1
|
Tan Z, Luo Y, Sun X, Huang Y, Sun W. Biodegradation and bioaugmentation of the co-contamination of chloramphenicol and microplastics by Exiguobacterium sp. CAP4 isolated from a contaminated plastisphere. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137973. [PMID: 40122001 DOI: 10.1016/j.jhazmat.2025.137973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/14/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Microplastics (MPs) and antibiotics are newly emerging contaminants that have heavily accumulated in the environment and are a great cause of concern due to their co-contamination. Although the removal and degradation of individual MPs and antibiotics have been studied in various environments, our understanding of how to eliminate the co-contamination of MPs and antibiotics remains poor. In this study, the biodegradation of both micro polyethylene (mPE) and chloramphenicol (CAP) was analyzed in a wastewater sample. Members of the genera Exiguobacterium, Methanospirillum, Methanosaeta, and Candidatus Nitrocosmicus were proposed as biomarkers in plastisphere, which may contribute to the biodegradation of both contaminants. Notably, Exiguobacterium sp. CAP4 was isolated from the plastisphere and exhibited a high potential to degrade both CAP and mPE. Bioaugmentation with Exiguobacterium sp. CAP4 in mPEs and CAP contaminated wastewater facilitated the biodegradation of both mPE and CAP. This work expands the knowledge base regarding the simultaneous elimination of MPs and antibiotics in situ and identifies a promising bacterial strain for both MP and antibiotic biodegradation.
Collapse
Affiliation(s)
- Zewen Tan
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yujiang Luo
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Ying Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
2
|
Zeng G, Fu Z, Yin B, Huang L. Visible Light-Induced Single-Atom Insertion of Indenes via Aerobic Ring Scission-Condensation-Rearomatization. Chemistry 2025; 31:e202403828. [PMID: 40098588 DOI: 10.1002/chem.202403828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 03/19/2025]
Abstract
In this study, we present a photocatalyzed single-atom insertion of indenes, involving an aerobic ring scission into dicarbonyl intermediates, which subsequently undergo condensation and rearomatization to efficiently synthesize isoquinoline and naphthalene derivatives. The use of an inexpensive organic dye as the photocatalyst under aerobic conditions with cheap ammonium acetate (NH4OAc) as the nitrogen source makes this method very practical and environmentally friendly to access isoquinoline. Alternatively, an intramolecular carbon-atom-insertion process, involving the Aldol reaction of the dicarbonyl intermediates, affords the naphthalenamine and naphthalen-2-ol derivatives. Mechanistic studies support that the superoxide anion radical species mediates the C═C double bond scission of indenes rather than the singlet oxygen intermediate.
Collapse
Affiliation(s)
- Guohui Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Zeyuan Fu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Biaolin Yin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Liangbin Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
3
|
Chen Y, Song H, Hao Y, Lui MY, Wong WL, Lam WWY, Chan B, Shi H, Man WL. Selective Aerobic Peroxidation of Styrene Catalyzed by a Cobalt tert-Butylperoxo Complex. JACS AU 2025; 5:1090-1095. [PMID: 40151265 PMCID: PMC11938028 DOI: 10.1021/jacsau.5c00139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/27/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025]
Abstract
Selective oxidation of styrene to desired products is essential and challenging. In this study, we elucidate a unique pathway for the selective oxidation of styrene to polystyrene peroxo species, catalyzed by the cobalt(III) tert-butylperoxo complex, [CoIII(OO t Bu)(qpy)(NCCH3)]2+ (1), under ambient conditions. Mechanistic investigations, including the structural determination of the diperoxo complex, [CoIII(qpy)(OOCH(Ph)CH2OO t Bu)(NCCH3)]2+ (2), by X-ray analysis and theoretical calculations reveal that the reaction begins with the nucleophilic addition of styrene to the CoIII-OO t Bu moiety in 1. This step is followed by an addition with an O2 molecule, forming a diperoxyl radical (PhCOO•(H)CH2OOtBu), which subsequently rebounds with CoII(qpy) to yield 2. In the presence of excess O2, complex 2 can further react with additional styrene molecules, leading to the formation of cobalt(III) polystyrene peroxo species.
Collapse
Affiliation(s)
- Yunzhou Chen
- Department
of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, HKSAR 999077, PR China
| | - Huiying Song
- Department
of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, HKSAR 999077, PR China
| | - Yiming Hao
- Department
of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, HKSAR 999077, PR China
| | - Matthew Y. Lui
- Department
of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, HKSAR 999077, PR China
| | - Wing-Leung Wong
- Department
of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, HKSAR 999077, PR China
| | - William W. Y. Lam
- Department
of Food and Health Sciences, Technological
and Higher Education Institute of Hong Kong, Tsing Yi, New Territories, HKSAR 999077, PR China
| | - Bun Chan
- Graduate
School of Engineering, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
| | - Huatian Shi
- School
of Environment and Civil Engineering, Research Center for Eco-environmental
Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, PR China
| | - Wai-Lun Man
- Department
of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, HKSAR 999077, PR China
| |
Collapse
|
4
|
Yin L, Kozloff BS, Deng N, Persaud PD, Bansode AH, Wise DE, Martinez JS, Parasram M. Photoexcited Nitroarenes for the Anaerobic Cleavage of Alkenes. ORGANIC SYNTHESES; AN ANNUAL PUBLICATION OF SATISFACTORY METHODS FOR THE PREPARATION OF ORGANIC CHEMICALS 2025; 102:114-127. [PMID: 40206267 PMCID: PMC11981635 DOI: 10.15227/orgsyn.102.0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Affiliation(s)
- Lifeng Yin
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Ben S Kozloff
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Ning Deng
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Preya D Persaud
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Ajay H Bansode
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Dan E Wise
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Jenny S Martinez
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Marvin Parasram
- Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
5
|
Wang C, Xiao J. Activation of Molecular Oxygen and Selective Oxidation with Metal Complexes. Acc Chem Res 2025; 58:714-731. [PMID: 39982136 PMCID: PMC11883747 DOI: 10.1021/acs.accounts.4c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/01/2025] [Accepted: 02/06/2025] [Indexed: 02/22/2025]
Abstract
ConspectusSelective oxidation with molecular oxygen is one of the most appealing approaches to functionalization of organic molecules and, yet at the same time, one of the most challenging reactions facing organic synthesis due to poor selectivity control. Molecular oxygen is a green and inexpensive oxidant, producing water as the only byproduct in oxidation. Not surprisingly, it has been used in the manufacturing of many commodity chemicals in the industry. It is also nature's choice of oxidant and drives a variety of oxidation reactions critical to life and various other biologic processes. While the past decades have witnessed great progress in understanding, both structurally and mechanistically, how nature exploits metalloenzymes, i.e., monooxygenases and dioxygenases, to tackle some of the most challenging oxidation reactions, e.g., methane oxidation to methanol, there are only a small number of well-defined, man-made metal complexes that have been reported to enable selective oxidation with molecular oxygen of compounds more relevant to fine chemical and pharmaceutical synthesis.In the past 10 years or so, our laboratories have developed several transition metal complexes and shown that they are capable of catalyzing selective oxidation under 1 atm of O2. Thus, we have shown that an Fe(II)-bisimidazolidinyl-pyridine complex catalyzes selective oxygenation of C-H bonds in ethers with concomitant release of hydrogen gas instead of water, and when the iron center is replaced with Fe(III), selective oxidative cleavage of C═C bonds of olefins becomes feasible. To address the low activity of the iron complex in oxidizing less active olefins, we have developed a Mn(II)-bipyridine complex, which catalyzes oxidative cleavage of C═C bonds in aliphatic olefins, C-C bonds in diols, and carboxyl units in carboxylic acids under visible light irradiation. Light is necessary in the oxidation to cleave an off-cycle, inactive manganese dimer into a catalytically active Mn═O oxo species. Furthermore, we have found that a binuclear salicylate-bridged Cu(II) complex enables the C-H oxidation of tetrahydroisoquinolines as well as C═C bond cleavage, and when a catalytic vitamin B1 analogue is brought in, oxygenation of tetrahydroisoquinolines to lactams takes place via carbene catalysis. Still further, we have found that a readily accessible binuclear Rh(II)-terpyridine complex catalyzes the oxidation of alcohols, and being water-soluble, the catalyst can be easily separated and reused multiple times. In addition, we recently unearthed a simple protocol that allows waste polystyrene to be depolymerized to isolable, valuable chemicals. A cheap Brønsted acid acts as the catalyst, activating molecular oxygen to a singlet state through complexation with the polymer under light irradiation, thereby depolymerizing the polymer.
Collapse
Affiliation(s)
- Chao Wang
- School
of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface
and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi’an 710119, China
| | - Jianliang Xiao
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| |
Collapse
|
6
|
Feng C, Guo H, Ding A. Visible Light-Induced Divergent Deoxygenation/Hydroxymethylation of Pyridine N-Oxides. J Org Chem 2025; 90:1376-1387. [PMID: 39789729 DOI: 10.1021/acs.joc.4c02770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
This study explores the deoxygenation of pyridine N-oxides and presents a one-step photoredox method for the direct synthesis of 2-hydroxymethylated pyridines from pyridine N-oxides. Mechanism studies elucidate the role of the catalyst and provide evidence of the possible electron transfer process and the formation of key radicals. A range of pyridine derivatives, particularly 2-hydroxymethyl-substituted pyridines, which may be difficult to obtain, can be synthesized in a single step.
