1
|
Li Y, Ye T, Li F, Tan S. Chalcogen-Bonding-Enabled, Light-Driven Decarboxylative Oxygenation of Amino Acid Derivatives and Short Peptides Using O 2. Angew Chem Int Ed Engl 2025; 64:e202502233. [PMID: 40113597 DOI: 10.1002/anie.202502233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/02/2025] [Accepted: 03/20/2025] [Indexed: 03/22/2025]
Abstract
Here we report a photocatalytic method for the decarboxylative oxygenation of amino acid derivatives and short peptides using dioxygen as a green oxidant. A reverse catalytic strategy utilizing Lewis basic diphenyl diselenide as a Lewis acid catalyst to activate carboxylic acid via chalcogen bonding interaction is the key to this work. This synthetic method is tolerant of functionalities present in both natural and non-proteinogenic amino acids, enabling the efficient synthesis of C-terminal amides or imides. Mechanistic studies suggest there is a dual noncovalent interaction between diphenyl diselenide and carboxylic acid, which allows radical decarboxylation through photoinduced intermolecular electron transfer. This new activation mode of carboxylic acids will add a new dimension to classical decarboxylative reactions.
Collapse
Affiliation(s)
- Yuzheng Li
- School of Pharmacy and Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education), Yantai University, Yantai, 264005, China
| | - Taiqiang Ye
- School of Pharmacy and Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education), Yantai University, Yantai, 264005, China
| | - Feng Li
- School of Pharmacy and Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education), Yantai University, Yantai, 264005, China
| | - Shenpeng Tan
- School of Pharmacy and Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education), Yantai University, Yantai, 264005, China
| |
Collapse
|
2
|
Chu X, Zhang Z, Xu X, Guan W, Jiang S, Cai S, Yang T, He G, Zhou C, Chen G. Formamidine as an Easy-On and Easy-Off Linker for Reversible Crosslinking of Two Alkyl Amines in Peptide Stapling and Conjugation. Angew Chem Int Ed Engl 2025; 64:e202422844. [PMID: 39792487 DOI: 10.1002/anie.202422844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/02/2025] [Accepted: 01/10/2025] [Indexed: 01/12/2025]
Abstract
Amino groups are abundant in both natural and synthetic molecules, offering highly accessible sites for modifying native biorelevant molecules. Despite significant progress with more reactive thiol groups, methods for ligating two amino groups with reversible linkers for bioconjugation applications remain elusive. Herein, we report the use of oxidative decarboxylative condensation of glyoxylic acid to crosslink or ligate two alkyl amines via a compact formamidine linkage, applicable in both intra- and intermolecular contexts. This linking chemistry exhibits unique hetero-coupling selectivity between primary and secondary alkyl amines. Although the formamidine linkage is stable under pH-neutral buffers and acidic conditions, it can be readily cleaved with ethylenediamine or hydrazine under mild conditions in alcohol solvents or aqueous media, fully restoring the amino groups. This study introduces a rare 'easy-on and easy-off' strategy for connecting two native amines in peptide stapling and biomolecule conjugation.
Collapse
Affiliation(s)
- Xin Chu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhang Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiaoxi Xu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wenli Guan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shuai Jiang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shaokun Cai
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Tianxi Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Gang He
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Gong Chen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
3
|
Hymel D, Wojcik F, Halskov KS, Hogendorf WFJ, Wong SC, Williams BM, Mortensen AR, Cox N, Misquith A, Holländer NB, Matthiesen F, Mehrotra S, Harris MR. Photochemically-enabled, post-translational production of C-terminal amides. Nat Commun 2024; 15:7162. [PMID: 39616180 PMCID: PMC11608224 DOI: 10.1038/s41467-024-51005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/29/2024] [Indexed: 05/17/2025] Open
Abstract
C-terminal α-amidated peptides are attractive therapeutic targets, but preparative methods to access amidated pharmaceuticals are limited both on lab and manufacturing-scale. Here we report a straightforward and scalable approach to the C-terminal α-amidation of peptides and proteins from cysteine-extended polypeptide precursors. This amidation protocol consists of three highly efficient steps: 1) selective cysteine thiol substitution with a photolabel, 2) photoinduced decarboxylative elimination and 3) enamide cleavage by simple acidolysis or inverse electron demand Diels-Alder reaction. We provide a blueprint for applying this protocol to the semi-recombinant production of therapeutically relevant targets where gram scale C-terminal α-amidation is achieved in a photoflow reactor on a recombinantly prepared peptide YY analogue and a GLP-1/amylin co-agonist precursor peptide. Robust performance of this reaction cascade in flow highlights the potential of this chemistry to enable amidated drug leads to enter development that would not be viable on commercial scale using existing technology.
