1
|
Williams MJ, Gray MC. Microcanonical Analysis of Semiflexible Homopolymers with Variable-Width Bending Potential. Polymers (Basel) 2025; 17:906. [PMID: 40219295 PMCID: PMC11991406 DOI: 10.3390/polym17070906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
Understanding the structural dynamics of semiflexible polymers in an implicit solvent under varying conditions provides valuable insights into their behavior in diverse environments. In this work, we systematically investigate the effect of the angular width of the bending potential on structural state behavior and conformational variability using microcanonical analysis. A range of angular widths is explored, with the widest value corresponding directly to the classic semiflexible polymer model, which exhibits a diverse set of structural states, including Two-Strand, Three-Strand, Four-Strand, Ring, Random Coil, and Globule configurations. As the angular width narrows, structural variability within states decreases, overlap between structural states is reduced, and conformations become more stable, leading to an expansion of the parameter space dominated by individual structures. By examining microcanonical entropy and its derivatives, we identify transitions analogous to first-, second-, and third-order thermodynamic transitions, providing a deeper understanding of the configurational landscape of semiflexible polymers.
Collapse
|
2
|
Hajipour Keyvani A, Mohammadnejad P, Pazoki-Toroudi H, Perez Gilabert I, Chu T, Manshian BB, Soenen SJ, Sohrabi B. Advancements in Cancer Treatment: Harnessing the Synergistic Potential of Graphene-Based Nanomaterials in Combination Therapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2756-2790. [PMID: 39745785 DOI: 10.1021/acsami.4c15536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Combination therapy, which involves using multiple therapeutic modalities simultaneously or sequentially, has become a cornerstone of modern cancer treatment. Graphene-based nanomaterials (GBNs) have emerged as versatile platforms for drug delivery, gene therapy, and photothermal therapy. These materials enable a synergistic approach, improving the efficacy of treatments while reducing side effects. This review explores the roles of graphene, graphene oxide (GO), and graphene quantum dots (GQDs) in combination therapies and highlights their potential to enhance immunotherapy and targeted cancer therapies. The large surface area and high drug-loading capacity of graphene facilitate the codelivery of multiple therapeutic agents, promoting targeted and sustained release. GQDs, with their unique optical properties, offer real-time imaging capabilities, adding another layer of precision to treatment. However, challenges such as biocompatibility, long-term toxicity, and scalability need to be addressed to ensure clinical safety. Preclinical studies show promising results for GBNs, suggesting their potential to revolutionize cancer treatment through innovative combination therapies.
Collapse
Affiliation(s)
- Armin Hajipour Keyvani
- Surface Chemistry Research Laboratory, Faculty of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Parizad Mohammadnejad
- Surface Chemistry Research Laboratory, Faculty of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Irati Perez Gilabert
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Rellis Research Group, Gaston Geenslaan 3 - Box 901, 3001 Leuven, Belgium
| | - Tianjiao Chu
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Rellis Research Group, Gaston Geenslaan 3 - Box 901, 3001 Leuven, Belgium
| | - Bella B Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, RK-Herestraat 49 - Box 505,3000 Leuven, Belgium
| | - Stefaan J Soenen
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Rellis Research Group, Gaston Geenslaan 3 - Box 901, 3001 Leuven, Belgium
- Leuven Cancer Institute, Faculty of Medicine, KU Leuven, Rellis Research Group, Gaston Geenslaan 3 - Box 901, 3001 Leuven, Belgium
| | - Beheshteh Sohrabi
- Surface Chemistry Research Laboratory, Faculty of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
3
|
Hu J, Yang X, Song X, Miao Y, Yu Y, Xiang W, Huang M, Wu W, Liang K, Zhao S, Liu H. Bioaccumulation mechanisms of perfluoroalkyl substances (PFASs) in aquatic environments: Theoretical and experimental insights. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136283. [PMID: 39531813 DOI: 10.1016/j.jhazmat.2024.136283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/19/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are persistent, bioaccumulative contaminants found in water resources at levels hazardous to human health. However, the PFAS bioaccumulation mechanism remains poorly understood. In this study, we incorporated density functional theory (DFT), molecular dynamics (MD), and experiments to analyze the partitioning pathways and to establish the structure-bioaccumulation relationship. DFT- and MD-calculated environmental fate parameters, comprising LogPO,W, LogPA,W, and diffusion coefficients, coincide with experiments at various ranges of PFAS molecules, with a correction coefficient (R²) of 0.783. MD simulations revealed that medium or long-chain-length PFASs spontaneously aggregate into submicelles in aquatic environments, enhancing their bioaccumulation effect. The short-chain PFASs show weak aggregation, but they also permeate into biological membranes. Particularly, it was discovered that aggregating PFASs "dissolve" into the lipid membrane matrix, owing significantly to van der Waals interactions rather than electrostatic effects. Thermodynamic analysis suggests that PFAS translocation involves spatial flips along the free energy surface. Short-chain PFASs exhibit low steric hindrance, contributing to bioaccumulation-a factor previously neglected in research. PFAS bioaccumulation depends on chain length, as further confirmed by intracellular reactive oxygen species formation and live/dead quantification in HepG2 cells. These insights advance our understanding of PFAS bioaccumulation mechanisms and highlight critical factors influencing their environmental and biological behavior.