Collapse
Affiliation(s)
- Changhao Feng
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
| | - Hao Guo
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
| | - Aishun Ding
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
| |
Collapse
|
7
|
Konwar M, Das T, Das A. Parts-Per-Million Level Loading Cyclometalated Ru(II)-NHC Catalyzed Selective Oxidation of Olefins to Carbonyls. Chemistry 2025; 31:e202403135. [PMID: 39563099 DOI: 10.1002/chem.202403135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/21/2024]
Abstract
Oxidative cleavage of olefins is a useful reaction in organic synthesis. The most well-known catalytic system is the osmium based Lemieux-Johnson catalyst, which generally requires high catalyst loading and tends to suffer from rapid overoxidation to produce the acid predominantly. Hence, the development of a mild, general, and selective method toward the oxidative cleavage of alkenes to carbonyl compounds is highly desired. In this work, a highly efficient ruthenium-based catalyst for olefin oxidation has been demonstrated by employing a fused π-conjugated imidazo[1,5-a]quinoxaline (ImQx) based NHC ligand with bidentate C(carbanion) CNHC motif. Strong C-donor ligands, paired with a rigid backbone and ruthenium redox activity, provided exceptionally high catalytic activity and a long lifetime for olefin oxidation. Complex showed high catalytic activity and a long lifetime, TONs are several million. The catalyst tolerates numerous functional groups and can be applicable to challenging biomass, natural products, sugar, amino acids, and fatty acid-derived substrates. Based on kinetic studies, thermodynamic activation parameters, and DFT study, the mechanistic finding demonstrated that [3+2] cycloaddition reaction is the key step in the oxidation process. The use of the by-product NaIO3 in the catalytic efficiency has been disclosed for the first time.
Collapse
Affiliation(s)
- Monuranjan Konwar
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
| | - Tapashi Das
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
| | - Animesh Das
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
| |
Collapse
|
8
|
Raju A, Jothish S, Sakthivel K, Mishra S, Gana RJ, Kikushima K, Dohi T, Singh FV. Recent advances in metal-catalysed oxidation reactions. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241215. [PMID: 39780973 PMCID: PMC11707547 DOI: 10.1098/rsos.241215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 01/11/2025]
Abstract
Oxidation reactions are vital tools in synthetic organic chemistry. Oxidation of organic species such as alcohols, phenols, aldehydes and ketones provides synthetically valuable organic compounds, especially synthetic intermediates for several biologically active compounds. Some of these synthetic intermediates have shown their synthetic utility in the total synthesis of natural products. Several classical and modern synthetic approaches have been used to achieve these oxidation reactions. In this review article, various oxidation reactions achieved by metal catalysis are highlighted.
Collapse
Affiliation(s)
- Aleena Raju
- Department of Chemistry, SAS, Vellore Institute of Technology, Chennai, Tamil Nadu600127, India
| | - Subhiksha Jothish
- Department of Chemistry, SAS, Vellore Institute of Technology, Chennai, Tamil Nadu600127, India
| | - Kokila Sakthivel
- Department of Chemistry, SAS, Vellore Institute of Technology, Chennai, Tamil Nadu600127, India
| | - Shachi Mishra
- P. G. Department of Chemistry, Jai Prakash University, Chapra, Saran, Bihar841302, India
| | - R. J. Gana
- Department of Chemistry, SAS, Vellore Institute of Technology, Chennai, Tamil Nadu600127, India
| | - Kotaro Kikushima
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga525-8577, Japan
| | - Toshifumi Dohi
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga525-8577, Japan
| | - Fateh V. Singh
- Department of Chemistry, SAS, Vellore Institute of Technology, Chennai, Tamil Nadu600127, India
| |
Collapse
|
9
|
Konwar M, Das A. Cyclometalated Ruthenium-Complex-Catalyzed Selective Oxidation of Olefins to Carbonyls. Org Lett 2024; 26:10235-10240. [PMID: 39568370 DOI: 10.1021/acs.orglett.4c03595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Cyclometalated ruthenium(II)-complex-catalyzed selective oxidative scission of olefins to carbonyls is described. A strong C-donor ligand, paired with a rigid backbone and redox activity of ruthenium, provided high catalytic activity and a long lifetime for olefin oxidation. The catalyst tolerates numerous functional groups and applies to challenging biomass-, natural-product-, sugar-, amino-acid-, and fatty-acid-derived substrates.
Collapse
Affiliation(s)
- Monuranjan Konwar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Animesh Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
10
|
Cho E, Kim M, Ouyang L, Kim H, Bonifas G, Coppel Y, Nayral C, Delpech F, Jeong S. Unraveling the Facet-Dependent Surface Chemistry at Molecular Scale: Photoassisted Oxidation of InP Nanocrystals. J Am Chem Soc 2024; 146:31691-31701. [PMID: 39523752 DOI: 10.1021/jacs.4c10231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The facet-dependent surface chemistry of nanocrystals (NCs) provides fundamental insights into chemical reactivities, which are critical for obtaining precise control over the NC surface. In this study, by obtaining InP NCs with well-defined {111} and {110}/{-1-1-1} facets (tetrahedrons and tetrapods, respectively) capped with chloride-oleylamine ligands, the previously underinvestigated facet-dependent surface chemistry of III-V materials is explored. Solid-state and solution NMR analyses show that InP tetrahedrons, with their smaller surface heterogeneity (single facet composition and lesser edge/vertex contribution) and stronger Lewis acidity, exhibit narrow 31P and 115In resonances as well as deshielded 13C signals of α-carbon adjacent to the NH2 group of oleylamine. As a result, InP tetrahedra exhibit strong ligand binding and a notable presence of less-mobile oleylamine ligands on the surface, leading to the blocking of access to external species. This is also consistent with the minimal blue shift of the first excitonic peak in absorption spectra and the strong resistance to photoassisted surface oxidation of InP tetrahedrons. Our findings, supported by solid-state/solution NMR, FT-IR, and XPS analyses, highlight the significance of facet-dependent reactivities to surface ligands and, thus, atmospheric moieties, enhancing the potential of III-V NCs in various optoelectronic applications.
Collapse
Affiliation(s)
- Eunhye Cho
- Department of Energy Science (DOES), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Meeree Kim
- Department of Energy Science (DOES), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Liyan Ouyang
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO), CNRS, INSA, UPS, Université de Toulouse, Toulouse Cedex 4 31077, France
| | - Hyoin Kim
- Department of Energy Science (DOES), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Guillaume Bonifas
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO), CNRS, INSA, UPS, Université de Toulouse, Toulouse Cedex 4 31077, France
| | - Yannick Coppel
- Laboratoire de Chimie de Coordination, CNRS, UPR 8241, Université de Toulouse, Toulouse 31077, France
| | - Céline Nayral
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO), CNRS, INSA, UPS, Université de Toulouse, Toulouse Cedex 4 31077, France
| | - Fabien Delpech
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO), CNRS, INSA, UPS, Université de Toulouse, Toulouse Cedex 4 31077, France
| | - Sohee Jeong
- Department of Energy Science (DOES), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Sungkyunkwan Institute of Energy Science and Technology (SIEST), Suwon 16419, Republic of Korea
| |
Collapse
|
11
|
Schmidt-Räntsch T, Verplancke H, Kehl A, Sun J, Bennati M, Holthausen MC, Schneider S. C=C Dissociative Imination of Styrenes by a Photogenerated Metallonitrene. JACS AU 2024; 4:3421-3426. [PMID: 39328761 PMCID: PMC11423323 DOI: 10.1021/jacsau.4c00571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024]
Abstract
Photolysis of a platinum(II) azide complex in the presence of styrenes enables C=C double bond cleavage upon dissociative olefin imination to aldimido (PtII-N=CHPh) and formimido (PtII-N=CH2) complexes as the main products. Spectroscopic and quantum chemical examinations support a mechanism that commences with the decay of the metallonitrene photoproduct (PtII-N) via bimolecular coupling and nitrogen loss as N2. The resulting platinum(I) complex initiates a radical chain mechanism via a dinuclear radical-bridged species (PtII-CH2CHPhN•-PtII) as a direct precursor to C-C scission. The preference for the PtI mediated route over styrene aziridination is attributed to the distinct nucleophilicity of the triplet metallonitrene.
