1
|
Cheng YA, Chien SY, Chen PPY, Hsu IJ, Lee CM. Photoinduced NO production from a mononuclear {MnNO} 6 complex bearing a metal-diaryldisulphide ligand. Dalton Trans 2025; 54:7415-7424. [PMID: 40223644 DOI: 10.1039/d5dt00165j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
A solution of six-coordinate [Mn(PS2)2] (1) is inert towards nitric oxide (NO) at room temperature. In the presence of a proton source such as p-toluenesulfonic acid or perchloric acid, however, the treatment of 1 with NO in the dark leads to the formation of {MnNO}6 [Mn(NO)(SPS-SPS)] (2) with a metal-diaryldisulphide ligand, as confirmed by several spectroscopy investigations, including single-crystal X-ray diffraction. A possible pathway for the formation of 2 was determined through theoretical studies and involves the following: (i) the thiolato sulphur in 1 interacts with H+ to generate an intermediate [Mn(PS2)(PS2H)]+ (A) with an S⋯H interaction; (ii) the reaction of A with NO yields HNO and an Mn(IV)-bound-thiyl radical species (B); and (iii) the nucleophilicity of the thiyl radical B to an adjacent thiolato sulphur produces a five-coordinate Mn(III)-diaryldisulphide species (C), which reacts with the generated HNO to yield 2. Complex 2 is sensitive to visible light. When photolysis of 2 in solution is performed, complex 1 is regenerated and NO is released, which is related to metal-disulphide/metal-thiolate interconversion.
Collapse
Affiliation(s)
- Yu-An Cheng
- Department of Applied Science, National Taitung University, Taitung 950, Taiwan.
| | - Su-Ying Chien
- Instrumentation Center, National Taiwan University, Taipei 106, Taiwan
| | - Peter P-Y Chen
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - I-Jui Hsu
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Chien-Ming Lee
- Department of Applied Science, National Taitung University, Taitung 950, Taiwan.
| |
Collapse
|
2
|
Zhang B, Boyd SD, Zhabilov D, Ullrich M, Blackburn NJ, Winkler DD. Pathogenic R 163W Variant of the Copper Chaperone for Sod1 (Ccs) Functions as an Anti-chaperone. Biochemistry 2024; 63:2051-2062. [PMID: 39099176 PMCID: PMC11722504 DOI: 10.1021/acs.biochem.4c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The copper chaperone for Sod1 (Ccs) is a metallochaperone that plays a multifaceted role in the maturation of Cu,Zn superoxide dismutase (Sod1). The Ccs mutation R163W was identified in an infant with fatal neurological abnormalities. Based on a comprehensive structural and functional analysis, we developed the first data-driven model for R163W-related pathogenic phenotypes. The work here confirms previous findings that the substitution of arginine with tryptophan at this site, which is located adjacent to a conserved Zn binding site, creates an unstable Zn-deficient protein that loses its ability to efficiently activate Sod1. Intriguingly, R163W Ccs can reduce copper (i.e., Cu(II) → Cu(I)) bound in its Sod1-like domain (D2), and this novel redox event is accompanied by disulfide bond formation. The loss of Zn binding, along with the unusual ability to bind copper in D2, diverts R163W Ccs toward aggregation. The remarkably high affinity of D2 Cu(I) binding converts R163W from a Cu chaperone to a Cu scavenger that accelerates Sod1 deactivation (i.e., an Anti-chaperone). Overall, these findings present a first-of-its-kind molecular mechanism for Ccs dysfunction that leads to pathogenesis in humans.
