1
|
Yoneda Y, Konishi T, Suga K, Saito S, Kuramochi H. Excited-State Aromatization Drives Nonequilibrium Planarization Dynamics. J Am Chem Soc 2025; 147:12051-12060. [PMID: 40059351 PMCID: PMC11987032 DOI: 10.1021/jacs.4c18623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/12/2025] [Accepted: 02/26/2025] [Indexed: 04/10/2025]
Abstract
Excited-state aromaticity is one of the most widely applied concepts in the field of chemistry, often used as a rational guideline for predicting conformational changes of cyclic π-conjugated systems induced by photoexcitation. Yet, the details of the relationship between the corresponding photoinduced electronic and structural dynamics have remained unclear. In this work, we applied femtosecond transient absorption and time-resolved time-domain Raman spectroscopies to track the nonequilibrium planarization dynamics of a cyclooctatetraene (COT) derivative associated with the excited-state aromaticity. In the femtosecond time-resolved Raman data, the bent-to-planar structural change was clearly captured as a continuous peak shift of the marker band, which was unambiguously identified with 13C labeling. Our findings show that the planarization occurs after a significant change in the electronic structure, suggesting that the system first becomes aromatic, followed by a conformational change. This work provides a unique framework for understanding the excited-state aromaticity from a dynamical aspect.
Collapse
Affiliation(s)
- Yusuke Yoneda
- Research
Center of Integrative Molecular Systems (CIMoS), Institute for Molecular
Science, National Institutes of Natural
Sciences, 38 Nishigo-Naka,
Myodaiji, Okazaki 444-8585, Japan
- Graduate
Institute for Advanced Studies, SOKENDAI, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Tomoaki Konishi
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-Cho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Kensuke Suga
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-Cho, Sakyo-Ku, Kyoto 606-8502, Japan
- Department
of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-Cho, Toyonaka 560-0043, Japan
| | - Shohei Saito
- Department
of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-Cho, Toyonaka 560-0043, Japan
| | - Hikaru Kuramochi
- Research
Center of Integrative Molecular Systems (CIMoS), Institute for Molecular
Science, National Institutes of Natural
Sciences, 38 Nishigo-Naka,
Myodaiji, Okazaki 444-8585, Japan
- Graduate
Institute for Advanced Studies, SOKENDAI, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| |
Collapse
|
2
|
Hirai S, Sakuma T, Tokura Y, Imai H, Seishima R, Shigeta K, Okabayashi K, Oaki Y. Free Volume Space of Polymers as a New Functional Nanospace: Synthesis of Guest Polymers. Macromol Rapid Commun 2025; 46:e2400980. [PMID: 39887904 PMCID: PMC12004908 DOI: 10.1002/marc.202400980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/10/2025] [Indexed: 02/01/2025]
Abstract
Nanospace has been used as a specific field for syntheses and assemblies of molecules, polymers, and materials. Free volume space among polymer chains is related to their properties, such as permeation of gas and small molecules. However, the void has not been used as a functional nanospace in previous works. The present work shows synthesis of guest conductive polymers in free volume space of conventional synthetic resins and rubbers as a new nanospace. Vapor of heteroaromatic monomer and oxidative agent is diffused into the soft dynamic nanospace among the polymer chains under ambient pressure at low temperature. The oxidative polymerization provides the conductive polymers, such as polypyrrole (PPy), in the free volume space of poly(methyl methacrylate) (PMMA), polypropylene (PP), silicone rubber (SR), and polyurethane rubber (PU). The ratio of the free volume decreases with the infiltration of the conductive polymers. The composites exhibit the improved mechanical and gas barrier properties. The rubbers containing PPy are used as mechanical-stress sensors with both the conductivity and flexibility. The free volume space of resins and rubbers can be used as a new dynamic nanospace for synthesis of functional polymer composites.