Collapse
Affiliation(s)
- Jianbo Hu
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404020, China
| | - Xu Yang
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404020, China
| | - Xianyu Song
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404020, China.
| | - Yongtao Miao
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404020, China
| | - Yuanhong Yu
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404020, China
| | - Wenjun Xiang
- Dazhou Key Laboratory of Advanced Technology for Fiber Materials and School of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou, Sichuan 635000, China
| | - Meiying Huang
- Dazhou Key Laboratory of Advanced Technology for Fiber Materials and School of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou, Sichuan 635000, China
| | - Weirong Wu
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404020, China
| | - Kezhong Liang
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404020, China
| | - Shuangliang Zhao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
4
|
Zhang B, Zhou S, Lu S, Xiang X, Yao X, Lei W, Pei Q, Xie Z, Chen X. Paclitaxel Prodrug Enables Glutathione Depletion to Boost Cancer Treatment. ACS NANO 2024; 18:26690-26703. [PMID: 39303096 DOI: 10.1021/acsnano.4c06399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Herein, we constructed a paclitaxel (PTX) prodrug (PA) by conjugating PTX with acrylic acid as a cysteine-depleting agent. The as-synthesized PA can assemble with diacylphosphatidylethanolamine-PEG2000 to form stable nanoparticles (PA NPs). After endocytosis into cells, PA NPs can specifically react with cysteine and trigger release of PTX for chemotherapy. On the other hand, the depletion of cysteine can greatly downregulate the intracellular content of glutathione and lead to oxidative stress outburst-provoking ferroptosis. The released PTX can elicit antitumor immune response by inducing immunogenic cell death, thus promoting dendritic cells maturation and cascaded cytotoxic T lymphocytes activation, which not only produces a robust immunotherapy effect but also synergizes the ferroptosis therapy by inhibiting cysteine transport via the release of interferon-γ in the activated immune system. As a result, PA NPs exhibit favorable in vitro and in vivo antitumor performance with reduced systemic toxicity. Our work highlights the potential of simple molecular design of prodrugs for enhancing the therapeutic efficacy toward malignant cancer.
Collapse
Affiliation(s)
- Biyou Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shiyu Zhou
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P. R. China
| | - Shaojin Lu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiujuan Xiang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiumin Yao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Wentao Lei
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Qing Pei
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Zhigang Xie
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
5
|
Guerassimoff L, Ferrere M, Bossion A, Nicolas J. Stimuli-sensitive polymer prodrug nanocarriers by reversible-deactivation radical polymerization. Chem Soc Rev 2024; 53:6511-6567. [PMID: 38775004 PMCID: PMC11181997 DOI: 10.1039/d2cs01060g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Indexed: 06/18/2024]
Abstract
Polymer prodrugs are based on the covalent linkage of therapeutic molecules to a polymer structure which avoids the problems and limitations commonly encountered with traditional drug-loaded nanocarriers in which drugs are just physically entrapped (e.g., burst release, poor drug loadings). In the past few years, reversible-deactivation radical polymerization (RDRP) techniques have been extensively used to design tailor-made polymer prodrug nanocarriers. This synthesis strategy has received a lot of attention due to the possibility of fine tuning their structural parameters (e.g., polymer nature and macromolecular characteristics, linker nature, physico-chemical properties, functionalization, etc.), to achieve optimized drug delivery and therapeutic efficacy. In particular, adjusting the nature of the drug-polymer linker has enabled the easy synthesis of stimuli-responsive polymer prodrugs for efficient spatiotemporal drug release. In this context, this review article will give an overview of the different stimuli-sensitive polymer prodrug structures designed by RDRP techniques, with a strong focus on the synthesis strategies, the macromolecular architectures and in particular the drug-polymer linker, which governs the drug release kinetics and eventually the therapeutic effect. Their biological evaluations will also be discussed.