Collapse
Affiliation(s)
- Bei Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75083, United States
| | - Stefanie D Boyd
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75083, United States
| | - Dannie Zhabilov
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75083, United States
| | - Morgan Ullrich
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75083, United States
| | - Ninian J Blackburn
- Department of Chemical Physiology and Biochemistry, Oregon Health and Sciences University, Portland, Oregon 97239, United States
| | - Duane D Winkler
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75083, United States
| |
Collapse
|
3
|
Sun R, Lim S. Ferritin cages as building blocks for higher-order assembly through copper-sulfur bonds for HER analysis. RSC Adv 2024; 14:24791-24796. [PMID: 39114434 PMCID: PMC11305402 DOI: 10.1039/d4ra02931c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/30/2024] [Indexed: 08/10/2024] Open
Abstract
Higher-order assembly of ferritins has been achieved on copper substrate by introducing cysteines on their surfaces with thiol groups as the active moiety. To elucidate the assembly mechanism, Raman spectroscopy was utilized to characterize the interaction between the copper substrate and the modified ferritin, AfFtnAA/E94C. The resulting higher-order architecture shows enhanced hydrogen evolution reaction activity.
Collapse
Affiliation(s)
- Ruoxuan Sun
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 70 Nanyang Drive 637457 Singapore
| | - Sierin Lim
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 70 Nanyang Drive 637457 Singapore
| |
Collapse
|
4
|
Peris-Díaz MD, Orzeł A, Wu S, Mosna K, Barran PE, Krężel A. Combining Native Mass Spectrometry and Proteomics to Differentiate and Map the Metalloform Landscape in Metallothioneins. J Proteome Res 2024; 23:3626-3637. [PMID: 38993068 PMCID: PMC11301679 DOI: 10.1021/acs.jproteome.4c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Within the intricate landscape of the proteome, approximately 30% of all proteins bind metal ions. This repertoire is even larger when considering all the different forms of a protein, known as proteoforms. Here, we propose the term "metalloforms" to refer to different structural or functional variations of a protein resulting from the binding of various hetero- or homogeneous metal ions. Using human Cu(I)/Zn(II)-metallothionein-3 as a representative model, we developed a chemical proteomics strategy to simultaneously differentiate and map Zn(II) and Cu(I) metal binding sites. In the first labeling step, N-ethylmaleimide reacts with Cysteine (Cys), resulting in the dissociation of all Zn(II) ions while Cu(I) remains bound to the protein. In the second labeling step, iodoacetamide is utilized to label Cu(I)-bound Cys residues. Native mass spectrometry (MS) was used to determine the metal/labeling protein stoichiometries, while bottom-up/top-down MS was used to map the Cys-labeled residues. Next, we used a developed methodology to interrogate an isolated rabbit liver metallothionein fraction containing three metallothionein-2 isoforms and multiple Cd(II)/Zn(II) metalloforms. The approach detailed in this study thus holds the potential to decode the metalloproteoform diversity within other proteins.
Collapse
Affiliation(s)
- Manuel David Peris-Díaz
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław 50-383, Poland
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Alicja Orzeł
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław 50-383, Poland
| | - Sylwia Wu
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław 50-383, Poland
| | - Karolina Mosna
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław 50-383, Poland
| | - Perdita E. Barran
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Artur Krężel
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław 50-383, Poland
| |
Collapse
|
5
|
Han J. Copper trafficking systems in cells: insights into coordination chemistry and toxicity. Dalton Trans 2023; 52:15277-15296. [PMID: 37702384 DOI: 10.1039/d3dt02166a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Transition metal ions, such as copper, are indispensable components in the biological system. Copper ions which primarily exist in two major oxidation states Cu(I) and Cu(II) play crucial roles in various cellular processes including antioxidant defense, biosynthesis of neurotransmitters, and energy metabolism, owing to their inherent redox activity. The disturbance in copper homeostasis can contribute to the development of copper metabolism disorders, cancer, and neurodegenerative diseases, highlighting the significance of understanding the copper trafficking system in cellular environments. This review aims to offer a comprehensive overview of copper homeostatic machinery, with an emphasis on the coordination chemistry of copper transporters and trafficking proteins. While copper chaperones and the corresponding metalloenzymes are thoroughly discussed, we also explore the potential existence of low-molecular-mass metal complexes within cellular systems. Furthermore, we summarize the toxicity mechanisms originating from copper deficiency or accumulation, which include the dysregulation of oxidative stress, signaling pathways, signal transduction, and amyloidosis. This perspective review delves into the current knowledge regarding the intricate aspects of the copper trafficking system, providing valuable insights into potential treatment strategies from the standpoint of bioinorganic chemistry.
