1
|
Herbert A, Cherednichenko O, Lybrand TP, Egli M, Poptsova M. Zα and Zβ Localize ADAR1 to Flipons That Modulate Innate Immunity, Alternative Splicing, and Nonsynonymous RNA Editing. Int J Mol Sci 2025; 26:2422. [PMID: 40141064 PMCID: PMC11942513 DOI: 10.3390/ijms26062422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
The double-stranded RNA editing enzyme ADAR1 connects two forms of genetic programming, one based on codons and the other on flipons. ADAR1 recodes codons in pre-mRNA by deaminating adenosine to form inosine, which is translated as guanosine. ADAR1 also plays essential roles in the immune defense against viruses and cancers by recognizing left-handed Z-DNA and Z-RNA (collectively called ZNA). Here, we review various aspects of ADAR1 biology, starting with codons and progressing to flipons. ADAR1 has two major isoforms, with the p110 protein lacking the p150 Zα domain that binds ZNAs with high affinity. The p150 isoform is induced by interferon and targets ALU inverted repeats, a class of endogenous retroelement that promotes their transcription and retrotransposition by incorporating Z-flipons that encode ZNAs and G-flipons that form G-quadruplexes (GQ). Both p150 and p110 include the Zβ domain that is related to Zα but does not bind ZNAs. Here we report strong evidence that Zβ binds the GQ that are formed co-transcriptionally by ALU repeats and within R-loops. By binding GQ, ADAR1 suppresses ALU-mediated alternative splicing, generates most of the reported nonsynonymous edits and promotes R-loop resolution. The recognition of the various alternative nucleic acid conformations by ADAR1 connects genetic programming by flipons with the encoding of information by codons. The findings suggest that incorporating G-flipons into editmers might improve the therapeutic editing efficacy of ADAR1.
Collapse
Affiliation(s)
- Alan Herbert
- Discovery, InsideOutBio, Charlestown, MA 02129, USA
| | - Oleksandr Cherednichenko
- International Laboratory of Bioinformatics, HSE University, 101000 Moscow, Russia; (O.C.); (M.P.)
| | - Terry P. Lybrand
- Department of Chemistry, School of Medicine, Vanderbilt University, Nashville, TN 37232-0146, USA;
- Center for Structural Biology, School of Medicine, Vanderbilt University, Nashville, TN 37232-0146, USA
| | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN 37232-0146, USA;
| | - Maria Poptsova
- International Laboratory of Bioinformatics, HSE University, 101000 Moscow, Russia; (O.C.); (M.P.)
| |
Collapse
|
2
|
Razumova E, Makariuk A, Dontsova O, Shepelev N, Rubtsova M. Structural Features of 5' Untranslated Region in Translational Control of Eukaryotes. Int J Mol Sci 2025; 26:1979. [PMID: 40076602 PMCID: PMC11900008 DOI: 10.3390/ijms26051979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Gene expression is a complex process regulated at multiple levels in eukaryotic cells. Translation frequently represents a pivotal step in the control of gene expression. Among the stages of translation, initiation is particularly important, as it governs ribosome recruitment and the efficiency of protein synthesis. The 5' untranslated region (5' UTR) of mRNA plays a key role in this process, often exhibiting a complicated and structured landscape. Numerous eukaryotic mRNAs possess long 5' UTRs that contain diverse regulatory elements, including RNA secondary structures, specific nucleotide motifs, and chemical modifications. These structural features can independently modulate translation through their intrinsic properties or by serving as platforms for trans-acting factors such as RNA-binding proteins. The dynamic nature of 5' UTR elements allows cells to fine-tune translation in response to environmental and cellular signals. Understanding these mechanisms is not only fundamental to molecular biology but also holds significant biomedical potential. Insights into 5' UTR-mediated regulation could drive advancements in synthetic biology and mRNA-based targeted therapies. This review outlines the current knowledge of the structural elements of the 5' UTR, the interplay between them, and their combined functional impact on translation.
Collapse
Affiliation(s)
- Elizaveta Razumova
- Chemistry Department, Lomonosov Moscow State University, Moscow 119234, Russia; (E.R.); (O.D.); (N.S.)
| | - Aleksandr Makariuk
- Department of Biology, Lomonosov Moscow State University, Moscow 119234, Russia;
| | - Olga Dontsova
- Chemistry Department, Lomonosov Moscow State University, Moscow 119234, Russia; (E.R.); (O.D.); (N.S.)
