1
|
Petla RK, Lindsey I, Li J, Meng X. Interface Modifications of Lithium Metal Anode for Lithium Metal Batteries. CHEMSUSCHEM 2024; 17:e202400281. [PMID: 38573033 DOI: 10.1002/cssc.202400281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/05/2024]
Abstract
Lithium metal batteries (LMBs) enable much higher energy density than lithium-ion batteries (LIBs) and thus hold great promise for future transportation electrification. However, the adoption of lithium metal (Li) as an anode poses serious concerns about cell safety and performance, which has been hindering LMBs from commercialization. To this end, extensive effort has been invested in understanding the underlying mechanisms theoretically and experimentally and developing technical solutions. In this review, we devote to providing a comprehensive review of the challenges, characterizations, and interfacial engineering of Li anodes in both liquid and solid LMBs. We expect that this work will stimulate new efforts and help peer researchers find new solutions for the commercialization of LMBs.
Collapse
Affiliation(s)
- Ramesh Kumar Petla
- Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Ian Lindsey
- Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Jianlin Li
- Applied Materials Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Xiangbo Meng
- Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
2
|
Tan H, Zhao Y, Zhang X, Ma H, Zhang H. The investigation of the interaction between fluorescent carbon dots labeling silk fibroin using a fluorescence microscope-surface plasmon resonance system. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124417. [PMID: 38728850 DOI: 10.1016/j.saa.2024.124417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/17/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
The use of fluorescent carbon dots (CDs) as highly precise biolabeling probes has been widespread in the fields of live cell imaging and protein labeling due to their small size and excellent photoluminescence ability to accurately target specific molecules with surface chemical properties. However, there was a lack of research on the interaction between CDs and labeled molecules. In this work, we presented a novel investigation strategy, the fluorescence microscopy-surface plasmon resonance (FM-SPR) system, which combined the use of fluorescence microscopy and wavelength modulation surface plasmon resonance to study the interaction between CDs and labeled molecules in real-time. Using this system, simultaneously recorded the SPR signals and the fluorescence images on the surface of the FM-SPR sensor chip. We observed the dynamic curve and fluorescence images of the interaction between green emissive nitrogen-doped carbon dots (N-CDs) and silk fibroin (SF) in real-time. The kinetic parameters, the quantitative analysis, and the investigation of the binding could be achieved. The results showed a strong linear relationship between the change in SPR signals and the concentration of N-CDs, with a linear coefficient of 0.99913. The linear detection range was 2.5 μg/mL-100 μg/mL, and the real lowest detection limit reached 0.5 μg/mL. Additionally, the green fluorescence points in the imaging region on the FM-SPR sensor chip increased with the concentration of N-CDs, which was consistent with the change in SPR signals. Using this system we also acquired the association rate and dissociation rate of N-CDs to SF which were 2.65 × 10-5/s and 1.52 × 10-5/s, respectively. This demonstrated the effectiveness of our method in quantitatively analyzing SF labeled with N-CDs.
Collapse
Affiliation(s)
- Hongxin Tan
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile, Nanofiber, Beijing Institute of Fashion Technology, Beijing 100029, PR China
| | - Yi Zhao
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile, Nanofiber, Beijing Institute of Fashion Technology, Beijing 100029, PR China
| | - Xiuqin Zhang
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile, Nanofiber, Beijing Institute of Fashion Technology, Beijing 100029, PR China
| | - Haitao Ma
- College of Communication Engineering, Jilin University, Changchun Jilin 130012, PR China.
| | - Hongyan Zhang
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile, Nanofiber, Beijing Institute of Fashion Technology, Beijing 100029, PR China.
