1
|
Tatsumi S, Noda H, Umeda M, Kagotani T, Sugimoto K, Kuroda-Sowa T, Tamayose S, Horii Y, Suzuki H. Spin-Crossover Transitions of Solid Solutions of Fe II Complexes with Fluorine- and Chlorine-Substituted Schiff-Base Ligands, Hqsal 5F and Hqsal 5Cl. Inorg Chem 2025; 64:4973-4982. [PMID: 40038601 DOI: 10.1021/acs.inorgchem.4c04959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Spin-crossover (SCO) transitions of solid solutions of FeII complexes coordinated with fluorine- and chlorine-substituted Schiff-base ligands, [FeII(qsal5F)x(qsal5Cl)2-x] (x = 0.0-2.0, qsal5X = 5-halogeno-N-(8'-quinolyl)-2-hydroxy-1-salicylaldimine), were investigated by magnetic, single-crystal X-ray diffraction, and heat-capacity measurements. The SCO transition temperature decreases from 310.5 to 148.8 K as x increases from 0.0 to 2.0. At 0.0 ≤ x ≤ 1.0, both ΔtrsH and ΔtrsS decrease with increasing x, whereas ΔtrsH slightly decreases but ΔtrsS is almost constant at 1.5 ≤ x ≤ 2.0, showing that the x-dependence of Ttrs is mainly caused by variation in ΔtrsH. The different trend at 0.0 ≤ x ≤ 1.0 and 1.5 ≤ x ≤ 2.0 is because of different crystal structures of the HS state (monoclinic at 0.0 ≤ x ≤ 1.0 and orthorhombic at 1.5 ≤ x ≤ 2.0). Density functional theory calculations reveal that the single-point energy in the HS state decreases with an increase in x, indicating that the decrease in ΔtrsH is partly caused by a molecular distortion induced by the partial replacement of halogen species. The molar heat capacity of the HS state decreases as x increases, showing that changes in vibrational motions also contribute to variation of ΔtrsH.
Collapse
Affiliation(s)
- Shoichi Tatsumi
- National Institute of Advanced Industrial Science and Technology (AIST), National Metrology Institute of Japan, Tsukuba, Ibaraki 305-8563, Japan
- Department of Chemistry, Kindai University, Higashiosaka, Osaka 577-8502, Japan
| | - Hitomi Noda
- Department of Chemistry, Kindai University, Higashiosaka, Osaka 577-8502, Japan
| | - Miyu Umeda
- Department of Chemistry, Kindai University, Higashiosaka, Osaka 577-8502, Japan
| | - Takamasa Kagotani
- Department of Chemistry, Kindai University, Higashiosaka, Osaka 577-8502, Japan
| | - Kunihisa Sugimoto
- Department of Chemistry, Kindai University, Higashiosaka, Osaka 577-8502, Japan
| | | | - Saho Tamayose
- Department of Chemistry, Faculty of Science, Nara Women's University, Nara 630-8506, Japan
| | - Yoji Horii
- Department of Chemistry, Faculty of Science, Nara Women's University, Nara 630-8506, Japan
| | - Hal Suzuki
- Department of Chemistry, Kindai University, Higashiosaka, Osaka 577-8502, Japan
| |
Collapse
|
2
|
Yuwono SH, Li RR, Zhang T, Li X, DePrince AE. Two-component relativistic equation-of-motion coupled cluster for electron ionization. J Chem Phys 2025; 162:084110. [PMID: 40008944 DOI: 10.1063/5.0248535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
We present an implementation of the relativistic ionization-potential (IP) equation-of-motion coupled-cluster (EOMCC) with up to 3-hole-2-particle (3h2p) excitations that makes use of the molecular mean-field exact two-component framework and the full Dirac-Coulomb-Breit Hamiltonian. The closed-shell nature of the reference state in an X2C-IP-EOMCC calculation allows for accurate predictions of spin-orbit splittings in open-shell molecules without breaking degeneracies, as would occur in an excitation-energy EOMCC calculation carried out directly on an unrestricted open-shell reference. We apply X2C-IP-EOMCC to the ground and first excited states of the HCCX+ (X = Cl, Br, I) cations, where it is demonstrated that a large basis set (i.e., quadruple-zeta quality) and 3h2p correlation effects are necessary for accurate absolute energetics. The maximum error in calculated adiabatic IPs is on the order of 0.1 eV, whereas spin-orbit splittings themselves are accurate to ≈0.01 eV, as compared to experimentally obtained values.