- A.N.Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Skolkovo Institute of Science and Technology, Center for Molecular and Cellular Biology, Moscow 121205, Russia
| | - Nikita Shepelev
- Chemistry Department, Lomonosov Moscow State University, Moscow 119234, Russia; (E.R.); (O.D.); (N.S.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
| | - Maria Rubtsova
- Chemistry Department, Lomonosov Moscow State University, Moscow 119234, Russia; (E.R.); (O.D.); (N.S.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
| |
Collapse
|
3
|
Harisa GI, Faris TM, Sherif AY, Alzhrani RF, Alanazi SA, Kohaf NA, Alanazi FK. Coding Therapeutic Nucleic Acids from Recombinant Proteins to Next-Generation Vaccines: Current Uses, Limitations, and Future Horizons. Mol Biotechnol 2024; 66:1853-1871. [PMID: 37578574 DOI: 10.1007/s12033-023-00821-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023]
Abstract
This study aims to highlight the potential use of cTNAs in therapeutic applications. The COVID-19 pandemic has led to significant use of coding therapeutic nucleic acids (cTNAs) in terms of DNA and mRNA in the development of vaccines. The use of cTNAs resulted in a paradigm shift in the therapeutic field. However, the injection of DNA or mRNA into the human body transforms cells into biological factories to produce the necessary proteins. Despite the success of cTNAs in the production of corona vaccines, they have several limitations such as instability, inability to cross biomembranes, immunogenicity, and the possibility of integration into the human genome. The chemical modification and utilization of smart drug delivery cargoes resolve cTNAs therapeutic problems. The success of cTNAs in corona vaccine production provides perspective for the eradication of influenza viruses, Zika virus, HIV, respiratory syncytial virus, Ebola virus, malaria, and future pandemics by quick vaccine design. Moreover, the progress cTNAs technology is promising for the development of therapy for genetic disease, cancer therapy, and currently incurable diseases.
Collapse
Affiliation(s)
- Gamaleldin I Harisa
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box: 2457, Riyadh, 11451, Saudi Arabia.
- Department of Biochemistry and Molecular Biology, College of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Tarek M Faris
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Abdelrahman Y Sherif
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box: 2457, Riyadh, 11451, Saudi Arabia
| | - Riyad F Alzhrani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box: 2457, Riyadh, 11451, Saudi Arabia
- Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Alanazi
- Pharmaceutical Care Services, King Abdulaziz Medical City, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Science Collage of Pharmacy, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Neveen A Kohaf
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, 11651, Egypt
| | - Fars K Alanazi
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box: 2457, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
4
|
Zheng YY, Dartawan R, Wu Y, Wu C, Zhang H, Lu J, Hu A, Vangaveti S, Sheng J. Structural effects of inosine substitution in telomeric DNA quadruplex. Front Chem 2024; 12:1330378. [PMID: 38312345 PMCID: PMC10834636 DOI: 10.3389/fchem.2024.1330378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024] Open
Abstract
The telomeric DNA, a distal region of eukaryotic chromosome containing guanine-rich repetitive sequence of (TTAGGG)n, has been shown to adopt higher-order structures, specifically G-quadruplexes (G4s). Previous studies have demonstrated the implication of G4 in tumor inhibition through chromosome maintenance and manipulation of oncogene expression featuring their G-rich promoter regions. Besides higher order structures, several regulatory roles are attributed to DNA epigenetic markers. In this work, we investigated how the structural dynamics of a G-quadruplex, formed by the telomeric sequence, is affected by inosine, a prevalent modified nucleotide. We used the standard (TTAGGG)n telomere repeats with guanosine mutated to inosine at each G position. Sequences (GGG)4, (IGG)4, (GIG)4, (GGI)4, (IGI)4, (IIG)4, (GII)4, and (III)4, bridged by TTA linker, are studied using biophysical experiments and molecular modeling. The effects of metal cations in quadruplex folding were explored in both Na+ and K+ containing buffers using CD and UV-melting studies. Our results show that antiparallel quadruplex topology forms with the native sequence (GGG)4 and the terminal modified DNAs (IGG)4 and (GGI)4 in both Na+ and K+ containing buffers. Specifically, quadruplex hybrid was observed for (GGG)4 in K+ buffer. Among the other modified sequences, (GIG)4, (IGI)4 and (GII)4 show parallel features, while (IIG)4 and (III)4 show no detectable conformation in the presence of either Na+ or K+. Our studies indicate that terminal lesions (IGG)4 and (GGI)4 may induce certain unknown conformations. The folding dynamics become undetectable in the presence of more than one inosine substitution except (IGI)4 in both buffer ions. In addition, both UV melting and CD melting studies implied that in most cases the K+ cation confers more thermodynamic stability compared to Na+. Collectively, our conformational studies revealed the diverse structural polymorphisms of G4 with position dependent G-to-I mutations in different ion conditions.