Collapse
Affiliation(s)
- Till Schmidt-Räntsch
- Institut für Anorganische Chemie and International Center for Advanced Studies of Energy Conversion, Georg-August-Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Hendrik Verplancke
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Annemarie Kehl
- Research Group EPR spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
- Institut für Physikalische Chemie, Tammannstraße 6, 37077 Göttingen, Germany
| | - Jian Sun
- Institut für Anorganische Chemie and International Center for Advanced Studies of Energy Conversion, Georg-August-Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Marina Bennati
- Research Group EPR spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
- Institut für Physikalische Chemie, Tammannstraße 6, 37077 Göttingen, Germany
| | - Max C Holthausen
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Sven Schneider
- Institut für Anorganische Chemie and International Center for Advanced Studies of Energy Conversion, Georg-August-Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| |
Collapse
|
12
|
Huang T, Du P, Cheng X, Lin YM. Manganese Complexes with Consecutive Mn(IV) → Mn(III) Excitation for Versatile Photoredox Catalysis. J Am Chem Soc 2024; 146:24515-24525. [PMID: 39079011 DOI: 10.1021/jacs.4c07084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Manganese complexes stand out as promising candidates for photocatalyst design, attributed to their eco- and biocompatibility, versatile valence states, and capability for facilitating multiple electronic excitations. However, several intrinsic constraints, such as inadequate visible light response and short excited-state lifetimes, hinder effective photoinduced electron transfer and impede photoredox activation of substrates. To overcome this obstacle, we have developed a class of manganese complexes featuring boron-incorporated N-heterocyclic carbene ligands. These complexes enable prolonged excited-state durations encapsulating both Mn(IV) and Mn(III) oxidation stages, with lifetimes reaching microseconds for Mn(IV) and nanoseconds for Mn(III), concurrently exhibiting robust redox capabilities. They efficiently catalyze direct, site-selective cross-couplings between diverse arenes and aryl bromides, at a low catalyst loading of 0.5 mol %. Their proficiency spans an extensive array of substrates including both highly electron-rich and electron-deficient molecules, which underscore the superior performance of these manganese complexes in tackling intricate transformations. Furthermore, the versatility of these complexes is further highlighted by their successful applications in various photochemical transformations, encompassing reductive cross-couplings for the formation of C-P, C-B, C-S and C-Se bonds, alongside oxidative couplings for creating C-N bonds. This study sheds light on the distinctive photoredox properties and the remarkable catalytic flexibility of manganese complexes, highlighting their immense potential to drive progress in photochemical synthesis and green chemistry applications.
Collapse
Affiliation(s)
- Tao Huang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Pangang Du
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiuliang Cheng
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yu-Mei Lin
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
13
|
Hussain WA, Parasram M. Recent Advances in Photoinduced Oxidative Cleavage of Alkenes. SYNTHESIS-STUTTGART 2024; 56:1775-1786. [PMID: 39144683 PMCID: PMC11323056 DOI: 10.1055/s-0042-1751534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Oxidative cleavage of alkenes leading to valuable carbonyl derivatives is a fundamental transformation in synthetic chemistry. In particular, ozonolysis is the mainstream method for the oxidative cleavage of alkenes that has been widely implemented in the synthesis of natural products and pharmaceutically relevant compounds. However, due to the toxicity and explosive nature of ozone, alternative approaches employing transition metals and enzymes in the presence of oxygen and/or strong oxidants have been developed. These protocols are often conducted under harsh reaction conditions that limit the substrate scope. Photochemical approaches can provide milder and more practical alternatives for this synthetically useful transformation. In this review, we outline recent visible-light-promoted oxidative cleavage reactions that involve photocatalytic activation of oxygen via electron transfer and energy transfer. Also, an emerging field featuring visible-light-promoted oxidative cleavage under anaerobic conditions is discussed. The methods highlighted in this review represent a transformative step toward more sustainable and efficient strategies for the oxidative cleavage of alkenes.
Collapse
Affiliation(s)
- Waseem A Hussain
- Department of Chemistry, New York University, 29 Washington Pl, New York, New York 10003, USA
| | - Marvin Parasram
- Department of Chemistry, New York University, 29 Washington Pl, New York, New York 10003, USA
| |
Collapse
|
14
|
Lu L, Wu B, He X, Zhao F, Feng X, Wang D, Qiu Z, Han T, Zhao Z, Tang BZ. Multiple photofluorochromic luminogens via catalyst-free alkene oxidative cleavage photoreaction for dynamic 4D codes encryption. Nat Commun 2024; 15:4647. [PMID: 38821919 PMCID: PMC11143217 DOI: 10.1038/s41467-024-49033-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024] Open
Abstract
Controllable photofluorochromic systems with high contrast and multicolor in both solutions and solid states are ideal candidates for the development of dynamic artificial intelligence. However, it is still challenging to realize multiple photochromism within one single molecule, not to mention good controllability. Herein, we report an aggregation-induced emission luminogen TPE-2MO2NT that undergoes oxidation cleavage upon light irradiation and is accompanied by tunable multicolor emission from orange to blue with time-dependence. The photocleavage mechanism revealed that the self-generation of reactive oxidants driving the catalyst-free oxidative cleavage process. A comprehensive analysis of TPE-2MO2NT and other comparative molecules demonstrates that the TPE-2MO2NT molecular scaffold can be easily modified and extended. Further, the multicolor microenvironmental controllability of TPE-2MO2NT photoreaction within polymer matrices enables the fabrication of dynamic fluorescence images and 4D information codes, providing strategies for advanced controllable information encryption.
Collapse
Affiliation(s)
- Lin Lu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China
| | - Bo Wu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China
| | - Xinyuan He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Fen Zhao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China
| | - Xing Feng
- School of Material and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zijie Qiu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China
| | - Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Zheng Zhao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China.
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.
| |
Collapse
|
15
|
Nie N, Zhao Z, Li X, Liu Y, Zhang Y. A Proline-Based Artificial Enzyme That Favors Aldol Condensation Enables Facile Synthesis of Aliphatic Ketones via Tandem Catalysis. ACS Synth Biol 2024; 13:1100-1104. [PMID: 38587465 DOI: 10.1021/acssynbio.4c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
A proline-based artificial enzyme is prepared by grafting the l-proline moieties onto the surface of bovine serum albumin (BSA) protein through atom transfer radical polymerization (ATRP). The artificial enzyme, the BSA-PolyProline conjugate, prefers to catalyze the formation of unsaturated ketones rather than β-hydroxy ketones in the reaction between acetone and aldehydes, which is difficult to achieve in free-proline catalysis. The altered reaction selectivity is ascribed to the locally concentrated l-proline moieties surrounding the BSA molecule, indicating a microenvironmental effect-induced switching of the reaction mechanism. Taking advantage of this selectivity, we used this artificial enzyme in conjunction with a natural enzyme, old yellow enzyme 1 (OYE1), to demonstrate a simple synthesis of different aliphatic ketones from acetone and aldehydes via tandem catalysis.
Collapse
Affiliation(s)
- Ning Nie
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ziye Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinwei Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yunting Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yifei Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
16
|
Gan XC, Zhang B, Dao N, Bi C, Pokle M, Kan L, Collins MR, Tyrol CC, Bolduc PN, Nicastri M, Kawamata Y, Baran PS, Shenvi R. Carbon quaternization of redox active esters and olefins by decarboxylative coupling. Science 2024; 384:113-118. [PMID: 38574151 PMCID: PMC11452921 DOI: 10.1126/science.adn5619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/28/2024] [Indexed: 04/06/2024]
Abstract
The synthesis of quaternary carbons often requires numerous steps and complex conditions or harsh reagents that act on heavily engineered substrates. This is largely a consequence of conventional polar-bond retrosynthetic disconnections that in turn require multiple functional group interconversions, redox manipulations, and protecting group chemistry. Here, we report a simple catalyst and reductant combination that converts two types of feedstock chemicals, carboxylic acids and olefins, into tetrasubstituted carbons through quaternization of radical intermediates. An iron porphyrin catalyst activates each substrate by electron transfer or hydrogen atom transfer, and then combines the fragments using a bimolecular homolytic substitution (SH2) reaction. This cross-coupling reduces the synthetic burden to procure numerous quaternary carbon---containing products from simple chemical feedstocks.
Collapse
Affiliation(s)
- Xu-cheng Gan
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, United States
| | - Benxiang Zhang
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, United States
| | - Nathan Dao
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, United States
| | - Cheng Bi
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, United States
| | - Maithili Pokle
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, United States
| | - Liyan Kan
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, United States
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Michael R. Collins
- Oncology Medicinal Chemistry Department, Pfizer Pharmaceuticals, 10770 Science Center Drive, CA, 92122, United States
| | - Chet C. Tyrol
- Pfizer Medicine Design, 445 Eastern Point Road, Groton, CT, 06340, United States
| | | | | | - Yu Kawamata
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, United States
| | - Phil S. Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, United States
| | - Ryan Shenvi
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, United States
| |
Collapse
|
17
|
Wei J, Meng J, Zhang C, Liu Y, Jiao N. Dioxygen compatible electron donor-acceptor catalytic system and its enabled aerobic oxygenation. Nat Commun 2024; 15:1886. [PMID: 38424055 PMCID: PMC10904740 DOI: 10.1038/s41467-024-45866-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
The photochemical properties of Electron Donor-Acceptor (EDA) complexes present exciting opportunities for synthetic chemistry. However, these strategies often require an inert atmosphere to maintain high efficiency. Herein, we develop an EDA complex photocatalytic system through rational design, which overcomes the oxygen-sensitive limitation of traditional EDA photocatalytic systems and enables aerobic oxygenation reactions through dioxygen activation. The mild oxidation system transfers electrons from the donor to the effective catalytic acceptor upon visible light irradiation, which are subsequently captured by molecular oxygen to form the superoxide radical ion, as demonstrated by the specific fluorescent probe, dihydroethidine (DHE). Furthermore, this visible-light mediated oxidative EDA protocol is successfully applied in the aerobic oxygenation of boronic acids. We believe that this photochemical dioxygen activation strategy enabled by EDA complex not only provides a practical approach to aerobic oxygenation but also promotes the design and application of EDA photocatalysis under ambient conditions.
Collapse
Affiliation(s)
- Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 100191, Beijing, China
- Changping Laboratory, Yard 28, Science Park Road, Changping District, 102206, Beijing, China
| | - Junhong Meng
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 100191, Beijing, China
| | - Caifang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 100191, Beijing, China
| | - Yameng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 100191, Beijing, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 100191, Beijing, China.
- Changping Laboratory, Yard 28, Science Park Road, Changping District, 102206, Beijing, China.