| |
Collapse
|
3
|
Martín-Yerga D, Xu X, Valavanis D, West G, Walker M, Unwin PR. High-Throughput Combinatorial Analysis of the Spatiotemporal Dynamics of Nanoscale Lithium Metal Plating. ACS NANO 2024; 18:23032-23046. [PMID: 39136274 PMCID: PMC11363218 DOI: 10.1021/acsnano.4c05001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024]
Abstract
The development of Li metal batteries requires a detailed understanding of complex nucleation and growth processes during electrodeposition. In situ techniques offer a framework to study these phenomena by visualizing structural dynamics that can inform the design of uniform plating morphologies. Herein, we combine scanning electrochemical cell microscopy (SECCM) with in situ interference reflection microscopy (IRM) for a comprehensive investigation of Li nucleation and growth on lithiophilic thin-film gold electrodes. This multimicroscopy approach enables nanoscale spatiotemporal monitoring of Li plating and stripping, along with high-throughput capabilities for screening experimental conditions. We reveal the accumulation of inactive Li nanoparticles in specific electrode regions, yet these regions remain functional in subsequent plating cycles, suggesting that growth does not preferentially occur from particle tips. Optical-electrochemical correlations enabled nanoscale mapping of Coulombic Efficiency (CE), showing that regions prone to inactive Li accumulation require more cycles to achieve higher CE. We demonstrate that electrochemical nucleation time (tnuc) is a lagging indicator of nucleation and introduce an optical method to determine tnuc at earlier stages with nanoscale resolution. Plating at higher current densities yielded smaller Li nanoparticles and increased areal density, and was not affected by heterogeneous topographical features, being potentially beneficial to achieve a more uniform plating at longer time scales. These results enhance the understanding of Li plating on lithiophilic surfaces and offer promising strategies for uniform nucleation and growth. Our multimicroscopy approach has broad applicability to study nanoscale metal plating and stripping phenomena, with relevance in the battery and electroplating fields.
Collapse
Affiliation(s)
- Daniel Martín-Yerga
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Department
of Chemistry, Nanoscience Center, University
of Jyväskylä, Jyväskylä 40100, Finland
| | - Xiangdong Xu
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Geoff West
- Warwick
Manufacturing Group, University of Warwick, Coventry CV4 7AL, U.K.
| | - Marc Walker
- Department
of Physics, University of Warwick, Coventry CV4 7AL, U.K.
| | - Patrick R. Unwin
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
4
|
Li CY, Tian ZQ. Sixty years of electrochemical optical spectroscopy: a retrospective. Chem Soc Rev 2024; 53:3579-3605. [PMID: 38421335 DOI: 10.1039/d3cs00734k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Sixty years ago, Reddy, Devanatan, and Bockris performed the first in situ electrochemical ellipsometry experiment, which ushered in a new era in the study of electrochemistry, using optical spectroscopy. After six decades of development, electrochemical optical spectroscopy, particularly electrochemical vibrational spectroscopy, has advanced from a phase of immaturity with few methods and limited applications to a phase of maturity with excellent substrate generality and significantly improved resolutions. Here, we divide the development of electrochemical optical spectroscopy into four phases, focusing on the proof-of-concept of different electrochemical optical spectroscopy studies, the emergence of plasmonic enhancement-based electrochemical optical spectroscopic (in particular vibrational spectroscopic) methods, the realization of electrochemical vibrational spectroscopy on well-defined surfaces, and the efforts to achieve operando spectroelectrochemical applications. Finally, we discuss the future development trend of electrochemical optical spectroscopy, as well as examples of new methodology and research paradigms for operando spectroelectrochemistry.
Collapse
Affiliation(s)
- Chao-Yu Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
5
|
Hsu CY, Saleh RO, Pallathadka H, Kumar A, Mansouri S, Bhupathi P, Jasim Ali SH, Al-Mashhadani ZI, Alzubaidi LH, Hizam MM. Advances in electrochemical-optical dual-mode biosensors for detection of environmental pathogens. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1306-1322. [PMID: 38344759 DOI: 10.1039/d3ay02217j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Electrochemical techniques are commonly used to analyze and screen various environmental pathogens. When used in conjunction with other optical recognition methods, it can extend the sensing range, lower the detection limit, and offer mutual validation. Nowadays, electrochemical-optical dual-mode biosensors have ensured the accuracy of test results by integrating two signals into one, indicating their potential use in primary food safety quantitative assays and screening tests. Particularly, visible optical signals from electrochemical/colorimetric dual-mode biosensors could meet the demand for real-time screening of microbial pathogens. While electrochemical-optical dual-mode probes have been receiving increasing attention, there is limited emphasis on the design approaches for sensors intended for microbial pathogens. Here, we review the recent progress in the merging of optical and electrochemical techniques, including fluorescence, colorimetry, surface plasmon resonance (SPR), and surface enhanced Raman spectroscopy (SERS). This study particularly emphasizes the reporting of various sensing performances, including sensing principles, types, cutting-edge design approaches, and applications. Finally, some concerns and upcoming advancements in dual-mode probes are briefly outlined.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | | | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg 620002, Russia
| | - Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- University of Tunis El Manar, Higher Institute of Medical Technologies of Tunis, Laboratory of Biophysics and Medical Technologies, Tunis, Tunisia
| | - Priyadharshini Bhupathi
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, India.
