fast MAS regime. Specifically, we develop analytical expressions to third order in the case of two and three inequivalent spins (I = ½). The results show that the full third-order expression of the Hamiltonian, without secular approximations or truncation to second order, is the description that agrees the best, by far, with full numerical calculations. We determine the effect on the NMR spectrum of the different Hamiltonian terms, which are shown to produce both residual shifts and splittings in the three-spin systems. Both the shifts and splittings have a fairly complex dependence on the spinning rate with the eigenstates having a polynomial ωr dependence. The effect on powder line shapes is also shown, and we find that the anisotropic residual shift does not have zero average so that the powder line shape is broadened and shifted from the isotropic position. This suggests that in 1H MAS spectra, even at the fastest MAS rates attainable today, the positions observed are not exactly the isotropic shifts.
Collapse
Affiliation(s)
- Bruno Simões de Almeida
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Pinelopi Moutzouri
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Gabriele Stevanato
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|