Collapse
Affiliation(s)
- Sayaka Hirai
- Department of Applied ChemistryFaculty of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohama223–8522Japan
| | - Tomoki Sakuma
- Department of Applied ChemistryFaculty of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohama223–8522Japan
| | - Yuki Tokura
- Department of Applied ChemistryFaculty of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohama223–8522Japan
| | - Hiroaki Imai
- Department of Applied ChemistryFaculty of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohama223–8522Japan
| | - Ryo Seishima
- Department of SurgerySchool of MedicineKeio University35 ShinanomachiShinjuku‐kuTokyo160–8582Japan
| | - Kohei Shigeta
- Department of SurgerySchool of MedicineKeio University35 ShinanomachiShinjuku‐kuTokyo160–8582Japan
| | - Koji Okabayashi
- Department of SurgerySchool of MedicineKeio University35 ShinanomachiShinjuku‐kuTokyo160–8582Japan
| | - Yuya Oaki
- Department of Applied ChemistryFaculty of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohama223–8522Japan
| |
Collapse
|
3
|
Suga K, Ochiai K, Yoneda Y, Kuramochi H, Saito S. An Energy-Tunable Dual Emission Mechanism of the Hybridized Local and Charge Transfer (HLCT) and the Excited State Conjugation Enhancement (ESCE). Chemistry 2025; 31:e202404376. [PMID: 39658806 DOI: 10.1002/chem.202404376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 12/12/2024]
Abstract
Molecular design of dual-fluorescent probes requires precise adjustment of the energy levels of two excited states and the energy barrier between them. While the hybridized local and charge-transfer (HLCT) state has been recently focused as an important excited state for high emission efficiency with a tunable energy level, a dual emission involving the HLCT state has been only achieved with the excited-state intramolecular proton transfer (ESIPT) system. Here, a series of dual-fluorescent molecules involving an HLCT excited state with the excited-state conjugation enhancement (ESCE) motif is presented as the first case. The energy level of the HLCT state has been adjusted by changing substituents and solvents, separately from the ESCE energy level. The HLCT-ESCE molecular design with tunable fluorescence properties proposes a new strategy for the development of advanced fluorescent probes.
Collapse
Affiliation(s)
- Kensuke Suga
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, Kyoto, 606-8502, Japan
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Keisuke Ochiai
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Yusuke Yoneda
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Hikaru Kuramochi
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Shohei Saito
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
4
|
Nagler O, Dubey RK, Würthner F. Silanediol-Bay-Bridge Rigidified Axially Chiral Perylene Bisimide. J Org Chem 2025; 90:1006-1015. [PMID: 39760410 DOI: 10.1021/acs.joc.4c02175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Chiral organic molecules with a complementing π-structure are highly desired to obtain materials with good semiconducting properties and pronounced chirality effects in the visible region. Herein, we introduce a novel design strategy to achieve an axially chiral and rigid perylene bisimide (PBI) dye by attaching the chirality-inducing 2,2'-biphenoxy moiety at one side of the bay area and the rigidity-inducing di-tert-butylsilanediol bridge on the other side. This yielded a new bay-functionalized PBI derivative carrying the combination of a highly rigid and, simultaneously, an axially chiral perylene core. As a result, the derivative exhibits well-resolved absorption and emission spectra in the visible region, with a fluorescence quantum yield close to unity. Furthermore, the M- and P-enantiomers were found to be stable with a racemization barrier of 102 kJ mol-1 and, hence, could be successfully separated by chiral chromatography and studied by circular dichroism (CD) spectroscopy. This rigidified chiral-PBI could also be crystallized and analyzed by X-ray diffraction, showing the highest torsion angle of the perylene core with a value of up to 30.3° in the family of PBIs carrying the same di-tert-butylsilanediol bridge.