- State Key Laboratory of Organometallic Chemistry Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
18
|
Rong Z, Ding ZH, Wu YH, Xu XW. Degradation of low-density polyethylene by the bacterium Rhodococcus sp. C-2 isolated from seawater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167993. [PMID: 37866604 DOI: 10.1016/j.scitotenv.2023.167993] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/04/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Low-density polyethylene (LDPE), which accounts for 20% of the global plastic production, is discharged in great quantities into the ocean, threatening marine life and ecosystems. Marine microorganisms have previously been reported to degrade LDPE plastics; however, the exploration of strains and enzymes that degrade LDPE is still limited. Here, an LDPE-degrading bacterium was isolated from seawater of the Changjiang Estuary, China and identified as Rhodococcus sp. C-2, the relative abundance of which was dramatically enhanced during PE-degrading microbial enrichment. The strain C-2 exhibited the degradation of LDPE films, leading to their morphological deterioration, reduced hydrophobicity and tensile strength, weight loss, as well as the formation of oxygen-containing functional groups in short-chain products. Sixteen bacterial enzymes potentially involved in LDPE degradation were screened using genomic, transcriptomic, and degradation product analyses. Thereinto, the glutathione peroxidase GPx with exposed active sites catalyzed the LDPE depolymerization with the cooperation of its dissociated superoxide anion radicals. Furthermore, an LDPE degradation model involving multiple enzymes was proposed. The present study identifies a novel PE-degrading enzyme (PEase) for polyethylene bioremediation and promotes the understanding of LDPE degradation.
Collapse
Affiliation(s)
- Zhen Rong
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
| | - Zhi-Hao Ding
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
| | - Yue-Hong Wu
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China.
| | - Xue-Wei Xu
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China.
| |
Collapse
|
19
|
Xiong J, Yuan X, Zong MH, Wu X, Lou WY. Iron-incorporated metal-organic frameworks for oxidative cleavage of trans-anethole to p-anisaldehyde. NANOSCALE 2023. [PMID: 38051109 DOI: 10.1039/d3nr04795d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
An iron-incorporated Zn-MOF catalyst Zn-bpydc·Fe was fabricated for the oxidative cleavage of trans-anethole to p-anisaldehyde under facile conditions, under 1 atm of O2. The Fe coordinated bipyridine serves as the catalytically active center inside the structural skeleton of Zn-MOFs. This work affords a new avenue for the mild oxidation of olefins.
Collapse
Affiliation(s)
- Jun Xiong
- Lab of Applied Biocatalysis, National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong, China
| | - Xin Yuan
- Lab of Applied Biocatalysis, National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong, China
| | - Min-Hua Zong
- Lab of Applied Biocatalysis, National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong, China
| | - Xiaoling Wu
- Lab of Applied Biocatalysis, National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong, China
| | - Wen-Yong Lou
- Lab of Applied Biocatalysis, National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong, China
| |
Collapse
|
20
|
Liang YF, Bilal M, Tang LY, Wang TZ, Guan YQ, Cheng Z, Zhu M, Wei J, Jiao N. Carbon-Carbon Bond Cleavage for Late-Stage Functionalization. Chem Rev 2023; 123:12313-12370. [PMID: 37942891 DOI: 10.1021/acs.chemrev.3c00219] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Late-stage functionalization (LSF) introduces functional group or structural modification at the final stage of the synthesis of natural products, drugs, and complex compounds. It is anticipated that late-stage functionalization would improve drug discovery's effectiveness and efficiency and hasten the creation of various chemical libraries. Consequently, late-stage functionalization of natural products is a productive technique to produce natural product derivatives, which significantly impacts chemical biology and drug development. Carbon-carbon bonds make up the fundamental framework of organic molecules. Compared with the carbon-carbon bond construction, the carbon-carbon bond activation can directly enable molecular editing (deletion, insertion, or modification of atoms or groups of atoms) and provide a more efficient and accurate synthetic strategy. However, the efficient and selective activation of unstrained carbon-carbon bonds is still one of the most challenging projects in organic synthesis. This review encompasses the strategies employed in recent years for carbon-carbon bond cleavage by explicitly focusing on their applicability in late-stage functionalization. This review expands the current discourse on carbon-carbon bond cleavage in late-stage functionalization reactions by providing a comprehensive overview of the selective cleavage of various types of carbon-carbon bonds. This includes C-C(sp), C-C(sp2), and C-C(sp3) single bonds; carbon-carbon double bonds; and carbon-carbon triple bonds, with a focus on catalysis by transition metals or organocatalysts. Additionally, specific topics, such as ring-opening processes involving carbon-carbon bond cleavage in three-, four-, five-, and six-membered rings, are discussed, and exemplar applications of these techniques are showcased in the context of complex bioactive molecules or drug discovery. This review aims to shed light on recent advancements in the field and propose potential avenues for future research in the realm of late-stage carbon-carbon bond functionalization.
Collapse
Affiliation(s)
- Yu-Feng Liang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Muhammad Bilal
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Le-Yu Tang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Tian-Zhang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yu-Qiu Guan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Minghui Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jialiang Wei
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
21
|
Grotemeyer EN, Parham JD, Jackson TA. Reaction landscape of a mononuclear Mn III-hydroxo complex with hydrogen peroxide. Dalton Trans 2023; 52:14350-14370. [PMID: 37767937 DOI: 10.1039/d3dt02672h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Peroxomanganese species have been proposed as key intermediates in the catalytic cycles of both manganese enzymes and synthetic catalysts. However, many of these intermediates have yet to be observed. Here, we report the formation of a series of intermediates, each generated from the reaction of the mononuclear MnIII-hydroxo complex [MnIII(OH)(dpaq2Me)]+ with hydrogen peroxide under slightly different conditions. By changing the acidity of the reaction mixture and/or the quantity of hydrogen peroxide added, we are able to control which intermediate forms. Using a combination of electronic absorption, 1H NMR, EPR, and X-ray absorption spectroscopies, as well as density functional theory (DFT) and complete active space self-consistent field (CASSCF) calculations, we formulate these intermediates as the bis(μ-oxo)dimanganese(III,IV) complex [MnIIIMnIV(μ-O)2(dpaq2Me)2]+, the MnIII-hydroperoxo complex [MnIII(OOH)(dpaq2Me)]+, and the MnIII-peroxo complex [MnIII(O2)(dpaq2Me)]. The formation of the MnIII-hydroperoxo species from the reaction of a MnIII-hydroxo complex with hydrogen peroxide mimics an elementary reaction proposed for many synthetic manganese catalysts that activate hydrogen peroxide.
Collapse
Affiliation(s)
- Elizabeth N Grotemeyer
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, KS 66045, USA.
| | - Joshua D Parham
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, KS 66045, USA.
| | - Timothy A Jackson
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, KS 66045, USA.
| |
Collapse
|
22
|
Das A, Mohit, Thomas KRJ. Donor-Acceptor Covalent Organic Frameworks as a Heterogeneous Photoredox Catalyst for Scissoring Alkenes to Carbonyl Constituents. J Org Chem 2023; 88:14065-14077. [PMID: 37695568 DOI: 10.1021/acs.joc.3c01594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The conversion of alkenes to carbonyl constituents via the cleavage of the C═C bond is unique due to its biological and pharmacological significance. Though a number of oxidative C═C cleavage protocols have been demonstrated for terminal and electron-rich alkene systems, none of them were optimized for electron-deficient and conjugated alkenes. In this work, a covalent organic framework containing triphenylamine and triazine units was revealed to cleave the C═C bond of alkenes under very mild conditions involving visible light irradiation due to its photoredox property. The alkenes can be conveniently broken across the double bond to their constituent carbonyl derivatives on light irradiation in the presence of air and the covalent organic framework photocatalyst. This protocol is applicable for a wide range of alkenes in an aqueous acetonitrile medium with high functional group tolerance and regioselectivity. Though the electron-deficient alkenes required tetramethylethylene diamine as a sacrificial donor, the electron-rich alkenes do not demand any additives.
Collapse
Affiliation(s)
- Anupam Das
- Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Mohit
- Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - K R Justin Thomas
- Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
23
|
Niu H, Lv H, Mao L, Cai Y, Zhao X, Wu F. Highly efficient and continuous activation of O 2 by a novel Fe xP-FeCu composite for water purification and insights into the activation mechanisms through DFT calculation. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132267. [PMID: 37586243 DOI: 10.1016/j.jhazmat.2023.132267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Degradation of organic pollutants through O2 activation catalyzed by transitional metals is challenging without addition of external chemicals and input of energy. We prepare a novel Fe based catalyst by compositing carbon, iron phosphide (FexP), iron carbide (FexC), Fe0 and Cu NPs, which can continuously activate O2 to produce high amount of 1O2,·O2- and·OH radicals in a wide pH range. DFT calculation discloses that O2 molecules are dissociated into *O or exist as O-O in various configurations. The Fe-O2, Cu-O2 and FeP-O2 surfaces can react with H2O molecules to generate *OOH, *OH and/or OH-. The sorbed-O2 intermediates on FexC surface might be released as 1O2 or·O2-. The oxidative O2-sorbed surfaces and in-situ produced oxygen reactive species contribute to the efficient and pH-indenpendent degradation of organic pollutants. Cu NPs accelerate Fe2+/Fe3+ cycles and offer impetus to initiate O2 activation due to the potential difference between Fe and Cu. The recycling test and XPS results confirm that the mutual electron transferring among carbon, FexC, FexP, Fe and Cu maintains reactivity and stability of the catalysts.