| | - Saad Hayif Jasim Ali
- Department of Medical Laboratory, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | | | - Laith H Alzubaidi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Manar Mohammed Hizam
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| |
Collapse
|
6
|
Pandya R, Valzania L, Dorchies F, Xia F, Mc Hugh J, Mathieson A, Tan HJ, Parton TG, Godeffroy L, Mazloomian K, Miller TS, Kanoufi F, De Volder M, Tarascon JM, Gigan S, de Aguiar HB, Grimaud A. Three-dimensional operando optical imaging of particle and electrolyte heterogeneities inside Li-ion batteries. NATURE NANOTECHNOLOGY 2023; 18:1185-1194. [PMID: 37591934 DOI: 10.1038/s41565-023-01466-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 06/20/2023] [Indexed: 08/19/2023]
Abstract
Understanding (de)lithiation heterogeneities in battery materials is key to ensure optimal electrochemical performance. However, this remains challenging due to the three-dimensional morphology of electrode particles, the involvement of both solid- and liquid-phase reactants and a range of relevant timescales (seconds to hours). Here we overcome this problem and demonstrate the use of confocal microscopy for the simultaneous three-dimensional operando measurement of lithium-ion dynamics in individual agglomerate particles, and the electrolyte in batteries. We examine two technologically important cathode materials: LixCoO2 and LixNi0.8Mn0.1Co0.1O2. The surface-to-core transport velocity of Li-phase fronts and volume changes are captured as a function of cycling rate. Additionally, we visualize heterogeneities in the bulk and at agglomerate surfaces during cycling, and image microscopic liquid electrolyte concentration gradients. We discover that surface-limited reactions and intra-agglomerate competing rates control (de)lithiation and structural heterogeneities in agglomerate-based electrodes. Importantly, the conditions under which optical imaging can be performed inside the complex environments of battery electrodes are outlined.
Collapse
Affiliation(s)
- Raj Pandya
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, Paris, France.
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| | - Lorenzo Valzania
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, Paris, France
| | - Florian Dorchies
- Chimie du Solide et de l'Energie, UMR 8260, Collège de France, Paris, France
- Réseau sur le stockage Electrochimique de l'Energie (RS2E), Amiens, France
| | - Fei Xia
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, Paris, France
| | - Jeffrey Mc Hugh
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | - Angus Mathieson
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Department of Engineering, University of Cambridge, Cambridge, UK
| | - Hwee Jien Tan
- Department of Engineering, University of Cambridge, Cambridge, UK
| | - Thomas G Parton
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | - Katrina Mazloomian
- Electrochemical Innovation Lab Department of Chemical Engineering, UCL, London, UK
| | - Thomas S Miller
- Electrochemical Innovation Lab Department of Chemical Engineering, UCL, London, UK
| | | | | | - Jean-Marie Tarascon
- Chimie du Solide et de l'Energie, UMR 8260, Collège de France, Paris, France
- Réseau sur le stockage Electrochimique de l'Energie (RS2E), Amiens, France
| | - Sylvain Gigan
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, Paris, France.
| | - Hilton B de Aguiar
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, Paris, France.
| | - Alexis Grimaud
- Chimie du Solide et de l'Energie, UMR 8260, Collège de France, Paris, France.
- Réseau sur le stockage Electrochimique de l'Energie (RS2E), Amiens, France.