Collapse
Affiliation(s)
- Léa Guerassimoff
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France.
| | - Marianne Ferrere
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France.
| | - Amaury Bossion
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France.
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France.
| |
Collapse
|
6
|
Gao P, Ha-Duong T, Nicolas J. Coarse-Grained Model-Assisted Design of Polymer Prodrug Nanoparticles with Enhanced Cytotoxicity: A Combined Theoretical and Experimental Study. Angew Chem Int Ed Engl 2024; 63:e202316056. [PMID: 38345287 DOI: 10.1002/anie.202316056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Indexed: 03/12/2024]
Abstract
To achieve drug release from polymer prodrug nanoparticles, the drug-polymer linker must be accessible for cleavage to release the drug, which can occur under certain physiological conditions (e.g., presence of specific enzymes). Supramolecular organization of polymer prodrug nanoparticles is crucial as it greatly affects the location of the linker, its surface exposure/solvation and thus its cleavage to release the drug. Since experimental access to these data is not straightforward, new methodologies are critically needed to access this information and to accelerate the development of more effective polymer prodrug nanoparticles, and replace the time-consuming and resource-intensive traditional trial-and-error strategy. In this context, we reported here the use of a coarse-grained model to assist the design of polymer prodrug nanoparticles with enhanced cytotoxicity. By choosing the solvent accessible surface area as the critical parameter for predicting drug release and hence cytotoxicity of polymer prodrug nanoparticles, we developed an optimized polymer-drug linker with enhanced hydrophilicity and solvation. Our hypothesis was then experimentally validated by the synthesis of the corresponding polymer prodrugs based on two different drugs (gemcitabine and paclitaxel), which demonstrated greater performances in terms of drug release and cytotoxicity on two cancer cell lines. Interestingly, our methodology can be easily applied to other polymer prodrug structures, which would contribute to the development of more efficient drug delivery systems via in silico screening.
Collapse
Affiliation(s)
- Ping Gao
- Université Paris-Saclay, CNRS, BioCIS, Orsay, 91400, France
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Orsay, 91400, France
| | - Tâp Ha-Duong
- Université Paris-Saclay, CNRS, BioCIS, Orsay, 91400, France
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Orsay, 91400, France
| |
Collapse
|
7
|
Liu N, Gao P, Lu HY, Fang L, Nicolas J, Ha-Duong T, Shen JS. Polyfluoroalkyl Chain-Based Assemblies for Biomimetic Catalysis. Chemistry 2024; 30:e202302669. [PMID: 37823686 DOI: 10.1002/chem.202302669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/13/2023]
Abstract
Amphiphobic fluoroalkyl chains are exploited for creating robust and diverse self-assembled biomimetic catalysts. Long terminal perfluoroalkyl chains (Cn F2n+1 with n=6, 8, and 10) linked with a short perhydroalkyl chains (Cm H2m with m=2 and 3) were used to synthesize several 1,4,7-triazacyclononane (TACN) derivatives, Cn F2n+1 -Cm H2m -TACN. In the presence of an equimolar amount of Zn2+ ions that coordinate the TACN moiety and drive the self-assembly into micelle-like aggregates, the critical aggregation concentration of polyfluorinated Cn F2n+1 -Cm H2m -TACN⋅Zn2+ was lowered by ∼1 order of magnitude compared to the traditional perhyroalkyl counterpart with identical carbon number of alkyl chain. When 2'-hydroxypropyl-4-nitrophenyl phosphate was used as the model phosphate substrate, polyfluorinated Cn F2n+1 -Cm H2m -TACN⋅Zn2+ assemblies showed higher affinity and catalytic activity, compared to its perhyroalkyl chain-based counterpart. Coarse-grained molecular dynamic simulations have been introduced to explore the supramolecular assembly of polyfluoroalkyl chains in the presence of Zn2+ ions and to better understand their enhanced catalytic activity.