Collapse
Affiliation(s)
- Hongyun Niu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hongzhou Lv
- Institute of Resources and Environment Engineering, Shanxi University, Taiyuan, Shanxi Province 030006, China
| | - Li Mao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang Province 310013, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
24
|
Li X, Hua H, Liu Y, Yu L. Iron-Promoted Catalytic Activity of Selenium Endowing the Aerobic Oxidative Cracking Reaction of Alkenes. Org Lett 2023; 25:6720-6724. [PMID: 37675997 DOI: 10.1021/acs.orglett.3c02569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Oxidative cracking of alkenes is a significant process in industry. In this work, it was found that catalyzed by Se/Fe via hybrid mechanisms, the carbon-carbon double bond in alkenes can break to produce carbonyls under mild conditions. Since O2 can be used as a partial oxidant, the employed H2O2 amount can be reduced (90 mol % vs 250 mol %) to avoid the peroxide residues, making the process even safer for operation.
Collapse
Affiliation(s)
- Xiaoxue Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Hangzhou Hua
- Fujian Deer Technology Corp, Longyan, Fujian 364204, China
| | - Yonghong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Lei Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| |
Collapse
|
25
|
Nifant’ev IE, Korchagina SA, Chinova MS, Tavtorkin AN. Polyisobutylenes with Controlled Molecular Weight and Chain-End Structure: Synthesis and Actual Applications. Polymers (Basel) 2023; 15:3415. [PMID: 37631472 PMCID: PMC10460079 DOI: 10.3390/polym15163415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The polymerization of isobutylene allows us to obtain a wide spectrum of polyisobutylenes (PIBs) which differ in their molecular weight characteristics and the chemical structure of chain-end groups. The bulk of the PIBs manufactured worldwide are highly reactive polyisobutylenes (HRPIBs) with -C(Me)=CH2 end-groups and low-molecular weights (Mn < 5 kDa). HRPIBs are feedstocks that are in high demand in the manufacturing of additives for fuels and oils, adhesives, detergents, and other fine chemicals. In addition, HRPIBs and CMe2Cl-terminated PIBs are intensively studied with the aim of finding biomedical applications and for the purpose of developing new materials. Both chain control (molecular weight and dispersity) and chemoselectivity (formation of exo-olefinic or -CMe2Cl groups) should be achieved during polymerization. This review highlights the fundamental issues in the mechanisms of isobutylene polymerization and PIB analysis, examines actual catalytic approaches to PIBs, and describes recent studies on the functionalization and applications of HRPIBs and halogen-terminated PIBs.
Collapse
Affiliation(s)
- Ilya E. Nifant’ev
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Pr., 119991 Moscow, Russia; (S.A.K.); (M.S.C.); (A.N.T.)
| | | | | | | |
Collapse
|
26
|
Quareshy M, Shanmugam M, Cameron AD, Bugg TDH, Chen Y. Characterisation of an unusual cysteine pair in the Rieske carnitine monooxygenase CntA catalytic site. FEBS J 2023; 290:2939-2953. [PMID: 36617384 PMCID: PMC10952381 DOI: 10.1111/febs.16722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/01/2022] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Rieske monooxygenases undertake complex catalysis integral to marine, terrestrial and human gut-ecosystems. Group-I to -IV Rieske monooxygenases accept aromatic substrates and have well-characterised catalytic mechanisms. Nascent to our understanding are Group-V members catalysing the oxidation/breakdown of quaternary ammonium substrates. Phylogenetic analysis of Group V highlights a cysteine residue-pair adjacent to the mononuclear Fe active site with no established role. Following our elucidation of the carnitine monooxygenase CntA structure, we probed the function of the cysteine pair Cys206/Cys209. Utilising biochemical and biophysical techniques, we found the cysteine residues do not play a structural role nor influence the electron transfer pathway, but rather are used in a nonstoichiometric role to ensure the catalytic iron centre remains in an Fe(II) state.
Collapse
Affiliation(s)
| | | | | | | | - Yin Chen
- School of Life SciencesUniversity of WarwickCoventryUK
| |
Collapse
|
27
|
Cortezon-Tamarit F, Song K, Kuganathan N, Arrowsmith RL, Mota Merelo de Aguiar SR, Waghorn PA, Brookfield A, Shanmugam M, Collison D, Ge H, Kociok-Köhn G, Pourzand C, Dilworth JR, Pascu SI. Structural and Functional Diversity in Rigid Thiosemicarbazones with Extended Aromatic Frameworks: Microwave-Assisted Synthesis and Structural Investigations. ACS OMEGA 2023; 8:16047-16079. [PMID: 37179648 PMCID: PMC10173449 DOI: 10.1021/acsomega.2c08157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/10/2023] [Indexed: 05/15/2023]
Abstract
The long-standing interest in thiosemicarbazones (TSCs) has been largely driven by their potential toward theranostic applications including cellular imaging assays and multimodality imaging. We focus herein on the results of our new investigations into: (a) the structural chemistry of a family of rigid mono(thiosemicarbazone) ligands characterized by extended and aromatic backbones and (b) the formation of their corresponding thiosemicarbazonato Zn(II) and Cu(II) metal complexes. The synthesis of new ligands and their Zn(II) complexes was performed using a rapid, efficient and straightforward microwave-assisted method which superseded their preparation by conventional heating. We describe hereby new microwave irradiation protocols that are suitable for both imine bond formation reactions in the thiosemicabazone ligand synthesis and for Zn(II) metalation reactions. The new thiosemicarbazone ligands, denoted HL, mono(4-R-3-thiosemicarbazone)quinone, and their corresponding Zn(II) complexes, denoted ZnL2, mono(4-R-3-thiosemicarbazone)quinone, where R = H, Me, Ethyl, Allyl, and Phenyl, quinone = acenapthnenequinone (AN), aceanthrenequinone (AA), phenanthrenequinone (PH), and pyrene-4,5-dione (PY) were isolated and fully characterized spectroscopically and by mass spectrometry. A plethora of single crystal X-ray diffraction structures were obtained and analyzed and the geometries were also validated by DFT calculations. The Zn(II) complexes presented either distorted octahedral geometry or tetrahedral arrangements of the O/N/S donors around the metal center. The modification of the thiosemicarbazide moiety at the exocyclic N atoms with a range of organic linkers was also explored, opening the way to bioconjugation protocols for these compounds. The radiolabeling of these thiosemicarbazones with 64Cu was achieved under mild conditions for the first time: this cyclotron-available radioisotope of copper (t1/2 = 12.7 h; β+ 17.8%; β- 38.4%) is well-known for its proficiency in positron emission tomography (PET) imaging and for its theranostic potential, on the basis of the preclinical and clinical cancer research of established bis(thiosemicarbazones), such as the hypoxia tracer 64Cu-labeled copper(diacetyl-bis(N4-methylthiosemicarbazone)], [64Cu]Cu(ATSM). Our labeling reactions proceeded in high radiochemical incorporation (>80% for the most sterically unencumbered ligands) showing promise of these species as building blocks for theranostics and synthetic scaffolds for multimodality imaging probes. The corresponding "cold" Cu(II) metalations were also performed under the mild conditions mimicking the radiolabeling protocols. Interestingly, room temperature or mild heating led to Cu(II) incorporation in the 1:1, as well as 1:2 metal: ligand ratios in the new complexes, as evident from extensive mass spectrometry investigations backed by EPR measurements, and the formation of Cu(L)2-type species prevails, especially for the AN-Ph thiosemicarbazone ligand (L-). The cytotoxicity levels of a selection of ligands and Zn(II) complexes in this class were further tested in commonly used human cancer cell lines (HeLa, human cervical cancer cells, and PC-3, human prostate cancer cells). Tests showed that their IC50 levels are comparable to that of the clinical drug cis-platin, evaluated under similar conditions. The cellular internalizations of the selected ZnL2-type compounds Zn(AN-Allyl)2, Zn(AA-Allyl)2, Zn(PH-Allyl)2, and Zn(PY-Allyl)2 were evaluated in living PC-3 cells using laser confocal fluorescent spectroscopy and these experiments showed exclusively cytoplasmic distributions.
Collapse
Affiliation(s)
| | - Kexin Song
- Department
of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United
Kingdom
| | - Navaratnarajah Kuganathan
- Department
of Materials, Imperial College London, Royal School of Mines, Exhibition
Road, London SW7 2AZ, U.K.
| | - Rory L. Arrowsmith
- Department
of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United
Kingdom
| | | | - Philip A. Waghorn
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Adam Brookfield
- Department
of Chemistry, and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Muralidharan Shanmugam
- Department
of Chemistry, and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - David Collison
- Department
of Chemistry, and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Haobo Ge
- Department
of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United
Kingdom
- Department
of Life Sciences, University of Bath, Bath BA2 7AY, U.K.
| | - Gabriele Kociok-Köhn
- Department
of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United
Kingdom
| | - Charareh Pourzand
- Department
of Life Sciences, University of Bath, Bath BA2 7AY, U.K.