Collapse
Affiliation(s)
- Jiyeon Han
- Department of Applied Chemistry, University of Seoul, Seoul 02504, Republic of Korea.
| |
Collapse
|
6
|
Melenbacher A, Stillman MJ. Metallothionein-3: 63 Cu(I) binds to human 68 Zn 7 -βα MT3 with no preference for Cu 4 -β cluster formation. FEBS J 2023; 290:4316-4341. [PMID: 37165729 DOI: 10.1111/febs.16812] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/12/2023]
Abstract
Human metallothioneins (MTs) are involved in binding the essential elements, Cu(I) and Zn(II), and the toxic element, Cd(II), in metal-thiolate clusters using 20 reduced cysteines. The brain-specific MT3 binds a mixture of Cu(I) and Zn(II) in vivo. Its metallation properties are critically important because of potential connections between Cu, Zn and neurodegenerative diseases. We report that the use of isotopically pure 63 Cu(I) and 68 Zn(II) greatly enhances the element resolution in the ESI-mass spectral data revealing species with differing Cu:Zn ratios but the same total number of metals. Room temperature phosphorescence and circular dichroism spectral data measured in parallel with ESI-mass spectral data identified the presence of specific Cu(I)-thiolate clusters in the presence of Zn(II). A series of Cu(I)-thiolate clusters form following Cu(I) addition to apo MT3: the two main clusters that form are a Cu6 cluster in the β domain followed by a Cu4 cluster in the α domain. 63 Cu(I) addition to 68 Zn7 -MT3 results in multiple species, including clustered Cu5 Zn5 -MT3 and Cu9 Zn3 -MT3. We assign the domain location of the metals for Cu5 Zn5 -MT3 as a Cu5 Zn1 -β cluster and a Zn4 -α cluster and for Cu9 Zn3 -MT3 as a Cu6 -β cluster and a Cu3 Zn3 -α cluster. While many reports of the average MT3 metal content exist, determining the exact Cu,Zn stoichiometry has proven very difficult even with native ESI-MS. The work in this paper solves the ambiguity introduced by the overlap of the naturally abundant Cu(I) and Zn(II) isotopes. Contrary to other reports, there is no indication of a major fraction of Cu4 -β-Znn -α-MT3 forming.
Collapse
Affiliation(s)
- Adyn Melenbacher
- Department of Chemistry, The University of Western Ontario, London, Canada
| | - Martin J Stillman
- Department of Chemistry, The University of Western Ontario, London, Canada
| |
Collapse
|
7
|
Peris-Díaz MD, Wu S, Mosna K, Liggett E, Barkhanskiy A, Orzeł A, Barran P, Krężel A. Structural Characterization of Cu(I)/Zn(II)-metallothionein-3 by Ion Mobility Mass Spectrometry and Top-Down Mass Spectrometry. Anal Chem 2023; 95:10966-10974. [PMID: 37440218 PMCID: PMC10372872 DOI: 10.1021/acs.analchem.3c00989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023]
Abstract
Mammalian zinc metallothionein-3 (Zn7MT3) plays an important role in protecting against copper toxicity by scavenging free Cu(II) ions or removing Cu(II) bound to β-amyloid and α-synuclein. While previous studies reported that Zn7MT3 reacts with Cu(II) ions to form Cu(I)4Zn(II)4MT3ox containing two disulfides (ox), the precise localization of the metal ions and disulfides remained unclear. Here, we undertook comprehensive structural characterization of the metal-protein complexes formed by the reaction between Zn7MT3 and Cu(II) ions using native ion mobility mass spectrometry (IM-MS). The complex formation mechanism was found to involve the disassembly of Zn3S9 and Zn4S11 clusters from Zn7MT3 and reassembly into Cu(I)xZn(II)yMT3ox complexes rather than simply Zn(II)-to-Cu(I) exchange. At neutral pH, the β-domain was shown to be capable of binding up to six Cu(I) ions to form Cu(I)6Zn(II)4MT3ox, although the most predominant species was the Cu(I)4Zn(II)4MT3ox complex. Under acidic conditions, four Zn(II) ions dissociate, but the Cu(I)4-thiolate cluster remains stable, highlighting the MT3 role as a Cu(II) scavenger even at lower than the cytosolic pH. IM-derived collision cross sections (CCS) reveal that Cu(I)-to-Zn(II) swap in Zn7MT3 with concomitant disulfide formation induces structural compaction and a decrease in conformational heterogeneity. Collision-induced unfolding (CIU) experiments estimated that the native-like folded Cu(I)4Zn(II)4MT3ox conformation is more stable than Zn7MT3. Native top-down MS demonstrated that the Cu(I) ions are exclusively bound to the β-domain in the Cu(I)4Zn(II)4MT3ox complex as well as the two disulfides, serving as a steric constraint for the Cu(I)4-thiolate cluster. In conclusion, this study enhances our comprehension of the structure, stability, and dynamics of Cu(I)xZn(II)yMT3ox complexes.