Collapse
Affiliation(s)
- Oliver Nagler
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| | - Rajeev K Dubey
- Institut für Organische Chemie, Universität Würzburg, Am Hubland 97074 Würzburg, Germany
| | - Frank Würthner
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
- Institut für Organische Chemie, Universität Würzburg, Am Hubland 97074 Würzburg, Germany
| |
Collapse
|
5
|
Lei SN, Zhu L, Xue N, Xiao X, Shi L, Wang DC, Liu Z, Guan XR, Xie Y, Liu K, Hu LR, Wang Z, Stoddart JF, Guo QH. Cyclooctatetraene-Embedded Carbon Nanorings. Angew Chem Int Ed Engl 2024; 63:e202402255. [PMID: 38551062 DOI: 10.1002/anie.202402255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Indexed: 04/26/2024]
Abstract
With the prosperity of the development of carbon nanorings, certain topologically or functionally unique units-embedded carbon nanorings have sprung up in the past decade. Herein, we report the facile and efficient synthesis of three cyclooctatetraene-embedded carbon nanorings (COTCNRs) that contain three (COTCNR1 and COTCNR2) and four (COTCNR3) COT units in a one-pot Yamamoto coupling. These nanorings feature hoop-shaped segments of Gyroid (G-), Diamond (D-), and Primitive (P-) type carbon schwarzites. The conformations of the trimeric nanorings COTCNR1 and COTCNR2 are shape-persistent, whereas the tetrameric COTCNR3 possesses a flexible carbon skeleton which undergoes conformational changes upon forming host-guest complexes with fullerenes (C60 and C70), whose co-crystals may potentially serve as fullerene-based semiconducting supramolecular wires with electrical conductivities on the order of 10-7 S cm-1 (for C60⊂COTCNR3) and 10-8 S cm-1 (for C70⊂COTCNR3) under ambient conditions. This research not only describes highly efficient one-step syntheses of three cyclooctatetraene-embedded carbon nanorings which feature hoop-shaped segments of distinctive topological carbon schwarzites, but also demonstrates the potential application in electronics of the one-dimensional fullerene arrays secured by COTCNR3.
Collapse
Affiliation(s)
- Sheng-Nan Lei
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Ling Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Ning Xue
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xuedong Xiao
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Le Shi
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Duan-Chao Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Zhe Liu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Xin-Ru Guan
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Yuan Xie
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Ke Liu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Lian-Rui Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Zhaohui Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - J Fraser Stoddart
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- Chong Yuet Ming Chemistry Building, The University of Hong Kong, Hong Kong SAR
- Simpson Querrey Institute for BioNanotechnology, 303 East Superior Street, Chicago, IL-60611, USA
- School of Chemistry, University of New South Wales, Sydney, NSW-2052, Australia
| | - Qing-Hui Guo
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
- MOE Key Laboratory of Bioorganic Phosphorous and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
6
|
Hsu CC, Hsu ACH, Lin CY, Wong KT, Bonn D, Brouwer AM. Molecular Probing of the Microscopic Pressure at Contact Interfaces. J Am Chem Soc 2024; 146:13258-13265. [PMID: 38696718 PMCID: PMC11099955 DOI: 10.1021/jacs.4c01312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024]
Abstract
Obtaining insights into friction at the nanoscopic level and being able to translate these into macroscopic friction behavior in real-world systems is of paramount importance in many contexts, ranging from transportation to high-precision technology and seismology. Since friction is controlled by the local pressure at the contact it is important to be able to detect both the real contact area and the nanoscopic local pressure distribution simultaneously. In this paper, we present a method that uses planarizable molecular probes in combination with fluorescence microscopy to achieve this goal. These probes, inherently twisted in their ground states, undergo planarization under the influence of pressure, leading to bathochromic and hyperchromic shifts of their UV-vis absorption band. This allows us to map the local pressure in mechanical contact from fluorescence by exciting the emission in the long-wavelength region of the absorption band. We demonstrate a linear relationship between fluorescence intensity and (simulated) pressure at the submicron scale. This relationship enables us to experimentally depict the pressure distribution in multiasperity contacts. The method presented here offers a new way of bridging friction studies of the nanoscale model systems and practical situations for which surface roughness plays a crucial role.