- Centre of
Therapeutic Innovation, University of Bath, Bath BA2 7AY, U.K.
| | - Jonathan Robin Dilworth
- Department
of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United
Kingdom
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Sofia Ioana Pascu
- Department
of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United
Kingdom
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom
- Centre of
Therapeutic Innovation, University of Bath, Bath BA2 7AY, U.K.
| |
Collapse
|
28
|
Korpusik AB, Adili A, Bhatt K, Anatot JE, Seidel D, Sumerlin BS. Degradation of Polyacrylates by One-Pot Sequential Dehydrodecarboxylation and Ozonolysis. J Am Chem Soc 2023; 145:10480-10485. [PMID: 37155970 DOI: 10.1021/jacs.3c02497] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We establish a synthetically convenient method to degrade polyacrylate homopolymers. Carboxylic acids are installed along the polymer backbone by partial hydrolysis of the ester side chains, and then, in a one-pot sequential procedure, the carboxylic acids are converted into alkenes and oxidatively cleaved. This process enables the robustness and properties of polyacrylates to be maintained during their usable lifetime. The ability to tune the degree of degradation was demonstrated by varying the carboxylic acid content of the polymers. This method is compatible with a wide range of polymers prepared from vinyl monomers through copolymerization of acrylic acid with different monomers including acrylates, acrylamides, and styrenics.
Collapse
Affiliation(s)
- Angie B Korpusik
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Alafate Adili
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Kamal Bhatt
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Jacqueline E Anatot
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Daniel Seidel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Brent S Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
29
|
Westermann LM, Lidbury ID, Li CY, Wang N, Murphy AR, Aguilo Ferretjans MDM, Quareshy M, Shanmugan M, Torcello-Requena A, Silvano E, Zhang YZ, Blindauer CA, Chen Y, Scanlan DJ. Bacterial catabolism of membrane phospholipids links marine biogeochemical cycles. SCIENCE ADVANCES 2023; 9:eadf5122. [PMID: 37126561 PMCID: PMC10132767 DOI: 10.1126/sciadv.adf5122] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
In marine systems, the availability of inorganic phosphate can limit primary production leading to bacterial and phytoplankton utilization of the plethora of organic forms available. Among these are phospholipids that form the lipid bilayer of all cells as well as released extracellular vesicles. However, information on phospholipid degradation is almost nonexistent despite their relevance for biogeochemical cycling. Here, we identify complete catabolic pathways for the degradation of the common phospholipid headgroups phosphocholine (PC) and phosphorylethanolamine (PE) in marine bacteria. Using Phaeobacter sp. MED193 as a model, we provide genetic and biochemical evidence that extracellular hydrolysis of phospholipids liberates the nitrogen-containing substrates ethanolamine and choline. Transporters for ethanolamine (EtoX) and choline (BetT) are ubiquitous and highly expressed in the global ocean throughout the water column, highlighting the importance of phospholipid and especially PE catabolism in situ. Thus, catabolic activation of the ethanolamine and choline degradation pathways, subsequent to phospholipid metabolism, specifically links, and hence unites, the phosphorus, nitrogen, and carbon cycles.
Collapse
Affiliation(s)
- Linda M. Westermann
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Ian D. E. A. Lidbury
- Molecular Microbiology: Biochemistry to Disease, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Chun-Yang Li
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Ning Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Andrew R. J. Murphy
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | | | - Mussa Quareshy
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Muralidharan Shanmugan
- Department of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | | | - Eleonora Silvano
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Yu-Zhong Zhang
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | | | - Yin Chen
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - David J. Scanlan
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| |
Collapse
|
30
|
Swaminathan S, Bera JK, Chandra M. Simultaneous Harvesting of Multiple Hot Holes via Visible-Light Excitation of Plasmonic Gold Nanospheres for Selective Oxidative Bond Scission of Olefins to Carbonyls. Angew Chem Int Ed Engl 2023; 62:e202215933. [PMID: 36524790 DOI: 10.1002/anie.202215933] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Using visible photoexcitation of gold nanospheres we successfully demonstrate the simultaneous harvesting of plasmon-induced multiple hot holes in the complete oxidative scission of the C=C bond in styrene at room temperature to selectively form benzaldehyde and formaldehyde, which is a reaction that requires activation of multiple substrates. Our results reveal that, while extraction of hot holes becomes efficient for interband excitation, harvesting of multiple hot holes from the excited Au nanospheres becomes prevalent only beyond a threshold light intensity. We show that the alkene oxidation proceeded via a sequence of two consecutive elementary steps; namely, a binding step and a cyclic oxometallate transition state as the rate-determining step. This demonstration of plasmon-excitation-mediated harvesting of multiple hot holes without the use of an extra hole transport media opens exciting possibilities, notably for difficult catalytic transformations involving multielectron oxidation processes.
Collapse
Affiliation(s)
- Swathi Swaminathan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India
| | - Jitendra K Bera
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India
| | - Manabendra Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India
| |
Collapse
|
31
|
Hu H, Li Y, Li Y, Sun Y, Li Y. Carbamoyl Manganese Complexes for Epoxidation of Alkenes and Cycloaddition of Epoxides to Carbon Dioxide. J Catal 2023. [DOI: 10.1016/j.jcat.2023.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
32
|
Sukiennik J, Pranowo A, Domański S, Hurej K. Manganese(III) porphyrin-catalyzed regioselective dual functionalization of C(sp 3)-H bonds: the transformation of arylalkanes to 1,4-diketones. Chem Commun (Camb) 2023; 59:1149-1152. [PMID: 36594254 DOI: 10.1039/d2cc06126k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The first, direct way from arylalkanes to 1,4-dicarbonyl compounds has been shown. It makes obtaining these useful products more accessible and cheaper. Our method is based on a one-pot reaction with excellent regioselectivity, mild conditions, and water as the main solvent. A plausible reaction mechanism has also been proposed.
Collapse
Affiliation(s)
- Jakub Sukiennik
- Department of Chemistry, University of Wroclaw, F. Joliot-Curie 14, Wrocław 50383, Poland.
| | - Audrey Pranowo
- Department of Chemistry, University of Wroclaw, F. Joliot-Curie 14, Wrocław 50383, Poland.
| | | | - Karolina Hurej
- Department of Chemistry, University of Wroclaw, F. Joliot-Curie 14, Wrocław 50383, Poland.
| |
Collapse
|
33
|
Shih YL, Wu YK, Hyodo M, Ryu I. Photocatalytic Oxidative Cleavage of Alkenes by Molecular Oxygen: Reaction Scope, Mechanistic Insights, and Flow Application. J Org Chem 2022; 88:6548-6552. [DOI: 10.1021/acs.joc.2c02429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yi-Lun Shih
- Department of Applied Chemistry, National Yang Ming Chiao Tung University (NYCU), Hsinchu 30010, Taiwan
| | - Yen-Ku Wu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University (NYCU), Hsinchu 30010, Taiwan
| | - Mamoru Hyodo
- Institution for Research Promotion, Osaka Metropolitan University (OMU), Sakai, Osaka 599-8531, Japan
| | - Ilhyong Ryu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University (NYCU), Hsinchu 30010, Taiwan
- Institution for Research Promotion, Osaka Metropolitan University (OMU), Sakai, Osaka 599-8531, Japan
| |
Collapse
|
34
|
Liao G, Mei F, Chen Z, Yin G. Lewis acid improved dioxygen activation by a non-heme iron(II) complex towards tryptophan 2,3-dioxygenase activity for olefin oxygenation. Dalton Trans 2022; 51:18024-18032. [PMID: 36373374 DOI: 10.1039/d2dt02769k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dioxygen activation and catalysis around ambient temperature is a long-standing challenge in chemistry. Inspired by the significant roles of the hydrogen bond network in dioxygen activation and catalysis by redox enzymes, this work presents a Lewis acid improved dioxygen activation by an FeII(BPMEN)(OTf)2 complex towards tryptophan 2,3-dioxygenase (TDO) activity for 3-methylindole and common olefinic CC bond oxygenation and cleavage (enzymatic Brønsted acid vs. chemical Lewis acid). It was found that the presence of a Lewis acid such as Sc3+ could substantially improve olefinic CC bond oxygenation and cleavage activity through FeII(BPMEN)(OTf)2 catalyzed dioxygen activation. Notably, a more negative ρ value in the Hammett plot of para-substituted styrene oxygenations was observed in the presence of a stronger Lewis acid, disclosing the enhanced electrophilic oxygenation capability of the putative iron(III) superoxo species through its electrostatic interaction with a stronger Lewis acid. Thereof, this work has demonstrated a new strategy in catalyst design for dioxygen activation and catalysis for olefin oxygenation, a significant process in the chemical industry.
Collapse
Affiliation(s)
- Guangjian Liao
- School of Chemistry and Chemical Engineering, Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Fuming Mei
- School of Chemistry and Chemical Engineering, Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Zhuqi Chen
- School of Chemistry and Chemical Engineering, Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Guochuan Yin
- School of Chemistry and Chemical Engineering, Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
35
|
Patra K, Bhattacherya A, Li C, Bera JK, Soo HS. Understanding the Visible-Light-Initiated Manganese-Catalyzed Synthesis of Quinolines and Naphthyridines under Ambient and Aerobic Conditions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kamaless Patra
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 21 Nanyang Link, Singapore 637371, Singapore
- Department of Chemistry and Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Arindom Bhattacherya
- Department of Chemistry and Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Chenfei Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 21 Nanyang Link, Singapore 637371, Singapore
| | - Jitendra K. Bera
- Department of Chemistry and Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Han Sen Soo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
36
|
Jia R, Wang J, Jiang Y, Ni B, Niu T. Photocatalyzed oxidative cleavage of CC bond to carbonyl compounds by a recyclable homogeneous carbon nitride semiconductor/aqueous system. Org Biomol Chem 2022; 20:8305-8312. [PMID: 36239157 DOI: 10.1039/d2ob01640k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The development of methods based on direct oxidative cleavage of alkynes to carbonyls is an extremely challenging task. In this work, we describe a UV light-driven, potassium/sodium poly(heptazine imide) (K,Na-PHI)-catalyzed protocol for the selective oxidative cleavage of alkynes to acids under an O2 atmosphere using water as a solvent. Various aromatic alkynes can be selectively cleaved to afford aromatic acids in good to high yield under clean, mild conditions. Mechanistic investigation indicates that the photogenerated hydroxyl radicals in situ act as green oxidation active species. Moreover, this protocol could be further developed as a sequential oxidative cleavage/esterification process for the preparation of aryl esters. Notably, the KNaPHI-II/water catalyst system could be used several times without significant loss of activity.