Collapse
Affiliation(s)
- Ning Liu
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Ping Gao
- Institut Galien Paris-Saclay, Université Paris-Saclay, CNRS, Orsay, 91400, France
- BioCIS, Université Paris-Saclay, CNRS, Orsay, 91400, France
| | - Hai-Yan Lu
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Lei Fang
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Julien Nicolas
- Institut Galien Paris-Saclay, Université Paris-Saclay, CNRS, Orsay, 91400, France
| | - Tâp Ha-Duong
- BioCIS, Université Paris-Saclay, CNRS, Orsay, 91400, France
| | - Jiang-Shan Shen
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| |
Collapse
|
8
|
Aierken D, Bachmann M. Secondary-structure phase formation for semiflexible polymers by bifurcation in hyperphase space. Phys Chem Chem Phys 2023; 25:30246-30258. [PMID: 37921656 DOI: 10.1039/d3cp02815a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Canonical analysis has long been the primary analysis method for studies of phase transitions. However, this approach is not sensitive enough if transition signals are too close in temperature space. The recently introduced generalized microcanonical inflection-point analysis method not only enables the systematic identification and classification of transitions in systems of any size, but it can also distinguish transitions that standard canonical analysis cannot resolve. By applying this method to a generic coarse-grained model for semiflexible polymers, we identify a mixed structural phase dominated by secondary structures such as hairpins and loops that originates from a bifurcation in the hyperspace spanned by inverse temperature and bending stiffness. This intermediate phase, which is embraced by the well-known random-coil and toroidal phases, is testimony to the necessity of balancing entropic variability and energetic stability in functional macromolecules under physiological conditions.
Collapse
Affiliation(s)
- Dilimulati Aierken
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08540, USA.
- Soft Matter Systems Research Group, Center for Simulational Physics, Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA.
| | - Michael Bachmann
- Soft Matter Systems Research Group, Center for Simulational Physics, Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
9
|
Lages M, Pesenti T, Zhu C, Le D, Mougin J, Guillaneuf Y, Nicolas J. Degradable polyisoprene by radical ring-opening polymerization and application to polymer prodrug nanoparticles. Chem Sci 2023; 14:3311-3325. [PMID: 36970097 PMCID: PMC10034157 DOI: 10.1039/d2sc05316k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Radical ring-opening copolymerization of isoprene and dibenzo[c,e]oxepane-5-thione via free-radical and controlled radical polymerizations led to degradable polyisoprene under basic, oxidative and physiological conditions with application to prodrug nanoparticles.
Collapse
Affiliation(s)
- Maëlle Lages
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France
| | - Théo Pesenti
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France
| | - Chen Zhu
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France
| | - Dao Le
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France
| | - Julie Mougin
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France
| | - Yohann Guillaneuf
- Aix-Marseille-Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273, F-13397 Marseille, France
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France
| |
Collapse
|
10
|
Surface functionalization of graphene nanosheet with poly (L-histidine) and its application in drug delivery: covalent vs non-covalent approaches. Sci Rep 2022; 12:19046. [PMID: 36351935 PMCID: PMC9646737 DOI: 10.1038/s41598-022-21619-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/29/2022] [Indexed: 11/10/2022] Open
Abstract
Nowadays, nanomaterials are increasingly being used as drug carriers in the treatment of different types of cancers. As a result, these applications make them attractive to researchers dealing with diagnosis and biomarkers discovery of the disease. In this study, the adsorption behavior of gemcitabine (GMC) on graphene nanosheet (GNS), in the presence and absence of Poly (L-histidine) (PLH) polymer is discussed using molecular dynamics (MD) simulation. The MD results revealed an increase in the efficiency and targeting of the drug when the polymer is covalently attached to the graphene substrate. In addition, the metadynamics simulation to investigate the effects of PLH on the adsorption capacity of the GNS, and explore the adsorption/desorption process of GMC on pristine and PLH- grafted GNS is performed. The metadynamics calculations showed that the amount of free energy of the drug in acidic conditions is higher (- 281.26 kJ/mol) than the free energy in neutral conditions (- 346.24 kJ/mol). Consequently, the PLH polymer may not only help drug adsorption but can also help in drug desorption in lower pH environments. Based on these findings, it can be said that covalent polymer bonding not only can help in the formation of a targeted drug delivery system but also can increase the adsorption capacity of the substrate.