Collapse
Affiliation(s)
- David Hymel
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Felix Wojcik
- Research Chemistry, Novo Nordisk A/S, Måløv, Denmark
| | - Kim S Halskov
- Research Chemistry, Novo Nordisk A/S, Måløv, Denmark
| | | | - Sydnee C Wong
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Ben M Williams
- Chemical Development, Novo Nordisk A/S, Bagsværd, Denmark
| | | | - Nick Cox
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Ayesha Misquith
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | | | | | - Suneet Mehrotra
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | | |
Collapse
|
4
|
Zhao Y, Zhang T, Zhu Y, Yin J, Omer R, Hemu X, Li W, Bi X. Recent Toolboxes for Chemoselective Dual Modifications of Proteins. Chemistry 2024; 30:e202402272. [PMID: 39037007 DOI: 10.1002/chem.202402272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/23/2024]
Abstract
Site-selective chemical modifications of proteins have emerged as a potent technology in chemical biology, materials science, and medicine, facilitating precise manipulation of proteins with tailored functionalities for basic biology research and developing innovative therapeutics. Compared to traditional recombinant expression methods, one of the prominent advantages of chemical protein modification lies in its capacity to decorate proteins with a wide range of functional moieties, including non-genetically encoded ones, enabling the generation of novel protein conjugates with enhanced or previously unexplored properties. Among these, approaches for dual or multiple modifications of proteins are increasingly garnering attention, as it has been found that single modification of proteins is inadequate to meet current demands. Therefore, in light of the rapid developments in this field, this review provides a timely and comprehensive overview of the latest advancements in chemical and biological approaches for dual functionalization of proteins. It further discusses their advantages, limitations, and potential future directions in this relatively nascent area.
Collapse
Affiliation(s)
- Yiping Zhao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Tianmeng Zhang
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia
| | - Yujie Zhu
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia
| | - Juan Yin
- Zhejiang Yangshengtang Institute of Natural Medication Co., Ltd, Hangzhou, Zhejiang, China
| | - Rida Omer
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xinya Hemu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wenyi Li
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia
| | - Xiaobao Bi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Liu XY, Mykhailenko O, Faraone A, Waser J. Hypervalent Iodine Amino Acid Building Blocks for Bioorthogonal Peptide Macrocyclization. Angew Chem Int Ed Engl 2024; 63:e202404747. [PMID: 38807563 DOI: 10.1002/anie.202404747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/02/2024] [Accepted: 05/27/2024] [Indexed: 05/30/2024]
Abstract
Ethynylbenziodoxol(on)es (EB(X)xs) reagents have emerged as useful reagents for peptide/protein modification due to their versatile reactivity and high selectivity. Herein, we report the successful introduction of ethynylbenziodoxoles (EBxs) on different amino acid building blocks (Lys/Orn/Dap), and show their compatibility with both solid phase peptide synthesis (SPPS) and solution phase peptide synthesis (SPS). The selective incorporation of the EBx core into peptide sequences enable efficient macrocyclizations under mild conditions for the synthesis of topologically unique cyclic and bicyclic peptides.