Collapse
Affiliation(s)
- Manuel David Peris-Díaz
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United
Kingdom
| | - Sylwia Wu
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Karolina Mosna
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Ellen Liggett
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United
Kingdom
| | - Alexey Barkhanskiy
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United
Kingdom
| | - Alicja Orzeł
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Perdita Barran
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United
Kingdom
| | - Artur Krężel
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|
8
|
Yuan AT, Stillman MJ. Arsenic binding to human metallothionein-3. Chem Sci 2023; 14:5756-5767. [PMID: 37265731 PMCID: PMC10231319 DOI: 10.1039/d3sc00400g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023] Open
Abstract
Arsenic poisoning is of great concern with respect to its neurological toxicity, which is especially significant for young children. Human exposure to arsenic occurs worldwide from contaminated drinking water. In human physiology, one response to toxic metals is through coordination with the metallochaperone metallothionein (MT). Central nervous system expression of MT isoform 3 (MT3) is thought to be neuroprotective. We report for the first time on the metalation pathways of As3+ binding to apo-MT3 under physiological conditions, yielding the absolute binding constants (log Kn, n = 1-6) for each sequential As3+ binding event: 10.20, 10.02, 9.79, 9.48, 9.06, and 8.31 M-1. We report on the rate of the reaction of As3+ with apo-MT3 at pH 3.5 with rate constants (kn, n = 1-6) determined for each sequential As3+ binding event: 116.9, 101.2, 85.6, 64.0, 43.9, and 21.0 M-1 s-1. We further characterize the As3+ binding pathway to fully metalated Zn7MT3 and partially metalated Zn-MT3. As3+ binds rapidly with high binding constants under physiological conditions in a noncooperative manner, but is unable to replace the Zn2+ in fully-metalated Zn-MT3. As3+ binding to partially metalated Zn-MT3 takes place with a rearrangement of the Zn-binding profile. Our work shows that As 3+ rapidly and efficiently binds to both apo-MT3 and partially metalated Zn-MT3 at physiological pH.
Collapse
Affiliation(s)
- Amelia T Yuan
- Department of Chemistry, University of Western Ontario 1151 Richmond St. London ON N6A 5B7 Canada
| | - Martin J Stillman
- Department of Chemistry, University of Western Ontario 1151 Richmond St. London ON N6A 5B7 Canada
| |
Collapse
|
9
|
Lakha R, Hachicho C, Mehlenbacher MR, Wilcox DE, Austin RN, Vizcarra CL. Metallothionein-3 attenuates the effect of Cu 2+ ions on actin filaments. J Inorg Biochem 2023; 242:112157. [PMID: 36801620 DOI: 10.1016/j.jinorgbio.2023.112157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
Metallothionein 3 (MT-3) is a cysteine-rich metal-binding protein that is expressed in the mammalian central nervous system and kidney. Various reports have posited a role for MT-3 in regulating the actin cytoskeleton by promoting the assembly of actin filaments. We generated purified, recombinant mouse MT-3 of known metal compositions, either with zinc (Zn), lead (Pb), or copper/zinc (Cu/Zn) bound. None of these forms of MT-3 accelerated actin filament polymerization in vitro, either with or without the actin binding protein profilin. Furthermore, using a co-sedimentation assay, we did not observe Zn-bound MT-3 in complex with actin filaments. Cu2+ ions on their own induced rapid actin polymerization, an effect that we attribute to filament fragmentation. This effect of Cu2+ is reversed by adding either EGTA or Zn-bound MT-3, indicating that either molecule can chelate Cu2+ from actin. Altogether, our data indicate that purified recombinant MT-3 does not directly bind actin but it does attenuate the Cu-induced fragmentation of actin filaments.