Collapse
Affiliation(s)
- Chao-Chun Hsu
- van
’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Allen Chu-Hsiang Hsu
- Department
of Chemistry, National Taiwan University,
and Institute of Atomic and Molecular Science, Academia Sinica, Taipei 10617, Taiwan
| | - Chun-Yen Lin
- Department
of Chemistry, National Taiwan University,
and Institute of Atomic and Molecular Science, Academia Sinica, Taipei 10617, Taiwan
| | - Ken-Tsung Wong
- Department
of Chemistry, National Taiwan University,
and Institute of Atomic and Molecular Science, Academia Sinica, Taipei 10617, Taiwan
| | - Daniel Bonn
- Van
der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Albert M. Brouwer
- van
’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
7
|
Ariga K, Song J, Kawakami K. Molecular machines working at interfaces: physics, chemistry, evolution and nanoarchitectonics. Phys Chem Chem Phys 2024; 26:13532-13560. [PMID: 38654597 DOI: 10.1039/d4cp00724g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
As a post-nanotechnology concept, nanoarchitectonics combines nanotechnology with advanced materials science. Molecular machines made by assembling molecular units and their organizational bodies are also products of nanoarchitectonics. They can be regarded as the smallest functional materials. Originally, studies on molecular machines analyzed the average properties of objects dispersed in solution by spectroscopic methods. Researchers' playgrounds partially shifted to solid interfaces, because high-resolution observation of molecular machines is usually done on solid interfaces under high vacuum and cryogenic conditions. Additionally, to ensure the practical applicability of molecular machines, operation under ambient conditions is necessary. The latter conditions are met in dynamic interfacial environments such as the surface of water at room temperature. According to these backgrounds, this review summarizes the trends of molecular machines that continue to evolve under the concept of nanoarchitectonics in interfacial environments. Some recent examples of molecular machines in solution are briefly introduced first, which is followed by an overview of studies of molecular machines and similar supramolecular structures in various interfacial environments. The interfacial environments are classified into (i) solid interfaces, (ii) liquid interfaces, and (iii) various material and biological interfaces. Molecular machines are expanding their activities from the static environment of a solid interface to the more dynamic environment of a liquid interface. Molecular machines change their field of activity while maintaining their basic functions and induce the accumulation of individual molecular machines into macroscopic physical properties molecular machines through macroscopic mechanical motions can be employed to control molecular machines. Moreover, research on molecular machines is not limited to solid and liquid interfaces; interfaces with living organisms are also crucial.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan.
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa 277-8561, Japan
| | - Jingwen Song
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Kohsaku Kawakami
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan
| |
Collapse
|
8
|
Suga K, Yamakado T, Saito S. Dual Ratiometric Fluorescence Monitoring of Mechanical Polymer Chain Stretching and Subsequent Strain-Induced Crystallization. J Am Chem Soc 2023. [PMID: 38051032 DOI: 10.1021/jacs.3c09175] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Tracking the behavior of mechanochromic molecules provides valuable insights into force transmission and associated microstructural changes in soft materials under load. Herein, we report a dual ratiometric fluorescence (FL) analysis for monitoring both mechanical polymer chain stretching and strain-induced crystallization (SIC) of polymers. SIC has recently attracted renewed attention as an effective mechanism for improving the mechanical properties of polymers. A polyurethane (PU) film incorporating a trace of a dual-emissive flapping force probe (N-FLAP, 0.008 wt %) exhibited a blue-to-green FL spectral change in a low-stress region (<20 MPa), resulting from conformational planarization of the probe in mechanically stretched polymer chains. More importantly, at higher probe concentrations (∼0.65 wt %), the PU film showed a second spectral change from green to yellow during the SIC growth (20-65 MPa) due to self-absorption of scattered FL in a short wavelength region. The reversibility of these spectral changes was demonstrated by load-unload cycles. With these results in hand, the degrees of the polymer chain stretching and the SIC were quantitatively mapped and monitored by dual ratiometric imaging based on different FL ratios (I525/I470 and I525/I600). Simultaneous analysis of these two mappings revealed a spatiotemporal gap in the distribution of the polymer chain stretching and the SIC. The combinational use of the dual-emissive force probe and the ratiometric FL imaging is a universal approach for the development of soft matter physics.