Collapse
Affiliation(s)
- Stephen H Yuwono
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, USA
| | - Run R Li
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, USA
| | - Tianyuan Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - A Eugene DePrince
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, USA
| |
Collapse
|
3
|
Dürrmann A, Hörner G, Baabe D, Heinemann FW, de Melo MAC, Weber B. Cooperative spin crossover leading to bistable and multi-inert system states in an iron(III) complex. Nat Commun 2024; 15:7321. [PMID: 39183211 PMCID: PMC11345420 DOI: 10.1038/s41467-024-51675-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024] Open
Abstract
Cooperativity among spin centres has long been the royal road in spin crossover (SCO) research to impose magnetic bistability in terms of thermal hysteresis. In this work we access magnetic multi-inert states of the iron(III) compound {FeL2[B(Ph)4]} ≡ FeB at low temperature, in addition to thermal bistability. The packing of the low-spin and high-spin forms of crystalline FeB differs only marginally what ultimately leads to structural conservatism. This indicates that the SCO-immanent breathing of the complex cation is almost fully compensated by the anion matrix. The unique cooling rate dependence of the residual low-temperature magnetisation in FeB unveils continuous switching between the trapped high-spin (ON) and the relaxed low-spin state (OFF). The macroscopic ratio of the spin states (ON:OFF) can be adjusted as a simple function of the cooling rate. That is, cooperative spin crossover can be the source of bistable and multi-inert system states in the very same material.
Collapse
Affiliation(s)
- Andreas Dürrmann
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, Jena, Germany
- Inorganic Chemistry IV, University of Bayreuth, Universitätsstraße 30, Bayreuth, Germany
| | - Gerald Hörner
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, Jena, Germany
- Inorganic Chemistry IV, University of Bayreuth, Universitätsstraße 30, Bayreuth, Germany
| | - Dirk Baabe
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, Braunschweig, Germany
| | - Frank W Heinemann
- Lehrstuhl für Anorganische und Allgemeine Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 1, Erlangen, Germany
| | | | - Birgit Weber
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, Jena, Germany.
- Inorganic Chemistry IV, University of Bayreuth, Universitätsstraße 30, Bayreuth, Germany.
| |
Collapse
|
4
|
Gavara-Edo M, Valverde-Muñoz FJ, Muñoz MC, Elidrissi Moubtassim S, Marques-Moros F, Herrero-Martín J, Znovjyak K, Seredyuk M, Real JA, Coronado E. Design and Processing as Ultrathin Films of a Sublimable Iron(II) Spin Crossover Material Exhibiting Efficient and Fast Light-Induced Spin Transition. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:9591-9602. [PMID: 38047182 PMCID: PMC10687866 DOI: 10.1021/acs.chemmater.3c01704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 12/05/2023]
Abstract
Materials based on spin crossover (SCO) molecules have centered the attention in molecular magnetism for more than 40 years as they provide unique examples of multifunctional and stimuli-responsive materials, which can be then integrated into electronic devices to exploit their molecular bistability. This process often requires the preparation of thermally stable SCO molecules that can sublime and remain intact in contact with surfaces. However, the number of robust sublimable SCO molecules is still very scarce. Here, we report a novel example of this kind. It is based on a neutral iron(II) coordination complex formulated as [Fe(neoim)2], where neoimH is the ionogenic ligand 2-(1H-imidazol-2-yl)-9-methyl-1,10-phenanthroline. In the first part, a comprehensive study, which covers the synthesis and magnetostructural characterization of the [Fe(neoim)2] complex as a bulk microcrystalline material, is reported. Then, in the second part, we investigate the suitability of this material to form thin films through high-vacuum sublimation. Finally, the retainment of all present SCO capabilities in the bulk when the material is processed is thoroughly studied by means of X-ray absorption spectroscopy. In particular, a very efficient and fast light-induced spin transition (LIESST effect) has been observed, even for ultrathin films of 15 nm.