Collapse
Affiliation(s)
- Rabina Lakha
- Department of Chemistry, Barnard College, New York, NY 10027, USA
| | - Carla Hachicho
- Department of Chemistry, Barnard College, New York, NY 10027, USA
| | | | - Dean E Wilcox
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Rachel N Austin
- Department of Chemistry, Barnard College, New York, NY 10027, USA
| | | |
Collapse
|
10
|
Xia L, Lu Y, Li YZ, Hu ZY, Yang XY. TiO2-rGO-Cu complex: A photocatalyst possessing an interfacial electron transport mechanism to enhance hydrogen production from seawater. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
11
|
Falcone E, Ritacca AG, Hager S, Schueffl H, Vileno B, El Khoury Y, Hellwig P, Kowol CR, Heffeter P, Sicilia E, Faller P. Copper-Catalyzed Glutathione Oxidation is Accelerated by the Anticancer Thiosemicarbazone Dp44mT and Further Boosted at Lower pH. J Am Chem Soc 2022; 144:14758-14768. [PMID: 35929814 PMCID: PMC9389589 DOI: 10.1021/jacs.2c05355] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
![]()
Glutathione (GSH) is the most abundant thiol in mammalian
cells
and plays a crucial role in maintaining redox cellular homeostasis.
The thiols of two GSH molecules can be oxidized to the disulfide GSSG.
The cytosolic GSH/GSSG ratio is very high (>100), and its reduction
can lead to apoptosis or necrosis, which are of interest in cancer
research. CuII ions are very efficient oxidants of thiols,
but with an excess of GSH, CuIn(GS)m clusters are formed, in which CuI is very slowly reoxidized by O2 at pH 7.4 and
even more slowly at lower pH. Here, the aerobic oxidation of GSH by
CuII was investigated at different pH values in the presence
of the anticancer thiosemicarbazone Dp44mT, which accumulates in lysosomes
and induces lysosomal membrane permeabilization in a Cu-dependent
manner. The results showed that CuII-Dp44mT catalyzes GSH
oxidation faster than CuII alone at pH 7.4 and hence accelerates
the production of very reactive hydroxyl radicals. Moreover, GSH oxidation
and hydroxyl radical production by CuII-Dp44mT were accelerated
at the acidic pH found in lysosomes. To decipher this unusually faster
thiol oxidation at lower pH, density functional theory (DFT) calculations,
electrochemical and spectroscopic studies were performed. The results
suggest that the acceleration is due to the protonation of CuII-Dp44mT on the hydrazinic nitrogen, which favors the rate-limiting
reduction step without subsequent dissociation of the CuI intermediate. Furthermore, preliminary biological studies in cell
culture using the proton pump inhibitor bafilomycin A1 indicated that
the lysosomal pH plays a role in the activity of CuII-Dp44mT.