Collapse
Affiliation(s)
- Kensuke Suga
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takuya Yamakado
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shohei Saito
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
9
|
Kimura R, Yoneda Y, Kuramochi H, Saito S. Environment-sensitive fluorescence of COT-fused perylene bisimide based on symmetry-breaking charge separation. Photochem Photobiol Sci 2023; 22:2541-2552. [PMID: 37656334 DOI: 10.1007/s43630-023-00468-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/09/2023] [Indexed: 09/02/2023]
Abstract
Flexible and aromatic photofunctional system (FLAP) is composed of flapping rigid aromatic wings fused with a flexible 8π ring at the center such as cyclooctatetraene (COT). A series of FLAP have been actively studied for the interesting dynamic behaviors. Here, we synthesized a new flapping molecule bearing naphtho-perylenebisimide wings (NPBI-FLAP), in which two perylene units are arranged side by side. As a reference compound, we also prepared COT-fused NPBI (NPBI-COT) that contains only single perylene unit. In both compounds, inherent strong fluorescence of the NPBI moiety is almost quenched and the FL lifetime becomes much shortened in highly polar solvents (acetone and DMF). Through the analyses of environment-sensitive fluorescence, electrochemical reduction/oxidation, and femtosecond transient absorption, the fluorescence quenching behavior was attributed to rapid symmetry-breaking charge separation (SB-CS) for NPBI-FLAP and to intramolecular charge transfer (ICT) for NPBI-COT. Most of the excited species of these compounds decay with the bent geometry, which is in contrast with the excited-state planarization behavior of a previously reported COT-fused peryleneimides with the double-headed arrangement of the perylene moieties. These results indicate that changing the fusion manners between COT and other π skeletons offers new functional molecules with distinct dynamics.
Collapse
Affiliation(s)
- Ryo Kimura
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake, Sakyo, Kyoto, 606-8502, Japan
| | - Yusuke Yoneda
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki, 444-8585, Japan
| | - Hikaru Kuramochi
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki, 444-8585, Japan.
| | - Shohei Saito
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake, Sakyo, Kyoto, 606-8502, Japan.
| |
Collapse
|
10
|
Huang W, Feng S, Liu J, Liang B, Zhou Y, Yu M, Liang J, Huang J, Lü X, Huang W. Configuration-Induced Multichromism of Phenanthridine Derivatives: A Type of Versatile Fluorescent Probe for Microenvironmental Monitoring. Angew Chem Int Ed Engl 2023; 62:e202219337. [PMID: 36602266 DOI: 10.1002/anie.202219337] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
Fluorescent probes are attractive in diagnosis and sensing. However, most reported fluorophores can only detect one or few analytes/parameters, notably limiting their applications. Here we have designed three phenanthridine-based fluorophores (i.e., B1, F1, and T1 with 1D, 2D, and 3D molecular configuration, respectively) capable of monitoring various microenvironments. In rigidifying media, all fluorophores show bathochromic emissions but with different wavelength and intensity changes. Under compression, F1 shows a bathochromic emission of over 163 nm, which results in organic fluorophore-based full-color piezochromism. Moreover, both B1 and F1 exhibit an aggregation-caused quenching (ACQ) behavior, while T1 is an aggregation-induced emission (AIE) fluorophore. Further, F1 and T1 selectively concentrate in cell nucleus, whereas B1 mainly stains the cytoplasm in live cell imaging. This work provides a general design strategy of versatile fluorophores for microenvironmental monitoring.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China
| | - Shiyu Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China.,University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Jie Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China
| | - Baoshuai Liang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China.,University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Ya Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Mengya Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Jiayuan Liang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, 201203, P. R. China
| | - Jiaguo Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Xujie Lü
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, 201203, P. R. China
| | - Weiguo Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China.,University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
11
|
Flapping motion as a fluorescent probe for assembly process involving highly viscous liquid-like cluster intermediates during evaporative crystallization. Photochem Photobiol Sci 2023; 22:371-378. [PMID: 36322378 DOI: 10.1007/s43630-022-00321-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/09/2022] [Indexed: 02/25/2023]
Abstract