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA.
| |
Collapse
|
7
|
Electrochemistry combined-surface plasmon resonance biosensors: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
MATSUI M, ORIKASA Y, UCHIYAMA T, NISHI N, MIYAHARA Y, OTOYAMA M, TSUDA T. Electrochemical In Situ/<i>operando</i> Spectroscopy and Microscopy Part 1: Fundamentals. ELECTROCHEMISTRY 2022. [DOI: 10.5796/electrochemistry.22-66093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
| | - Yuki ORIKASA
- Department of Applied Chemistry, Ritsumeikan University
| | - Tomoki UCHIYAMA
- Department of Interdisciplinary Environment, Kyoto University
| | - Naoya NISHI
- Department of Energy and Hydrocarbon Chemistry, Kyoto University
| | - Yuto MIYAHARA
- Department of Energy and Hydrocarbon Chemistry, Kyoto University
| | - Misae OTOYAMA
- Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST)
| | | |
Collapse
|
9
|
Kitta M, Yoshii K, Murai K, Sano H. Optical Study of the Surface Film Formed during Li-Metal Deposition and Dissolution Investigated by Surface Plasmon Resonance Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28370-28377. [PMID: 35679602 DOI: 10.1021/acsami.2c04978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The features of the electrode surface film during Li-metal deposition and dissolution cycles are essential for understanding the mechanism of the negative electrode reaction in Li-metal battery cells. The physical and chemical property changes of the interface during the initial stages of the reaction should be investigated under operando conditions. In this study, we focused on the changes in the optical properties of the electrode surface film of the negative electrode of a Li-metal battery. Cu-based electrochemical surface plasmon resonance spectroscopy (EC-SPR) was applied because of its high sensitivity to optical phenomena on the electrode surface and its stability against Li-metal deposition. The feature of SPR reflectance dip depends on the optical properties of the electrode surface; namely, the wavelength and depth of the reflectance dip directly connected the refractive index and extinction coefficient (color of electrode surface film), which was confirmed by reflectance simulation. In the operando EC-SPR experiment, various changes in optical properties were clearly observed during the cycles. In particular, the change in the extinction coefficient was more remarkable at the second process than the first process of Li-metal deposition. By electrochemical quartz-crystal microbalance (EQCM) measurements, surface film formation was confirmed during the first Li-metal deposition process. The remarkable change in the extinction coefficient is based on the color change of the surface film, which is caused by the chemical condition change during Li-metal deposition cycles.
Collapse
Affiliation(s)
- Mitsunori Kitta
- Research Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Kazuki Yoshii
- Research Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Kensuke Murai
- National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Hikaru Sano
- Research Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| |
Collapse
|
10
|
Dai C, Liu Y, Wei D. Two-Dimensional Field-Effect Transistor Sensors: The Road toward Commercialization. Chem Rev 2022; 122:10319-10392. [PMID: 35412802 DOI: 10.1021/acs.chemrev.1c00924] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The evolutionary success in information technology has been sustained by the rapid growth of sensor technology. Recently, advances in sensor technology have promoted the ambitious requirement to build intelligent systems that can be controlled by external stimuli along with independent operation, adaptivity, and low energy expenditure. Among various sensing techniques, field-effect transistors (FETs) with channels made of two-dimensional (2D) materials attract increasing attention for advantages such as label-free detection, fast response, easy operation, and capability of integration. With atomic thickness, 2D materials restrict the carrier flow within the material surface and expose it directly to the external environment, leading to efficient signal acquisition and conversion. This review summarizes the latest advances of 2D-materials-based FET (2D FET) sensors in a comprehensive manner that contains the material, operating principles, fabrication technologies, proof-of-concept applications, and prototypes. First, a brief description of the background and fundamentals is provided. The subsequent contents summarize physical, chemical, and biological 2D FET sensors and their applications. Then, we highlight the challenges of their commercialization and discuss corresponding solution techniques. The following section presents a systematic survey of recent progress in developing commercial prototypes. Lastly, we summarize the long-standing efforts and prospective future development of 2D FET-based sensing systems toward commercialization.
Collapse
Affiliation(s)
- Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| |
Collapse
|