Collapse
Affiliation(s)
- Enrico Falcone
- Institut de Chimie (UMR 7177), University of Strasbourg - CNRS, 4 Rue Blaise Pascal, 67081 Strasbourg, France
| | - Alessandra G Ritacca
- Department of Chemistry and Chemical Technologies, Università della Calabria, Ponte P. Bucci, 87036 Arcavacata di Rende, (CS), Italy
| | - Sonja Hager
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Hemma Schueffl
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Bertrand Vileno
- Institut de Chimie (UMR 7177), University of Strasbourg - CNRS, 4 Rue Blaise Pascal, 67081 Strasbourg, France
| | - Youssef El Khoury
- Laboratoire de bioélectrochimie et spectroscopie, UMR 7140, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67081 Strasbourg, France
| | - Petra Hellwig
- Laboratoire de bioélectrochimie et spectroscopie, UMR 7140, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67081 Strasbourg, France
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria
| | - Petra Heffeter
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, Università della Calabria, Ponte P. Bucci, 87036 Arcavacata di Rende, (CS), Italy
| | - Peter Faller
- Institut de Chimie (UMR 7177), University of Strasbourg - CNRS, 4 Rue Blaise Pascal, 67081 Strasbourg, France.,Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris, France
| |
Collapse
|
12
|
Mehlenbacher MR, Elsiesy R, Lakha R, Villones RLE, Orman M, Vizcarra CL, Meloni G, Wilcox DE, Austin RN. Metal binding and interdomain thermodynamics of mammalian metallothionein-3: enthalpically favoured Cu + supplants entropically favoured Zn 2+ to form Cu 4 + clusters under physiological conditions. Chem Sci 2022; 13:5289-5304. [PMID: 35655557 PMCID: PMC9093145 DOI: 10.1039/d2sc00676f] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/01/2022] [Indexed: 01/02/2023] Open
Abstract
Metallothioneins (MTs) are a ubiquitous class of small metal-binding proteins involved in metal homeostasis and detoxification. While known for their high affinity for d10 metal ions, there is a surprising dearth of thermodynamic data on metals binding to MTs. In this study, Zn2+ and Cu+ binding to mammalian metallothionein-3 (MT-3) were quantified at pH 7.4 by isothermal titration calorimetry (ITC). Zn2+ binding was measured by chelation titrations of Zn7MT-3, while Cu+ binding was measured by Zn2+ displacement from Zn7MT-3 with competition from glutathione (GSH). Titrations in multiple buffers enabled a detailed analysis that yielded condition-independent values for the association constant (K) and the change in enthalpy (ΔH) and entropy (ΔS) for these metal ions binding to MT-3. Zn2+ was also chelated from the individual α and β domains of MT-3 to quantify the thermodynamics of inter-domain interactions in metal binding. Comparative titrations of Zn7MT-2 with Cu+ revealed that both MT isoforms have similar Cu+ affinities and binding thermodynamics, indicating that ΔH and ΔS are determined primarily by the conserved Cys residues. Inductively coupled plasma mass spectrometry (ICP-MS) analysis and low temperature luminescence measurements of Cu-replete samples showed that both proteins form two Cu4 +-thiolate clusters when Cu+ displaces Zn2+ under physiological conditions. Comparison of the Zn2+ and Cu+ binding thermodynamics reveal that enthalpically-favoured Cu+, which forms Cu4 +-thiolate clusters, displaces the entropically-favoured Zn2+. These results provide a detailed thermodynamic analysis of d10 metal binding to these thiolate-rich proteins and quantitative support for, as well as molecular insight into, the role that MT-3 plays in the neuronal chemistry of copper.
Collapse
Affiliation(s)
| | - Rahma Elsiesy
- Department of Chemistry, Barnard College of Columbia University New York NY 10027 USA
| | - Rabina Lakha
- Department of Chemistry, Barnard College of Columbia University New York NY 10027 USA
| | - Rhiza Lyne E Villones
- Department of Chemistry and Biochemistry, University of Texas at Dallas Richardson TX 75080 USA
| | - Marina Orman
- Department of Chemistry, Barnard College of Columbia University New York NY 10027 USA
| | - Christina L Vizcarra
- Department of Chemistry, Barnard College of Columbia University New York NY 10027 USA
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry, University of Texas at Dallas Richardson TX 75080 USA
| | - Dean E Wilcox
- Department of Chemistry, Dartmouth College Hanover NH 03755 USA
| | - Rachel N Austin
- Department of Chemistry, Barnard College of Columbia University New York NY 10027 USA
| |
Collapse
|