Collapse
Affiliation(s)
- Xing-Yu Liu
- Laboratory of Catalysis and Organic Synthesis (LCSO), Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| | - Olha Mykhailenko
- Laboratory of Catalysis and Organic Synthesis (LCSO), Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| | - Adriana Faraone
- Laboratory of Catalysis and Organic Synthesis (LCSO), Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis (LCSO), Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| |
Collapse
|
6
|
Hayashi J, Kobayashi D, Namikawa C, Denda M, Otaka A. Synthesis of N-Glyoxylyl Peptides Enabled by a Lossen Rearrangement-Induced Intramolecular Redox Reaction of N-Terminal Glycyl Hydroxamic Acid. Org Lett 2024; 26:4246-4250. [PMID: 38738629 DOI: 10.1021/acs.orglett.4c01126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
An oxidant-free approach to the synthesis of N-glyoxylyl peptides has been developed that utilizes the Lossen rearrangement of the N-terminal glycyl hydroxamic acid residue. The synthesis proceeds via an intramolecular redox mechanism to yield the glyoxylyl peptides, which are then subjected to various peptide cyclization procedures. The reaction scheme is suitable for oxidation-sensitive moieties including amino acids.
Collapse
Affiliation(s)
- Junya Hayashi
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Daishiro Kobayashi
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Chizuru Namikawa
- Faculty of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Masaya Denda
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Akira Otaka
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| |
Collapse
|
7
|
Shen L, Monasson O, Peroni E, Le Bideau F, Messaoudi S. Electrochemical Nickel-Catalyzed Selective Inter- and Intramolecular Arylations of Cysteine-Containing Peptides. Angew Chem Int Ed Engl 2023; 62:e202315748. [PMID: 37906608 DOI: 10.1002/anie.202315748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
Here we report a simple electrochemical route towards the synthesis of S-arylated peptides by a site selective coupling of peptides with aryl halides under base free conditions. This approach demonstrates the power of electrochemistry to access both highly complex peptide conjugates and cyclic peptides.
Collapse
Affiliation(s)
- Linhua Shen
- Université Paris-Saclay, CNRS, BioCIS, 92290, Orsay, France
| | - Olivier Monasson
- Université Paris-Saclay, CNRS, BioCIS, 92290, Orsay, France
- CY Cergy Paris Université, CNRS, BioCIS, 95000, Cergy Pontoise, France
| | - Elisa Peroni
- Université Paris-Saclay, CNRS, BioCIS, 92290, Orsay, France
- CY Cergy Paris Université, CNRS, BioCIS, 95000, Cergy Pontoise, France
| | | | | |
Collapse
|
8
|
Mackay AS, Maxwell JWC, Bedding MJ, Kulkarni SS, Byrne SA, Kambanis L, Popescu MV, Paton RS, Malins LR, Ashhurst AS, Corcilius L, Payne RJ. Electrochemical Modification of Polypeptides at Selenocysteine. Angew Chem Int Ed Engl 2023; 62:e202313037. [PMID: 37818778 DOI: 10.1002/anie.202313037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/13/2023]
Abstract
Mild strategies for the selective modification of peptides and proteins are in demand for applications in therapeutic peptide and protein discovery, and in the study of fundamental biomolecular processes. Herein, we describe the development of an electrochemical selenoetherification (e-SE) platform for the efficient site-selective functionalization of polypeptides. This methodology utilizes the unique reactivity of the 21st amino acid, selenocysteine, to effect formation of valuable bioconjugates through stable selenoether linkages under mild electrochemical conditions. The power of e-SE is highlighted through late-stage C-terminal modification of the FDA-approved cancer drug leuprolide and assembly of a library of anti-HER2 affibody conjugates bearing complex cargoes. Following assembly by e-SE, the utility of functionalized affibodies for in vitro imaging and targeting of HER2 positive breast and lung cancer cell lines is also demonstrated.
Collapse
Affiliation(s)
- Angus S Mackay
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Joshua W C Maxwell
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Max J Bedding
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sameer S Kulkarni
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Stephen A Byrne
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Lucas Kambanis
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Mihai V Popescu
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Robert S Paton
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Lara R Malins
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT 2601, Australia
| | - Anneliese S Ashhurst
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Leo Corcilius
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
9
|
Wang Y, Dana S, Long H, Xu Y, Li Y, Kaplaneris N, Ackermann L. Electrochemical Late-Stage Functionalization. Chem Rev 2023; 123:11269-11335. [PMID: 37751573 PMCID: PMC10571048 DOI: 10.1021/acs.chemrev.3c00158] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Indexed: 09/28/2023]
Abstract
Late-stage functionalization (LSF) constitutes a powerful strategy for the assembly or diversification of novel molecular entities with improved physicochemical or biological activities. LSF can thus greatly accelerate the development of medicinally relevant compounds, crop protecting agents, and functional materials. Electrochemical molecular synthesis has emerged as an environmentally friendly platform for the transformation of organic compounds. Over the past decade, electrochemical late-stage functionalization (eLSF) has gained major momentum, which is summarized herein up to February 2023.