Collapse
Affiliation(s)
- Miguel Gavara-Edo
- Instituto
de Ciencia Molecular, Universidad de Valencia, Catedrático José Beltrán
2, Paterna 46980, Spain
| | | | - M. Carmen Muñoz
- Departamento
de Fisica Aplicada, Universitat Politècnica
de València, Camino de Vera s/n, Valencia 46022, Spain
| | - Safaa Elidrissi Moubtassim
- Instituto
de Ciencia Molecular, Universidad de Valencia, Catedrático José Beltrán
2, Paterna 46980, Spain
| | - Francisco Marques-Moros
- Instituto
de Ciencia Molecular, Universidad de Valencia, Catedrático José Beltrán
2, Paterna 46980, Spain
| | | | - Kateryna Znovjyak
- Department
of Chemistry, Taras Shevchenko National
University of Kyiv, 64/13,
Volodymyrska Street, Kyiv 01601, Ukraine
| | - Maksym Seredyuk
- Instituto
de Ciencia Molecular, Universidad de Valencia, Catedrático José Beltrán
2, Paterna 46980, Spain
- Department
of Chemistry, Taras Shevchenko National
University of Kyiv, 64/13,
Volodymyrska Street, Kyiv 01601, Ukraine
| | - José Antonio Real
- Instituto
de Ciencia Molecular, Universidad de Valencia, Catedrático José Beltrán
2, Paterna 46980, Spain
| | - Eugenio Coronado
- Instituto
de Ciencia Molecular, Universidad de Valencia, Catedrático José Beltrán
2, Paterna 46980, Spain
| |
Collapse
|
5
|
Albavera-Mata A, Hennig RG, Trickey SB. Transition Temperature for Spin-Crossover Materials with the Mean Value Ensemble Hubbard- U Correction. J Phys Chem A 2023; 127:7646-7654. [PMID: 37669434 DOI: 10.1021/acs.jpca.3c03520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Calculation of transition temperatures T1/2 for thermally driven spin-crossover in condensed phases is challenging, even with sophisticated state-of-the-art density functional approximations. The first issue is the accuracy of the adiabatic crossover energy difference ΔEHL between the low- and high-spin states of the bistable metal-organic complexes. The other is the proper inclusion of entropic contributions to the Gibbs free energy from the electronic and vibrational degrees of freedom. We discuss the effects of treatments of both contributions upon the calculation of thermochemical properties for a set of 20 spin-crossover materials using a Hubbard-U correction obtained from a reference ensemble spin-state. The U values obtained from a simplest bimolecular representation may overcorrect, somewhat, the ΔEHL values, hence giving somewhat excessive reduction of the T1/2 results with respect to their U = 0 values in the crystalline phase. We discuss the origins of the discrepancies by analyzing different sources of uncertainties. By use of a first-coordination-sphere approximation and the assumption that vibrational contributions from the outermost atoms in a metal-organic complex are similar in both low- and high-spin states, we achieve T1/2 results with the low-cost, widely used PBE generalized gradient density functional approximation comparable to those from the more costly, more sophisticated r2SCAN meta-generalized gradient approximation. The procedure is promising for use in high-throughput materials screening, because it combines rather low computational effort requirements with freedom from user manipulation of parameters.
Collapse
Affiliation(s)
- Angel Albavera-Mata
- Center for Molecular Magnetic Quantum Materials, Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
- Department of Materials Science and Engineering, University of Florida, 1885 Stadium Road, Gainesville, Florida 32611, United States
| | - Richard G Hennig
- Center for Molecular Magnetic Quantum Materials, Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
- Department of Materials Science and Engineering, University of Florida, 1885 Stadium Road, Gainesville, Florida 32611, United States
| | - S B Trickey
- Center for Molecular Magnetic Quantum Materials, Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
- Department of Physics and Department of Chemistry, University of Florida, P.O. Box 118435, Gainesville, Florida 32611, United States
| |
Collapse
|
6
|
Díaz-Torres R, Chastanet G, Collet E, Trzop E, Harding P, Harding DJ. Bidirectional photoswitchability in an iron(iii) spin crossover complex: symmetry-breaking and solvent effects. Chem Sci 2023; 14:7185-7191. [PMID: 37416698 PMCID: PMC10321481 DOI: 10.1039/d3sc01495a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/31/2023] [Indexed: 07/08/2023] Open
Abstract
The impact of solvent on spin crossover (SCO) behaviour is reported in two solvates [Fe(qsal-I)2]NO3·2ROH (qsal-I = 4-iodo-2-[(8-quinolylimino)methyl]phenolate; R = Me 1 or Et 2) which undergo abrupt and gradual SCO, respectively. A symmetry-breaking phase transition due to spin-state ordering from a [HS] to [HS-LS] state occurs at 210 K in 1, while T1/2 = 250 K for the EtOH solvate, where complete SCO occurs. The MeOH solvate exhibits LIESST and reverse-LIESST from the [HS-LS] state, revealing a hidden [LS] state. Moreover, photocrystallographic studies on 1 at 10 K reveal re-entrant photoinduced phase transitions to a high symmetry [HS] phase when irradiated at 980 nm or a high symmetry [LS] phase after irradiation at 660 nm. This study represents the first example of bidirectional photoswitchability and subsequent symmetry-breaking from a [HS-LS] state in an iron(iii) SCO material.