Collapse
Affiliation(s)
- Ya Ying Zheng
- Department of Chemistry, Albany, NY, United States
- The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Ricky Dartawan
- Department of Chemistry, Albany, NY, United States
- The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Yuhan Wu
- Department of Chemistry, Albany, NY, United States
- The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Chengze Wu
- Department of Chemistry, Albany, NY, United States
- The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Hope Zhang
- Department of Chemistry, Albany, NY, United States
- The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Jeanne Lu
- Department of Chemistry, Albany, NY, United States
- The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Ashley Hu
- Department of Chemistry, Albany, NY, United States
- The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Sweta Vangaveti
- The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Jia Sheng
- Department of Chemistry, Albany, NY, United States
- The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| |
Collapse
|
5
|
Sahayasheela VJ, Sugiyama H. RNA G-quadruplex in functional regulation of noncoding RNA: Challenges and emerging opportunities. Cell Chem Biol 2024; 31:53-70. [PMID: 37909035 DOI: 10.1016/j.chembiol.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/12/2023] [Accepted: 08/22/2023] [Indexed: 11/02/2023]
Abstract
G-quadruplexes (G4s) are stable, noncanonical structures formed in guanine (G)-rich sequences of DNA/RNA. G4 structures are reported to play a regulatory role in various cellular processes and, recently, a considerable number of studies have attributed new biological functions to these structures, especially in RNA. Noncoding RNA (ncRNA), which does not translate into a functional protein, is widely expressed and has been shown to play a key role in shaping cellular activity. There has been growing evidence of G4 formation in several ncRNA classes, and it has been identified as a key part for diverse biological functions and physio-pathological contexts in neurodegenerative diseases and cancer. This review discusses RNA G4s (rG4s) in ncRNA, focusing on the molecular mechanism underlying its function. This review also aims to highlight potential and emerging opportunities to identify and target the rG4s in ncRNA to understand its function and, ultimately, treat many diseases.
Collapse
Affiliation(s)
- Vinodh J Sahayasheela
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomaecho, Sakyo-Ku, Kyoto 606-8501, Japan.
| |
Collapse
|
6
|
Valdes Angues R, Perea Bustos Y. SARS-CoV-2 Vaccination and the Multi-Hit Hypothesis of Oncogenesis. Cureus 2023; 15:e50703. [PMID: 38234925 PMCID: PMC10792266 DOI: 10.7759/cureus.50703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2023] [Indexed: 01/19/2024] Open
Abstract
Cancer is a complex and dynamic disease. The "hallmarks of cancer" were proposed by Hanahan and Weinberg (2000) as a group of biological competencies that human cells attain as they progress from normalcy to neoplastic transformation. These competencies include self-sufficiency in proliferative signaling, insensitivity to growth-suppressive signals and immune surveillance, the ability to evade cell death, enabling replicative immortality, reprogramming energy metabolism, inducing angiogenesis, and activating tissue invasion and metastasis. Underlying these competencies are genome instability, which expedites their acquisition, and inflammation, which fosters their function(s). Additionally, cancer exhibits another dimension of complexity: a heterogeneous repertoire of infiltrating and resident host cells, secreted factors, and extracellular matrix, known as the tumor microenvironment, that through a dynamic and reciprocal relationship with cancer cells supports immortality, local invasion, and metastatic dissemination. This staggering intricacy calls for caution when advising all people with cancer (or a previous history of cancer) to receive the COVID-19 primary vaccine series plus additional booster doses. Moreover, because these patients were not included in the pivotal clinical trials, considerable uncertainty remains regarding vaccine efficacy, safety, and the risk of interactions with anticancer therapies, which could reduce the value and innocuity of either medical treatment. After reviewing the available literature, we are particularly concerned that certain COVID-19 vaccines may generate a pro-tumorigenic milieu (i.e., a specific environment that could lead to neoplastic transformation) that predisposes some (stable) oncologic patients and survivors to cancer progression, recurrence, and/or metastasis. This hypothesis is based on biological plausibility and fulfillment