Collapse
Affiliation(s)
- Rui Jia
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Jingjing Wang
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Yuqin Jiang
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Bangqing Ni
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Tengfei Niu
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
37
|
Liu T, Xue F, Wang B, Wang R, Cao W, Zhao X, Xia Y, Jin W, Zhang Y, Lin H, Liu C. Rapid microwave synthesis of Bi2WO6 for C=C bonds oxidative cleavage to ketones with visible light irradiation in aerobic micellar medium. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Griffiths O, Ley SV. Multicomponent Direct Assembly of N-Heterospirocycles Facilitated by Visible-Light-Driven Photocatalysis. J Org Chem 2022; 87:13204-13223. [PMID: 36103403 PMCID: PMC9552240 DOI: 10.1021/acs.joc.2c01684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Indexed: 11/29/2022]
Abstract
N-heterospirocycles are interesting structural units found in both natural products and medicinal compounds but have relatively few reliable methods for their synthesis. Here, we enlist the photocatalytic generation of N-centered radicals to construct β-spirocyclic pyrrolidines from N-allylsulfonamides and alkenes. A variety of β-spirocyclic pyrrolidines have been constructed, including drug derivatives, in moderate to very good yields. Further derivatization of the products has also been demonstrated as has a viable scale-up procedure, making use of flow chemistry techniques.
Collapse
Affiliation(s)
- Oliver
M. Griffiths
- Yusuf Hamied Department
of
Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Steven V. Ley
- Yusuf Hamied Department
of
Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| |
Collapse
|
39
|
Liu T, Xue F, Chen Z, Cheng Z, Cao W, Wang B, Jin W, Xia Y, Zhang Y, Liu C. Bi4O5Br2 catalyzed selective oxidative of C=C double bonds to ketones with molecular oxygen under visible-light irradiation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
40
|
Visible Light‐Promoted Fluorescein/Ni‐Catalyzed Synthesis of Bis‐(β‐Dicarbonyls) using Olefins as a Methylene Bridge Synthon. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Photoexcited Nitroarenes for the Oxidative Cleavage of Alkenes. Nature 2022; 610:81-86. [PMID: 35998666 DOI: 10.1038/s41586-022-05211-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/09/2022] [Indexed: 11/09/2022]
Abstract
The oxidative cleavage of alkenes is an integral process that converts feedstock materials into high-value synthetic intermediates1,2,3. The most viable method to achieve this in one chemical step is with ozone4,5,6,7, which however poses technical and safety challenges owing to the explosive nature of ozonolysis products8,9. Herein, we disclose an alternative approach to achieve oxidative cleavage of alkenes using nitroarenes and purple light irradiation. We demonstrate that photoexcited nitroarenes are effective ozone surrogates that undergo facile radical [3+2] cycloaddition with alkenes. The resulting "N-doped" ozonides are safe to handle and lead to the corresponding carbonyl products under mild hydrolytic conditions. These features have enabled the controlled cleavage of all types of alkenes in the presence of a broad array of commonly used organic functionalities. Furthermore, by harnessing electronic, steric, and mediated polar effects, the structural and functional diversity of nitroarenes has provided a modular platform to obtain site-selectivity in substrates containing more than one alkene.
Collapse
|
42
|
Wise DE, Gogarnoiu ES, Duke AD, Paolillo JM, Vacala TL, Hussain WA, Parasram M. Photoinduced Oxygen Transfer Using Nitroarenes for the Anaerobic Cleavage of Alkenes. J Am Chem Soc 2022; 144:15437-15442. [PMID: 35930615 DOI: 10.1021/jacs.2c05648] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein we report the anaerobic cleavage of alkenes into carbonyl compounds using nitroarenes as oxygen transfer reagents under visible light. This approach serves as a safe and practical alternative to mainstream oxidative cleavage protocols, such as ozonolysis and the Lemieux-Johnson reaction. A wide range of alkenes possessing oxidatively sensitive functionalities underwent anaerobic cleavage to generate carbonyl derivatives with high efficiency and regioselectivity. Mechanistic studies support that the transformation occurs via direct photoexcitation of the nitroarene followed by a nonstereospecific radical cycloaddition event with alkenes. This leads to 1,3,2- and 1,4,2-dioxazolidine intermediates that fragment to give the carbonyl products. A combination of radical clock experiments and in situ photoNMR spectroscopy revealed the identities of the key radical species and the putative aryl dioxazolidine intermediates, respectively.
Collapse
Affiliation(s)
- Dan E Wise
- Department of Chemistry, New York University, 24 Waverly Place, third floor, New York, New York 10003, United States
| | - Emma S Gogarnoiu
- Department of Chemistry, New York University, 24 Waverly Place, third floor, New York, New York 10003, United States
| | - Alana D Duke
- Department of Chemistry, New York University, 24 Waverly Place, third floor, New York, New York 10003, United States
| | - Joshua M Paolillo
- Department of Chemistry, New York University, 24 Waverly Place, third floor, New York, New York 10003, United States
| | - Taylor L Vacala
- Department of Chemistry, New York University, 24 Waverly Place, third floor, New York, New York 10003, United States
| | - Waseem A Hussain
- Department of Chemistry, New York University, 24 Waverly Place, third floor, New York, New York 10003, United States
| | - Marvin Parasram
- Department of Chemistry, New York University, 24 Waverly Place, third floor, New York, New York 10003, United States
| |
Collapse
|
43
|
Zhou J, Jia M, Song M, Huang Z, Steiner A, An Q, Ma J, Guo Z, Zhang Q, Sun H, Robertson C, Bacsa J, Xiao J, Li C. Chemoselective Oxyfunctionalization of Functionalized Benzylic Compounds with a Manganese Catalyst. Angew Chem Int Ed Engl 2022; 61:e202205983. [PMID: 35594169 PMCID: PMC9400980 DOI: 10.1002/anie.202205983] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Indexed: 11/06/2022]
Abstract
Whilst allowing for easy access to synthetically versatile motifs and for modification of bioactive molecules, the chemoselective benzylic oxidation reactions of functionalized alkyl arenes remain challenging. Reported in this study is a new non-heme Mn catalyst stabilized by a bipiperidine-based tetradentate ligand, which enables methylene oxidation of benzylic compounds by H2 O2 , showing high activity and excellent chemoselectivity under mild conditions. The protocol tolerates an unprecedentedly wide range of functional groups, including carboxylic acid and derivatives, ketone, cyano, azide, acetate, sulfonate, alkyne, amino acid, and amine units, thus providing a low-cost, more sustainable and robust pathway for the facile synthesis of ketones, increase of complexity of organic molecules, and late-stage modification of drugs.
Collapse
Affiliation(s)
- Jimei Zhou
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of Education and School of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| | - Minxian Jia
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of Education and School of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| | - Menghui Song
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of Education and School of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| | - Zhiliang Huang
- Department of ChemistryUniversity of LiverpoolLiverpoolL69 7ZDUK
| | | | - Qidong An
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of Education and School of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| | - Jianwei Ma
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of Education and School of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| | - Zhiyin Guo
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of Education and School of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| | - Qianqian Zhang
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of Education and School of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| | - Huaming Sun
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of Education and School of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| | - Craig Robertson
- Department of ChemistryUniversity of LiverpoolLiverpoolL69 7ZDUK
| | - John Bacsa
- Department of ChemistryEmory University1515 Dickey Dr.AtlantaGA 30322USA
| | - Jianliang Xiao
- Department of ChemistryUniversity of LiverpoolLiverpoolL69 7ZDUK
| | - Chaoqun Li
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of Education and School of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| |
Collapse
|
44
|
Zhuang W, Zhang J, Ma C, Wright JS, Zhang X, Ni SF, Huang Q. Scalable Electrochemical Aerobic Oxygenation of Indoles to Isatins without Electron Transfer Mediators by Merging with an Oxygen Reduction Reaction. Org Lett 2022; 24:4229-4233. [PMID: 35678516 DOI: 10.1021/acs.orglett.2c01545] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An approach to electrochemical oxygenation of indoles leading to isatins was developed by merging with a complementary cathode oxygen reduction reaction. The features of this green protocol include the use of molecular oxygen as the sole oxidant, it being free of an electron transfer mediator, and gram-scale preparation. Mechanistic studies suggested a radical process, and the two oxygen atoms in the isatins were both most likely from molecular oxygen. A detailed mechanism of the reaction utilizing density functional theory calculations was elucidated.