Collapse
Affiliation(s)
- Raúl Díaz-Torres
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University Pathum Thani 12121 Thailand
| | - Guillaume Chastanet
- Université de Bordeaux, ICMCB 87 Avenue du Dr A. Schweitzer Pessac F-33608 France
| | - Eric Collet
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251 F-35000 Rennes France
| | - Elzbieta Trzop
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251 F-35000 Rennes France
| | - Phimphaka Harding
- School of Chemistry, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - David J Harding
- School of Chemistry, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| |
Collapse
|
7
|
Zhang L, Kozhevnikov A, Schulthess T, Trickey SB, Cheng HP. All-electron APW+lo calculation of magnetic molecules with the SIRIUS domain-specific package. J Chem Phys 2023; 158:234801. [PMID: 37326162 DOI: 10.1063/5.0139497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Abstract
We report APW+lo (augmented plane wave plus local orbital) density functional theory (DFT) calculations of large molecular systems using the domain specific SIRIUS multi-functional DFT package. The APW and FLAPW (full potential linearized APW) task and data parallelism options and the advanced eigen-system solver provided by SIRIUS can be exploited for performance gains in ground state Kohn-Sham calculations on large systems. This approach is distinct from our prior use of SIRIUS as a library backend to another APW+lo or FLAPW code. We benchmark the code and demonstrate performance on several magnetic molecule and metal organic framework systems. We show that the SIRIUS package in itself is capable of handling systems as large as a several hundred atoms in the unit cell without having to make technical choices that result in the loss of accuracy with respect to that needed for the study of magnetic systems.
Collapse
Affiliation(s)
- Long Zhang
- Department of Physics, University of Florida, Gainesville, Florida 32611, USA
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
- Center for Molecular Magnetic Quantum Materials, University of Florida, Gainesville, Florida 32611, USA
| | | | | | - S B Trickey
- Department of Physics, University of Florida, Gainesville, Florida 32611, USA
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
- Center for Molecular Magnetic Quantum Materials, University of Florida, Gainesville, Florida 32611, USA
| | - Hai-Ping Cheng
- Department of Physics, University of Florida, Gainesville, Florida 32611, USA
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
- Center for Molecular Magnetic Quantum Materials, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
8
|
Yazdani S, Phillips J, Ekanayaka TK, Cheng R, Dowben PA. The Influence of the Substrate on the Functionality of Spin Crossover Molecular Materials. Molecules 2023; 28:3735. [PMID: 37175145 PMCID: PMC10180229 DOI: 10.3390/molecules28093735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Spin crossover complexes are a route toward designing molecular devices with a facile readout due to the change in conductance that accompanies the change in spin state. Because substrate effects are important for any molecular device, there are increased efforts to characterize the influence of the substrate on the spin state transition. Several classes of spin crossover molecules deposited on different types of surface, including metallic and non-metallic substrates, are comprehensively reviewed here. While some non-metallic substrates like graphite seem to be promising from experimental measurements, theoretical and experimental studies indicate that 2D semiconductor surfaces will have minimum interaction with spin crossover molecules. Most metallic substrates, such as Au and Cu, tend to suppress changes in spin state and affect the spin state switching process due to the interaction at the molecule-substrate interface that lock spin crossover molecules in a particular spin state or mixed spin state. Of course, the influence of the substrate on a spin crossover thin film depends on the molecular film thickness and perhaps the method used to deposit the molecular film.