of the multi-hit hypothesis of oncogenesis (i.e., induction of lymphopenia and inflammation, downregulation of angiotensin-converting enzyme 2 (ACE2) expression, activation of oncogenic cascades, sequestration of tumor suppressor proteins, dysregulation of the RNA-G quadruplex-protein binding system, alteration of type I interferon responses, unsilencing of retrotransposable elements, etc.) together with growing evidence and safety reports filed to Vaccine Adverse Effects Report System (VAERS) suggesting that some cancer patients experienced disease exacerbation or recurrence following COVID-19 vaccination. In light of the above and because some of these concerns (i.e., alteration of oncogenic pathways, promotion of inflammatory cascades, and dysregulation of the renin-angiotensin system) also apply to cancer patients infected with SARS-CoV-2, we encourage the scientific and medical community to urgently evaluate the impact of both COVID-19 and COVID-19 vaccination on cancer biology and tumor registries, adjusting public health recommendations accordingly.
Collapse
Affiliation(s)
- Raquel Valdes Angues
- Neurology, Oregon Health and Science University School of Medicine, Portland, USA
| | | |
Collapse
|
7
|
Pruška A, Harrison JA, Granzhan A, Marchand A, Zenobi R. Solution and Gas-Phase Stability of DNA Junctions from Temperature-Controlled Electrospray Ionization and Surface-Induced Dissociation. Anal Chem 2023; 95:14384-14391. [PMID: 37699589 DOI: 10.1021/acs.analchem.3c02742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
DNA three-way junction (TWJ) structures transiently form during key cellular processes such as transcription, replication, and DNA repair. Despite their significance, the thermodynamics of TWJs, including the influence of strand length, base pair composition, and ligand binding on TWJ stability and dissociation mechanisms, are poorly understood. To address these questions, we interfaced temperature-controlled nanoelectrospray ionization mass spectrometry (TC-nESI-MS) with a cyclic ion mobility spectrometry (cIMS) instrument that was also equipped with a surface-induced dissociation (SID) stage. This novel combination allowed us to investigate the structural intermediates of three TWJ complexes and examine the effects of GC base pairs on their dissociation pathways. We found that two TWJ-specific ligands, 2,7-tris-naphthalene (2,7-TrisNP) and tris-phenoxybenzene (TrisPOB), lead to TWJ stabilization, revealed by an increase in the melting temperature (Tm) by 13 or 26 °C, respectively. To gain insights into conformational changes in the gas phase, we employed cIMS and SID to analyze TWJs and their complexes with ligands. Analysis of IM arrival distributions suggested a single-step dissociation of TWJs and their intermediates for the three studied TWJ complexes. Upon ligand binding, a higher SID energy by 3 V (2,7-TrisNP) and 5 V (TrisPOB) was required to induce 50% dissociation of TWJ, compared to 38 V in the absence of ligands. Our results demonstrate the power of utilizing TC-nESI-MS in combination with cIMS and SID for thermodynamic characterization of TWJ complexes and investigation of ligand binding. These techniques are essential for the TWJ design and development as drug targets, aptamers, and structural units for functional biomaterials.
Collapse
Affiliation(s)
- Adam Pruška
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Julian A Harrison
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Anton Granzhan
- CNRS UMR9187, Inserm U1196, Institut Curie, Paris Saclay University, F-91405 Orsay, France
| | - Adrien Marchand
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
8
|
Marušič M, Toplishek M, Plavec J. NMR of RNA - Structure and interactions. Curr Opin Struct Biol 2023; 79:102532. [PMID: 36746110 DOI: 10.1016/j.sbi.2023.102532] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/11/2022] [Accepted: 12/19/2022] [Indexed: 02/07/2023]
Abstract
RNA was shown to have a more substantial role in the regulation of diverse cellular processes than anticipated until recently. Answers to questions what is the structure of specific RNAs, how structure changes to accommodate different functional roles, and how RNA senses other biomolecules and changes its fold upon interaction create a complete representation of RNA involved in cellular processes. Nuclear magnetic resonance (NMR) spectroscopy encompasses a collection of methods and approaches that offer insight into several structural aspects of RNAs. We review the most recent advances in the field of viral, long non-coding, regulatory, and four-stranded RNAs, with an emphasis on the detection of dynamic sub-states and in view of chemical modifications that expand RNA's function.