Collapse
Affiliation(s)
| | | | | | - Yang Xu
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Yanjun Li
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Nikolaos Kaplaneris
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Lutz Ackermann
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| |
Collapse
|
10
|
Karipal Padinjare Veedu D, Connal LA, Malins LR. Fine-Tuning Electroauxiliary-Mediated Peptide Modifications Using Second-Generation Electroactive Amino Acids. Org Lett 2023; 25:3633-3638. [PMID: 37184435 DOI: 10.1021/acs.orglett.3c00988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Arylthioether functional groups serve as effective electroauxiliaries for tunable oxidations. Herein, we disclose the synthesis of second-generation glutamine building blocks bearing 2,4-dimethoxythiophenyl and 2,4-dichlorothiophenyl-derived electroauxiliaries. These building blocks improve SPPS efficiency and enable fine-tuning of the electrochemical window for selective anodic oxidation reactions in comparison to first-generation 4-methoxythiophenyl- and 4-nitrothiophenyl-substituted variants. Installation onto a segment of involucrin, a protein component of human skin, emphasizes the practical application of the new building blocks for iterative functionalizations.
Collapse
Affiliation(s)
- Dhanya Karipal Padinjare Veedu
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT 2601, Australia
| | - Luke A Connal
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Lara R Malins
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
11
|
Karipal Padinjare Veedu D, Connal LA, Malins LR. Tunable Electrochemical Peptide Modifications: Unlocking New Levels of Orthogonality for Side-Chain Functionalization. Angew Chem Int Ed Engl 2023; 62:e202215470. [PMID: 36336657 PMCID: PMC10107541 DOI: 10.1002/anie.202215470] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Electrochemical transformations provide enticing opportunities for programmable, residue-specific peptide modifications. Herein, we harness the potential of amidic side-chains as underutilized handles for late-stage modification through the development of an electroauxiliary-assisted oxidation of glutamine residues within unprotected peptides. Glutamine building blocks bearing electroactive side-chain N,S-acetals are incorporated into peptides using standard Fmoc-SPPS. Anodic oxidation of the electroauxiliary in the presence of diverse alcohol nucleophiles enables the installation of high-value N,O-acetal functionalities. Proof-of-principle for an electrochemical peptide stapling protocol, as well as the functionalization of dynorphin B, an endogenous opioid peptide, demonstrates the applicability of the method to intricate peptide systems. Finally, the site-selective and tunable electrochemical modification of a peptide bearing two discretely oxidizable sites is achieved.
Collapse
Affiliation(s)
- Dhanya Karipal Padinjare Veedu
- Research School of ChemistryAustralian National UniversityCanberraACT 2601Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceAustralian National UniversityCanberraACT 2601Australia
| | - Luke A. Connal
- Research School of ChemistryAustralian National UniversityCanberraACT 2601Australia
| | - Lara R. Malins
- Research School of ChemistryAustralian National UniversityCanberraACT 2601Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceAustralian National UniversityCanberraACT 2601Australia
| |
Collapse
|
12
|
Weng Y, Xu X, Chen H, Zhang Y, Zhuo X. Tandem Electrochemical Oxidative Azidation/Heterocyclization of Tryptophan‐Containing Peptides under Buffer Conditions. Angew Chem Int Ed Engl 2022; 61:e202206308. [DOI: 10.1002/anie.202206308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Yiyi Weng
- College of Pharmaceutical Sciences Zhejiang University of Technology 310014 Hangzhou P.R. China
| | - Xiaobin Xu
- College of Pharmaceutical Sciences Zhejiang University of Technology 310014 Hangzhou P.R. China
| | - Hantao Chen
- College of Pharmaceutical Sciences Zhejiang University of Technology 310014 Hangzhou P.R. China
| | - Yiyang Zhang
- College of Pharmaceutical Sciences Zhejiang University of Technology 310014 Hangzhou P.R. China
| | - Xianfeng Zhuo
- College of Pharmaceutical Sciences Zhejiang University of Technology 310014 Hangzhou P.R. China
| |
Collapse
|
13
|
Weng Y, Xu X, Chen H, Zhang Y, Zhuo X. Tandem Electrochemical Oxidative Azidation/Heterocyclization of Tryptophan‐Containing Peptides under Buffer Conditions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yiyi Weng