Collapse
Affiliation(s)
- Saeed Yazdani
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; (S.Y.); (J.P.)
| | - Jared Phillips
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; (S.Y.); (J.P.)
| | - Thilini K. Ekanayaka
- Department of Physics and Astronomy, Jorgensen Hall, University of Nebraska, Lincoln, NE 68588-0299, USA;
| | - Ruihua Cheng
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; (S.Y.); (J.P.)
| | - Peter A. Dowben
- Department of Physics and Astronomy, Jorgensen Hall, University of Nebraska, Lincoln, NE 68588-0299, USA;
| |
Collapse
|
9
|
Lazaar K, Aouaini F, Gueddida S. Binuclear spin-crossover [Fe(bt)(NCS) 2] 2(bpm) complex: A study using first principles calculations. J Chem Phys 2023; 158:144307. [PMID: 37061491 DOI: 10.1063/5.0147313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
The spin-crossover [Fe(bt)(NCS)2]2(bpm) complex is studied using spin-polarized density functional theory within the generalized gradient approximation, the Hubbard U and the weak van der Waals interactions in conjunction with the projector augmented wave method in its molecular and periodic arrangements. It is shown that the considered complex has three magnetic configurations [high spin state (HS)-HS, HS-low spin state (LS), and LS-LS] corresponding to those observed experimentally after two transition temperatures Tc (1) of 163 K and Tc (2) of 197 K. For the HS-HS magnetic state, we found that the two Fe centers are antiferromagnetically coupled for both molecular and periodic structures in good agreement with the experimental observations. Our results show that the computed total energy difference between the magnetic state configurations of the considered Fe2 complex is significantly smaller compared to those reported in the literature for other mono- or binuclear compounds.
Collapse
Affiliation(s)
- Koussai Lazaar
- Université Paris-Saclay, Université Evry, CNRS, LAMBE UMR8587, 91025 Evry-Courcouronnes, France
| | - Fatma Aouaini
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Saber Gueddida
- Université de Lorraine, Laboratoire de Physique et Chimie Théoriques (LPCT), CNRS UMR7019, F-54506 Vandoeuvre-Lès-Nancy, France
| |
Collapse
|
10
|
Albavera-Mata A, Trickey SB, Hennig RG. Mean Value Ensemble Hubbard- U Correction for Spin-Crossover Molecules. J Phys Chem Lett 2022; 13:12049-12054. [PMID: 36542415 DOI: 10.1021/acs.jpclett.2c03388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
High-throughput searches for spin-crossover molecules require Hubbard-U corrections to common density functional exchange-correlation (XC) approximations. However, the Ueff values obtained from linear response or based on previous studies overcorrect the spin-crossover energies. We demonstrate that employing a linearly mixed ensemble average spin state as the reference configuration for the linear response calculation of Ueff resolves this issue. Validation on a commonly used set of spin-crossover complexes shows that these ensemble Ueff values consistently are smaller than those calculated directly on a pure spin state, irrespective of whether that be low- or high-spin. Adiabatic crossover energies using this methodology for a generalized gradient approximation XC functional are closer to the expected target energy range than with conventional Ueff values. Based on the observation that the Ueff correction is similar for different complexes that share transition metals with the same oxidation state, we devise a set of recommended averaged Ueff values for high-throughput calculations.
Collapse
Affiliation(s)
- Angel Albavera-Mata
- Center for Molecular Magnetic Quantum Materials, Quantum Theory Project, University of Florida, Gainesville, Florida32611, United States
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida32611, United States
| | - S B Trickey
- Center for Molecular Magnetic Quantum Materials, Quantum Theory Project, University of Florida, Gainesville, Florida32611, United States
- Department of Physics and Department of Chemistry, University of Florida, Gainesville, Florida32611, United States
| | - Richard G Hennig
- Center for Molecular Magnetic Quantum Materials, Quantum Theory Project, University of Florida, Gainesville, Florida32611, United States
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida32611, United States
| |
Collapse
|
11
|
Li R, Kalita VM, Fylymonov H, Xu W, Li Q, Real JA, Liu B, Levchenko G. Pressure-Induced Mixed States Caused by Spin-Elastic Interactions during First-Order Spin Phase Transition in Spin Crossover Compounds. Inorg Chem 2022; 61:14752-14760. [PMID: 36074955 DOI: 10.1021/acs.inorgchem.2c02124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recently, the possibility of exploiting the phenomenon of spin transition (ST) has been intensively investigated; therefore, it is particularly important to study the behavior of ST under various stimuli. Here, the shape and content of the intermediate phase of ST in Hoffmann-like compounds [Fe(Fpz)2M(CN)4] (M = Pt, Pd) under external stimuli are studied. For this purpose, magnetic and Raman spectroscopy studies were carried out. In pressure-induced spin transition (PIST), a mixture of high-spin and low-spin states appears, while in temperature-induced spin transition (TIST), a homogeneous state occurs. The first-order ST induced by pressure has a hysteresis but is not abrupt. However, the temperature-induced spin transition at ambient pressure is hysteretic and abrupt. To investigate this difference, we discuss using a thermodynamic model that considers elastic interactions, showing that the slope of the hysteresis loop is related to the appearance of internal pressure, which is related to the difference in sample compressibility under high-spin and low-spin states.