Collapse
Affiliation(s)
- Maja Marušič
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Maria Toplishek
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia; University of Ljubljana, Faculty of Chemistry and Chemical Technology, Ljubljana, Slovenia; EN-FIST Centre of Excellence, Cesta OF 13, Ljubljana, Slovenia.
| |
Collapse
|
9
|
Li Z, Song W, Zhu Y, Yan L, Zhong X, Zhang M, Li H. The Full Cytosine-Cytosine Base Paring: Self-Assembly and Crystal Structure. Chemistry 2023; 29:e202203979. [PMID: 36757279 DOI: 10.1002/chem.202203979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/10/2023]
Abstract
The synthesis of self-assembly systems that can mimic partial biological behaviours require ingenious and delicate design. For decades, scientists are committed to exploring new base pairing patterns using hydrogen bonds directed self-assembly of nucleotides. A fundamental question is the adaptive circumstance of the recognition between base pairs, namely, how solvent conditions affect the domain of base pairs. Towards this question, three nucleotide complexes based on 2'-deoxycytidine-5'-monophosphate (dCMP) and cytidine-5'-monophosphate (CMP) were synthesized in different solvents and pH values, and an unusual cytosine-cytosine base paring pattern (named full C : C base pairing) has been successfully obtained. Systematic single crystal analysis and 1 H NMR titration spectra have been performed to explore factors influencing the formation of base paring patterns. Moreover, supramolecular chirality of three complexes were studied using circular dichroism (CD) spectroscopy in solution and solid-state combined with crystal structure analysis.
Collapse
Affiliation(s)
- Zhongkui Li
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Wenjing Song
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yanhong Zhu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Li Yan
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xue Zhong
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Menglei Zhang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Hui Li
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
10
|
Lu X, Wu X, Kuang S, Lei C, Nie Z. Visualization of Deep Tissue G-quadruplexes with a Novel Large Stokes-Shifted Red Fluorescent Benzothiazole Derivative. Anal Chem 2022; 94:10283-10290. [PMID: 35776781 DOI: 10.1021/acs.analchem.2c02049] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
G-quadruplex (G4) is a noncanonical nucleic acid secondary structure that has implications for various physiological and pathological processes and is thus essential to exploring new approaches to G4 detection in live cells. However, the deficiency of molecular imaging tools makes it challenging to visualize the G4 in ex vivo tissue samples. In this study, we established a G4 probe design strategy and presented a red fluorescent benzothiazole derivative, ThT-NA, to detect and image G4 structures in living cells and tissue samples. By enhancing the electron-donating group of thioflavin T (ThT) and optimizing molecular structure, ThT-NA shows excellent photophysical properties, including red emission (610 nm), a large Stokes shift (>100 nm), high sensitivity selectivity toward G4s (1600-fold fluorescence turn-on ratio) and robust two-photon fluorescence emission. Therefore, these features enable ThT-NA to reveal the endogenous RNA G4 distribution in living cells and differentiate the cell cycle by monitoring the changes of RNA G4 folding. Significantly, to the best of our knowledge, ThT-NA is the first benzothiazole-derived G4 probe that has been developed for imaging G4s in ex vivo cancer tissue samples by two-photon microscopy techniques.