Collapse
Affiliation(s)
- Weihui Zhuang
- Fujian Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Jiaqi Zhang
- Fujian Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Cheng Ma
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - James S Wright
- Department of Chemistry, University of Surrey, Guildford GU2 7XH, Surrey, U.K
| | - Xiaofeng Zhang
- Fujian Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Shao-Fei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Qiufeng Huang
- Fujian Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| |
Collapse
|
45
|
Chen YX, He JT, Wu MC, Liu ZL, Tang K, Xia PJ, Chen K, Xiang HY, Chen XQ, Yang H. Photochemical Organocatalytic Aerobic Cleavage of C═C Bonds Enabled by Charge-Transfer Complex Formation. Org Lett 2022; 24:3920-3925. [PMID: 35613702 DOI: 10.1021/acs.orglett.2c01192] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A novel visible-light-driven organocatalytic protocol to access aerobic oxidative cleavage of olefins, promoted by sodium benzene sulfinate, is described herein. An array of alkenes smoothly delivered the corresponding aldehydes and ketones under transition-metal-free conditions. Notably, α-halo-substituted styrenes proceeded with photoinduced oxidation to finally afford α-halo-acetophenones with halogen migration. Crucial to this oxidation was the formation of charge-transfer complexes between sodium benzene sulfinate with molecular O2 to ultimately deliver the carbonyl products.
Collapse
Affiliation(s)
- Yi-Xuan Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Jun-Tao He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Mei-Chun Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China.,College of Chemistry and Chemical Engineering, Huaihua University, Huaihua 418008, Hunan, P.R. China
| | - Zhi-Lin Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Kai Tang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Peng-Ju Xia
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P.R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, P.R. China
| | - Xiao-Qing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| |
Collapse
|
46
|
Zhou J, Jia M, Song M, Huang Z, Steiner A, An Q, Ma J, Guo Z, Zhang Q, Sun H, Robertson CM, Bacsa J, Xiao J, Li C. Chemoselective Oxyfunctionalization of Functionalized Benzylic Compounds with a Manganese Catalyst. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jimei Zhou
- Shaanxi Normal University School of Chemistry & Chemical Engineering Xi'an CHINA
| | - Minxian Jia
- Shaanxi Normal University School of Chemistry & Chemical Engineering Xi'an UNITED KINGDOM
| | - Menghui Song
- Shaanxi Normal University School of Chemistry & Chemical Engineering Xi'an UNITED KINGDOM
| | - Zhiliang Huang
- University of Liverpool Department of Chemistry UNITED KINGDOM
| | | | - Qidong An
- Shaanxi Normal University School of Chemistry & Chemical Engineering Xi'an UNITED KINGDOM
| | - Jianwei Ma
- Shaanxi Normal University School of Chemistry & Chemical Engineering Xi'an UNITED KINGDOM
| | - Zhiyin Guo
- Shaanxi Normal University School of Chemistry & Chemical Engineering Xi'an UNITED KINGDOM
| | - Qianqian Zhang
- Shaanxi Normal University School of Chemistry & Chemical Engineering Xi'an UNITED KINGDOM
| | - Huaming Sun
- Shaanxi Normal University School of Chemistry & Chemical Engineering Xi'an UNITED KINGDOM
| | | | - John Bacsa
- Emory University Department of Chemistry UNITED KINGDOM
| | - Jianliang Xiao
- University of Liverpool Department of Chemistry Oxford Street L69 7ZD Liverpool UNITED KINGDOM
| | - Chaoqun Li
- Shaanxi Normal University School of Chemistry & Chemical Engineering Xi'an CHINA
| |
Collapse
|
47
|
Belay Y, Muller A, Williams DBG. Lanthanum-1,2,3-Triazole-Based 2D Coordination Polymer is an Efficient Catalyst for the Oxidation of Olefins. Inorg Chem 2022; 61:8226-8232. [PMID: 35579618 DOI: 10.1021/acs.inorgchem.2c00648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new two-dimensional (2D) coordination polymer (CP) [La(C18H14N3O6)2(H2O)(OH)]n has been prepared from a 1,2,3-triazole linker and lanthanum nitrate hexahydrate in DMF. The La-CP was characterized by single-crystal X-ray crystallography, highlighting the binding motif at La ions and the fact that the material contains channels with entrapped solvent. The CP showed good catalytic activity for the oxidation of a wide variety of olefins (linear, cyclic, aromatic, and functionalized alkenes) to aldehydes. Mechanistic studies show that the oxidation reaction proceeds via a non-free-radical mechanism. The catalyst could be recovered and reused five times without major changes in activity for the oxidation of styrene to benzaldehyde.
Collapse
Affiliation(s)
- Yonas Belay
- Department of Chemical Sciences, University of Johannesburg, Auckland Park, P.O. Box 524, Johannesburg 2006, South Africa
| | - Alfred Muller
- Department of Chemical Sciences, University of Johannesburg, Auckland Park, P.O. Box 524, Johannesburg 2006, South Africa
| | - D Bradley G Williams
- University of Technology Sydney, School of Mathematical and Physical Sciences, Broadway, P.O. Box 123, Sydney 2007, New South Wales, Australia
| |
Collapse
|
48
|
Abstract
IBX is an oxidation reagent that has surged into prominence in the last two decades. It is cost-effective, environmentally benign and readily prepared from o-iodobenzoic acid. However, its insolubility in common organic solvents and explosive attributes upon impact and heating are debilitating disadvantages. Development of modified IBXs,i.e., mIBXs, that exhibit improved solubility and enhanced reactivity, and obviate explosive attributes by a judicious manipulation of the structure of IBX has been an incessant endeavor. In this account, common organic solvent-soluble modified o-iodoxybenzoic acids (mIBXs) developed in our research group are collated with discussion of rationale underlying the design principles. Steric build-up around the iodoxolone moiety that is responsible for strong intermolecular interactions within the crystal lattice of IBX constitutes the key consideration in the design and development of modified λ5-iodanes that are reactive and sparingly soluble in common organic solvents. In situ generation of mIBXs from precursor iodo-acids in the presence of Oxone® permits employment of the latter as organocatalysts for facile oxidative transformations. Reactive mIBXs generated in situ from precursor modified iodoacids (mIAs, I(I)) in the presence of Oxone® may constitute unrivaled prospects for cost-effective oxidations. Applications of mIBXs, generated in situ or otherwise, for efficient oxidations are consolidated.
Collapse
Affiliation(s)
- Keshaba Nanda Parida
- Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, India
| | | |
Collapse
|
49
|
Huang Z, Shanmugam M, Liu Z, Brookfield A, Bennett EL, Guan R, Vega Herrera DE, Lopez-Sanchez JA, Slater AG, McInnes EJL, Qi X, Xiao J. Chemical Recycling of Polystyrene to Valuable Chemicals via Selective Acid-Catalyzed Aerobic Oxidation under Visible Light. J Am Chem Soc 2022; 144:6532-6542. [PMID: 35353526 PMCID: PMC9011358 DOI: 10.1021/jacs.2c01410] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Chemical
recycling is one of the most promising technologies that
could contribute to circular economy targets by providing solutions
to plastic waste; however, it is still at an early stage of development.
In this work, we describe the first light-driven, acid-catalyzed protocol
for chemical recycling of polystyrene waste to valuable chemicals
under 1 bar of O2. Requiring no photosensitizers and only
mild reaction conditions, the protocol is operationally simple and
has also been demonstrated in a flow system. Electron paramagnetic
resonance (EPR) investigations and density functional theory (DFT)
calculations indicate that singlet oxygen is involved as the reactive
oxygen species in this degradation process, which abstracts a hydrogen
atom from a tertiary C–H bond, leading to hydroperoxidation
and subsequent C–C bond cracking events via a radical process.
Notably, our study indicates that an adduct of polystyrene and an
acid catalyst might be formed in situ, which could act as a photosensitizer
to initiate the formation of singlet oxygen. In addition, the oxidized
polystyrene polymer may play a role in the production of singlet oxygen
under light.
Collapse
Affiliation(s)
- Zhiliang Huang
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Muralidharan Shanmugam
- Department of Chemistry and Photon Science Institute, The University of Manchester, Manchester M13 9PL, U.K
| | - Zhao Liu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Adam Brookfield
- Department of Chemistry and Photon Science Institute, The University of Manchester, Manchester M13 9PL, U.K
| | - Elliot L Bennett
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Renpeng Guan
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | | | | | - Anna G Slater
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Eric J L McInnes
- Department of Chemistry and Photon Science Institute, The University of Manchester, Manchester M13 9PL, U.K
| | - Xiaotian Qi
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Jianliang Xiao
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| |
Collapse
|
50
|
Jia C, Wang Q, Yang J, Ye K, Li X, Zhong W, Shen H, Sharman E, Luo Y, Jiang J. Toward Rational Design of Dual-Metal-Site Catalysts: Catalytic Descriptor Exploration. ACS Catal 2022. [DOI: 10.1021/acscatal.1c06015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chuanyi Jia
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Institute of Applied Physics, Guizhou Education University, Guiyang, Guizhou 550018, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qian Wang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, A. I. Virtasen aukio 1, Helsinki, FI-00014 Finland
| | - Jing Yang
- College of Chemical Engineering, Shijiazhuang University, Shijiazhuang, Hebei 050035, China
| | - Ke Ye
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiyu Li
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wenhui Zhong
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Institute of Applied Physics, Guizhou Education University, Guiyang, Guizhou 550018, China
| | - Hujun Shen
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Institute of Applied Physics, Guizhou Education University, Guiyang, Guizhou 550018, China
| | - Edward Sharman
- Department of Neurology, University of California, Irvine, California 92697, United States
| | - Yi Luo
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jun Jiang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|