Collapse
Affiliation(s)
- Ruixin Li
- State Key Laboratory of Superhard Materials, International Centre of Future Science, Jilin University, Changchun 130012, China
| | - Viktor M Kalita
- Institute of Magnetism of NAS of Ukraine and MES of Ukraine, 36-b Vernadsky Boulevard, Kyiv 03142, Ukraine.,National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Prospekt Peremohy 37, Kyiv 03056, Ukraine.,Institute of Physics, NAS of Ukraine, Prospekt Nauky 46, Kyiv 03028, Ukraine
| | - Hennadii Fylymonov
- Donetsk Institute of Physics and Engineering Named after A.A. Galkin, Kyiv 03028, Ukraine
| | - Wei Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Quanjun Li
- State Key Laboratory of Superhard Materials, International Centre of Future Science, Jilin University, Changchun 130012, China
| | - José Antonio Real
- Institut de Ciència Molecular, Departament de Química Inorgànica, Universitat de València, València E-46980, Spain
| | - Bingbing Liu
- State Key Laboratory of Superhard Materials, International Centre of Future Science, Jilin University, Changchun 130012, China
| | - Georgiy Levchenko
- State Key Laboratory of Superhard Materials, International Centre of Future Science, Jilin University, Changchun 130012, China.,Donetsk Institute of Physics and Engineering Named after A.A. Galkin, Kyiv 03028, Ukraine
| |
Collapse
|
12
|
Dey B, Chandrasekhar V. Fe II spin crossover complexes containing N 4O 2 donor ligands. Dalton Trans 2022; 51:13995-14021. [PMID: 36040413 DOI: 10.1039/d2dt01967a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spin crossover (SCO) is one of the most studied magnetic bistable phenomena because of its application in the field of multifunctional magnetic materials. FeII complexes in a N6 coordination environment have been the most well-studied in terms of their SCO behaviour. Other coordination environments, notably the N4O2 coordination environment, has also been quite effective in inducing SCO behaviour in the corresponding FeII complexes. This review deals with such systems. The three ligand families that are discussed are: Jager type ligands, hydrazone based ligands and tridentate ligands having salicylaldehyde derivatives. These ligands allow the assembly of both mononuclear and multinuclear complexes that exhibit cooperative spin transitions. Also, FeII complexes obtained from some of these ligands are multifunctional and exhibit a coupling of optical and magnetic properties. Most of the FeII complexes obtained from these families of ligands are charge neutral which allows easy surface deposition. Further, modulation of these ligand families allows a fine tuning of the ligand field strength which results in varying SCO behavior. In addition some of the FeII complexes derived from these ligands exhibit a light induced excited spin state trapping (LIESST) effect. All of the above aspects are reviewed in this review.
Collapse
Affiliation(s)
- Bijoy Dey
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad - 500046, Telangana, India.
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad - 500046, Telangana, India. .,Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| |
Collapse
|
13
|
Skachkov D, Liu SL, Chen J, Christou G, Hebard AF, Zhang XG, Trickey SB, Cheng HP. Dipole Switching by Intramolecular Electron Transfer in Single-Molecule Magnetic Complex [Mn 12O 12(O 2CR) 16(H 2O) 4]. J Phys Chem A 2022; 126:5265-5272. [PMID: 35939333 DOI: 10.1021/acs.jpca.2c02585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We study intramolecular electron transfer in the single-molecule magnetic complex [Mn12O12(O2CR)16 (H2O)4] for R = -H, -CH3, -CHCl2, -C6H5, and -C6H4F ligands as a mechanism for switching of the molecular dipole moment. Energetics is obtained using the density functional theory (DFT) with onsite Coulomb energy correction (DFT + U). Lattice distortions are found to be critical for localizing an extra electron on one of the easy sites on the outer ring in which localized states can be stabilized. We find that the lowest-energy path for charge transfer is for the electron to go through the center via superexchange-mediated tunneling. The energy barrier for such a path ranges from 0.4 to 54 meV depending on the ligands and the isomeric form of the complex. The electric field strength needed to move the charge from one end to the other, thus reversing the dipole moment, is 0.01-0.04 V/Å.