- Zhejiang University of Technology College of Pharmaceutical Science Chaowang road 18 310014 Hangzhou CHINA
| | - Xiaobin Xu
- Zhejiang University of Technology College of Pharmaceutical Sciences CHINA
| | - Hantao Chen
- Zhejiang University of Technology College of Pharmaceutical Sciences CHINA
| | - Yiyang Zhang
- Zhejiang University of Technology College of Pharmaceutical Sciences CHINA
| | - Xianfeng Zhuo
- Zhejiang University of Technology College of Pharmaceutical Sciences CHINA
| |
Collapse
|
14
|
Mackay AS, Payne RJ, Malins LR. Electrochemistry for the Chemoselective Modification of Peptides and Proteins. J Am Chem Soc 2022; 144:23-41. [PMID: 34968405 DOI: 10.1021/jacs.1c11185] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although electrochemical strategies for small-molecule synthesis are flourishing, this technology has yet to be fully exploited for the mild and chemoselective modification of peptides and proteins. With the growing number of diverse peptide natural products being identified and the emergence of modified proteins as therapeutic and diagnostic agents, methods for electrochemical modification stand as alluring prospects for harnessing the reactivity of polypeptides to build molecular complexity. As a mild and inherently tunable reaction platform, electrochemistry is arguably well-suited to overcome the chemo- and regioselectivity issues which limit existing bioconjugation strategies. This Perspective will showcase recently developed electrochemical approaches to peptide and protein modification. The article also highlights the wealth of untapped opportunities for the production of homogeneously modified biomolecules, with an eye toward realizing the enormous potential of electrochemistry for chemoselective bioconjugation chemistry.
Collapse
Affiliation(s)
- Angus S Mackay
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Lara R Malins
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
15
|
Lamb C, Shi J, Wilden JD, Macmillan D. Novel electrochemically-mediated peptide dethiylation in processes relevant to native chemical ligation. Org Biomol Chem 2022; 20:7343-7350. [DOI: 10.1039/d2ob01499h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we explore electrochemical dethiylation in processes relevant to Native Chemical Ligation (NCL). NCL’s reliance on the redox active amino acid cysteine and β-mercaptoamine derivatives suggests a potential role for...
Collapse
|
16
|
Li C, Zhong Q, Tang S, Wang L, Li P, Li H. Electrochemical formal [3 + 2] cycloaddition of azobenzenes with hexahydro-1,3,5-triazines. Org Chem Front 2022. [DOI: 10.1039/d2qo00530a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A catalyst-free electrochemical [3 + 2] cycloaddition of azobenzenes with hexahydro-1,3,5-triazines without an external oxidant has been developed for constructing the 1,2,4-triazolidine skeleton.
Collapse
Affiliation(s)
- Chao Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Qiang Zhong
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Shujun Tang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Lei Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, P. R. China
| | - Pinhua Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Hongji Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| |
Collapse
|
17
|
Chen X, Liu H, Gao H, Li P, Miao T, Li H. Electrochemical Regioselective Cross-Dehydrogenative Coupling of Indoles with Xanthenes. J Org Chem 2021; 87:1056-1064. [PMID: 34964353 DOI: 10.1021/acs.joc.1c02346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An electrochemical cross-dehydrogenative coupling of indoles with xanthenes has been established at room temperature. This coupling reaction could proceed in the absence of any catalyst or external oxidant, and generate the indole derivatives in moderate yields. Mechanistic experiments support that a radical pathway maybe involved in this reaction system.
Collapse
Affiliation(s)
- Xinyu Chen
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Hongqiang Liu
- China Synchem Technology Co., Ltd., Bengbu, Anhui 233000, P. R. China
| | - Hui Gao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.,Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Pinhua Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Tao Miao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Hongji Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| |
Collapse
|