Collapse
Affiliation(s)
- Xu Lu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic of China
| | - Xianhua Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic of China
| | - Shi Kuang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic of China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic of China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic of China
| |
Collapse
|
11
|
Qi J, Ding T, Liu T, Xia X, Wu S, Liu J, Chen Q, Zhang D, Zhao H. Inosine‐Based Supramolecular Hydrogel for Highly Efficient PD‐L1 Blockade Therapy via Mediating CD8
+
T Cells. ADVANCED FUNCTIONAL MATERIALS 2022. [DOI: 10.1002/adfm.202204273] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jiajia Qi
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Tingting Ding
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Tiannan Liu
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Xin Xia
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Shihong Wu
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Jiang Liu
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Dunfang Zhang
- Department of Biotherapy State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| |
Collapse
|
12
|
Wang KB, Liu Y, Li Y, Dickerhoff J, Li J, Yang MH, Yang D, Kong LY. Oxidative Damage Induces a Vacancy G-Quadruplex That Binds Guanine Metabolites: Solution Structure of a cGMP Fill-in Vacancy G-Quadruplex in the Oxidized BLM Gene Promoter. J Am Chem Soc 2022; 144:6361-6372. [PMID: 35352895 PMCID: PMC9904417 DOI: 10.1021/jacs.2c00435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Guanine (G)-oxidation to 8-oxo-7,8-dihydroguanine (OG) by reactive oxygen species in genomic DNA has been implicated with various human diseases. G-quadruplex (G4)-forming sequences in gene promoters are highly susceptible to G-oxidation, which can subsequently cause gene activation. However, the underlying G4 structural changes that result from OG modifications remain poorly understood. Herein, we investigate the effect of G-oxidation on the BLM gene promoter G4. For the first time, we show that OG can induce a G-vacancy-containing G4 (vG4), which can be filled in and stabilized by guanine metabolites and derivatives. We determined the NMR solution structure of the cGMP-fill-in oxidized BLM promoter vG4. This is the first complex structure of an OG-induced vG4 from a human gene promoter sequence with a filled-in guanine metabolite. The high-resolution structure elucidates the structural features of the specific 5'-end cGMP-fill-in for the OG-induced vG4. Interestingly, the OG is removed from the G-core and becomes part of the 3'-end capping structure. A series of guanine metabolites and derivatives are evaluated for fill-in activity to the oxidation-induced vG4. Significantly, cellular guanine metabolites, such as cGMP and GTP, can bind and stabilize the OG-induced vG4, suggesting their potential regulatory role in response to oxidative damage in physiological and pathological processes. Our work thus provides exciting insights into how oxidative damage and cellular metabolites may work together through a G4-based epigenetic feature for gene regulation. Furthermore, the NMR structure can guide the rational design of small-molecule inhibitors that specifically target the oxidation-induced vG4s.
Collapse
Affiliation(s)
| | | | - Yipu Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Jonathan Dickerhoff
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jinzhu Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Ming-Hua Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Danzhou Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue Center for Cancer Research, Department of Chemistry, and Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| |
Collapse
|
13
|
Dutta N, Deb I, Sarzynska J, Lahiri A. Inosine and its methyl derivatives: Occurrence, biogenesis, and function in RNA. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 169-170:21-52. [PMID: 35065168 DOI: 10.1016/j.pbiomolbio.2022.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/11/2021] [Accepted: 01/11/2022] [Indexed: 05/21/2023]
Abstract
Inosine is one of the most common post-transcriptional modifications. Since its discovery, it has been noted for its ability to contribute to non-Watson-Crick interactions within RNA. Rapidly accumulating evidence points to the widespread generation of inosine through hydrolytic deamination of adenosine to inosine by different classes of adenosine deaminases. Three naturally occurring methyl derivatives of inosine, i.e., 1-methylinosine, 2'-O-methylinosine and 1,2'-O-dimethylinosine are currently reported in RNA modification databases. These modifications are expected to lead to changes in the structure, folding, dynamics, stability and functions of RNA. The importance of the modifications is indicated by the strong conservation of the modifying enzymes across organisms. The structure, binding and catalytic mechanism of the adenosine deaminases have been well-studied, but the underlying mechanism of the catalytic reaction is not very clear yet. Here we extensively review the existing data on the occurrence, biogenesis and functions of inosine and its methyl derivatives in RNA. We also included the structural and thermodynamic aspects of these modifications in our review to provide a detailed and integrated discussion on the consequences of A-to-I editing in RNA and the contribution of different structural and thermodynamic studies in understanding its role in RNA. We also highlight the importance of further studies for a better understanding of the mechanisms of the different classes of deamination reactions. Further investigation of the structural and thermodynamic consequences and functions of these modifications in RNA should provide more useful information about their role in different diseases.
Collapse
Affiliation(s)
- Nivedita Dutta
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India
| | - Indrajit Deb
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India
| | - Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Ansuman Lahiri
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India.
| |
Collapse
|