Collapse
Affiliation(s)
- Dmitry Skachkov
- The M2QM Center and the Quantum Theory Project, Department of Physics, University of Florida, Gainesville, Florida 32611, United States
| | - Shuang-Long Liu
- The M2QM Center and the Quantum Theory Project, Department of Physics, University of Florida, Gainesville, Florida 32611, United States
| | - Jia Chen
- The M2QM Center and the Quantum Theory Project, Department of Physics, University of Florida, Gainesville, Florida 32611, United States
| | - George Christou
- The M2QM Center, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Arthur F Hebard
- The M2QM Center, Department of Physics, University of Florida, Gainesville, Florida 32611, United States
| | - Xiao-Guang Zhang
- The M2QM Center and the Quantum Theory Project, Department of Physics, University of Florida, Gainesville, Florida 32611, United States
| | - Samuel B Trickey
- The M2QM Center and the Quantum Theory Project, Department of Physics, University of Florida, Gainesville, Florida 32611, United States
| | - Hai-Ping Cheng
- The M2QM Center and the Quantum Theory Project, Department of Physics, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
14
|
Seredyuk M, Znovjyak K, Valverde-Muñoz FJ, da Silva I, Muñoz MC, Moroz YS, Real JA. 105 K Wide Room Temperature Spin Transition Memory Due to a Supramolecular Latch Mechanism. J Am Chem Soc 2022; 144:14297-14309. [PMID: 35900921 PMCID: PMC9380689 DOI: 10.1021/jacs.2c05417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Little is known about the mechanisms behind the bistability
(memory)
of molecular spin transition compounds over broad temperature ranges
(>100 K). To address this point, we report on a new discrete FeII neutral complex [FeIIL2]0 (1) based on a novel asymmetric tridentate ligand 2-(5-(3-methoxy-4H-1,2,4-triazol-3-yl)-6-(1H-pyrazol-1-yl))pyridine
(L). Due to the asymmetric cone-shaped form, in the lattice, the formed
complex molecules stack into a one-dimensional (1D) supramolecular
chain. In the case of the rectangular supramolecular arrangement of
chains in methanolates 1-A and 1-B (both
orthorhombic, Pbcn) differing, respectively, by bent
and extended spatial conformations of the 3-methoxy groups (3MeO),
a moderate cooperativity is observed. In contrast, the hexagonal-like
arrangement of supramolecular chains in polymorph 1-C (monoclinic, P21/c) results in steric coupling of the transforming complex
species with the peripheral flipping 3MeO group. The group acts as
a supramolecular latch, locking the huge geometric distortion of complex 1 and in turn the trigonal distortion of the central FeII ion in the high-spin state, thereby keeping it from the
transition to the low-spin state over a large thermal range. Analysis
of the crystal packing of 1-C reveals significantly changing
patterns of close intermolecular interactions on going between the
phases substantiated by the energy framework analysis. The detected
supramolecular mechanism leads to a record-setting robust 105 K wide
hysteresis spanning the room temperature region and an atypically
large TLIESST relaxation value of 104
K of the photoexcited high-spin state. This work highlights a viable
pathway toward a new generation of cleverly designed molecular memory
materials.
Collapse
Affiliation(s)
- Maksym Seredyuk
- Instituto de Ciencia Molecular, Departamento de Química Inorgánica, Universidad de Valencia, 46980 Paterna, Valencia, Spain.,Department of Chemistry, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, 01601 Kyiv, Ukraine
| | - Kateryna Znovjyak
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, 01601 Kyiv, Ukraine
| | | | - Ivan da Silva
- ISIS Neutron Facility, STFC Rutherford Appleton Laboratory, Chilton, Oxfordshire OX11 0QX, U.K
| | - M Carmen Muñoz
- Departamento de Fisíca Aplicada, Universitat Politècnica de València, Camino de Vera s/n, E-46022 Valencia, Spain
| | - Yurii S Moroz
- Chemspace Ltd., Chervonotkatska Street 78, 02094 Kyiv, Ukraine.,ChemBio Center, Taras Shevchenko National University of Kyiv, 60, Volodymyrska Street, 01601 Kyiv, Ukraine
| | - José Antonio Real
- Instituto de Ciencia Molecular, Departamento de Química Inorgánica, Universidad de Valencia, 46980 Paterna, Valencia, Spain
| |
Collapse
|