Collapse
|
11
|
Marrink SJ, Monticelli L, Melo MN, Alessandri R, Tieleman DP, Souza PCT. Two decades of Martini: Better beads, broader scope. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Siewert J. Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials University of Groningen Groningen The Netherlands
| | - Luca Monticelli
- Molecular Microbiology and Structural Biochemistry (MMSB ‐ UMR 5086) CNRS & University of Lyon Lyon France
| | - Manuel N. Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa Oeiras Portugal
| | - Riccardo Alessandri
- Pritzker School of Molecular Engineering University of Chicago Chicago Illinois USA
| | - D. Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences University of Calgary Alberta Canada
| | - Paulo C. T. Souza
- Molecular Microbiology and Structural Biochemistry (MMSB ‐ UMR 5086) CNRS & University of Lyon Lyon France
| |
Collapse
|
12
|
Sun L, Zhao P, Chen M, Leng J, Luan Y, Du B, Yang J, Yang Y, Rong R. Taxanes prodrug-based nanomedicines for cancer therapy. J Control Release 2022; 348:672-691. [PMID: 35691501 DOI: 10.1016/j.jconrel.2022.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/04/2022] [Accepted: 06/04/2022] [Indexed: 11/16/2022]
Abstract
Malignant tumor remains a huge threat to human health and chemotherapy still occupies an important place in clinical tumor treatment. As a kind of potent antimitotic agent, taxanes act as the first-line broad-spectrum cancer drug in clinical use. However, disadvantages such as prominent hydrophobicity, severe off-target toxicity or multidrug resistance lead to unsatisfactory therapeutic effects, which restricts its wider usage. The efficient delivery of taxanes is still quite a challenge despite the rapid developments in biomaterials and nanotechnology. Great progress has been made in prodrug-based nanomedicines (PNS) for cancer therapy due to their outstanding advantages such as high drug loading efficiency, low carrier induced immunogenicity, tumor stimuli-responsive drug release, combinational therapy and so on. Based on the numerous developments in this filed, this review summarized latest updates of taxanes prodrugs-based nanomedicines (TPNS), focusing on polymer-drug conjugate-based nanoformulations, small molecular prodrug-based self-assembled nanoparticles and prodrug-encapsulated nanosystems. In addition, the new trends of tumor stimuli-responsive TPNS were also discussed. Moreover, the future challenges of TPNS for clinical translation were highlighted. We here expect this review will inspire researchers to explore more practical taxanes prodrug-based nano-delivery systems for clinical use.
Collapse
Affiliation(s)
- Linlin Sun
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Pan Zhao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Menghan Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Jiayi Leng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Yixin Luan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Baoxiang Du
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Jia Yang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Yong Yang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Rong Rong
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| |
Collapse
|
13
|
Zhang Y, Pei Q, Yue Y, Xie Z. Binary dimeric prodrug nanoparticles for self-boosted drug release and synergistic chemo-photodynamic therapy. J Mater Chem B 2022; 10:880-886. [PMID: 35043826 DOI: 10.1039/d1tb02638k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chemotherapy is the major strategy for cancer therapy, but its limited therapeutic efficiency and serious toxicity to normal tissues greatly restrict its clinical performance. Herein, we develop carrier-free self-activated prodrug nanoparticles combining chemotherapy and photodynamic therapy to enhance the antitumor efficiency. Reactive oxygen species (ROS)-responsive paclitaxel and porphyrin prodrugs are synthesized and co-assembled into nanoparticles without the addition of any adjuvants, which improves the drug content and reduces carrier-associated toxicity. After entering cancer cells, the obtained co-assembled nanoparticles can generate sufficient ROS upon light irradiation not only for photodynamic therapy, but also triggering on-demand drug release for chemotherapy, thus realizing self-enhanced prodrug activation and synergistic chemo-photodynamic therapy. This simple and effective carrier-free prodrug nanoplatform unifies the distinct traits of on-demand drug release and combination therapy, thus possessing great potential in advancing cancer treatment.
Collapse
Affiliation(s)
- Youwei Zhang
- Department of Gynecological Oncology, The First Hospital of Jilin University, Xinmin Street, Changchun, Jilin 130021, P. R. China.
| | - Qing Pei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
| | - Ying Yue
- Department of Gynecological Oncology, The First Hospital of Jilin University, Xinmin Street, Changchun, Jilin 130021, P. R. China.
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
| |
Collapse
|