Fluorescence probes are widely used to assess the molecular environment based on their photo-physical properties. Specifically, flexible and aromatic photo-functional system (FLAP) is unique viscosity probe owing to the excited-state planarization of anthracene wings. We have previously applied fluorescence spectroscopy to monitor the evaporative crystallization of solvents. The fluorescence color and spectral changes, which depend on the aggregation form, enable direct fluorescence visualization during evaporative crystallization. The fluorescence visualization of the liquid-like cluster intermediate proposed in the two-step nucleation model for the nucleation process has been achieved. However, the physical properties of these clusters, especially the viscosity, molecular motion, and intermolecular interactions, are still unclear. In this study, FLAPs are used as probes for local-viscosity changes and space limitations of the liquid-like cluster state during evaporative crystallization by observing the fluorescence-spectral changes and using hyperspectral-camera (HSC) imaging. Green emission originates from the monomer in the solution owing to the free-flapping motion. The fluorescence color turns blue with increasing viscosity under crowding conditions. If the survival time of the liquid-like cluster state is sufficient, crystalline phase (R-phase) formation proceeds via a 2-fold π-stacked array of the V-shaped molecules. It is difficult to form the V-shaped stacked columnar structures in the liquid-like cluster state region, resulting in the deposition of head-to-tail dimer structures, such as the yellow-emissive phase (Y-phase). In the case of the FLAP, the stacking intermediate does not form during solvent evaporation in the liquid-like cluster; rather, it is deposited in an amorphous form that exhibits blue emission (B-phase). These findings suggest that it is important to the maintenance of the survival time of the liquid-like cluster states to organize and rearrange the stacking forms. We have achieved the fluorescence probing of viscosity changes at local molecular motion with solvent depletion during solvent evaporation for the first time.
Collapse
|
12
|
Fujii T, Kusukawa T, Imoto H, Naka K. Pnictogen-Bridged Diphenyl Sulfones as Photoinduced Pnictogen Bond Forming Emission Motifs. Chemistry 2023; 29:e202202572. [PMID: 36125391 DOI: 10.1002/chem.202202572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 01/04/2023]
Abstract
In this study, pnictogen (Pn)-bridged diphenyl sulfones were synthesized as motifs for photoinduced dynamic rearrangement. The newly synthesized sulfones exhibited dual fluorescence at 298 K. Density functional theory calculations revealed that the longer-wavelength fluorescence was derived from the geometries after structural relaxation through photo-driven pnictogen bond formation between the O atom lone pair of the sulfonyl moiety and the antibonding orbital of the Pn-C bond. This is the first report on emission dynamics driven by pnictogen bond formation upon photoexcitation.
Collapse
Affiliation(s)
- Toshiki Fujii
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Takahiro Kusukawa
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.,Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| |
Collapse
|
13
|
Zou Q, Chen X, Zhou Y, Jin X, Zhang Z, Qiu J, Wang R, Hong W, Su J, Qu DH, Tian H. Photoconductance from the Bent-to-Planar Photocycle between Ground and Excited States in Single-Molecule Junctions. J Am Chem Soc 2022; 144:10042-10052. [PMID: 35611861 DOI: 10.1021/jacs.2c03671] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Single-molecule conductance measurements for 9,14-diphenyl-9,14-dihydrodibenzo[a,c]phenazine (DPAC) may offer unique insight into the bent-to-planar photocycle between the ground and excited states. Herein, we employ DPAC derivative DPAC-SMe as the molecular prototype to fabricate single-molecule junctions using the scanning tunneling microscope break junction technique and explore photoconductance dependence on the excited-state structural/electronic changes. We find up to ∼200% conductance enhancement of DPAC-SMe under continuous 340 nm light irradiation than that without irradiation, while photoconductance disappears in the case where structural evolution of the DPAC-SMe is halted through macrocyclization. The in situ conductance modulation as pulsed 340 nm light irradiation is monitored in the DPAC-SMe-based junctions alone, suggesting that the photoconductance of DPAC-SMe stems from photoinduced intramolecular planarization. Theoretical calculations reveal that the photoinduced structural evolution brings about a significant redistribution of the electron cloud density, which leads to the appearance of Fano resonance, resulting in enhanced conductance through the DPAC-SMe-fabricated junctions. This work provides evidence of bent-to-planar photocycle-induced conductance differences at the single-molecule level, offering a tailored approach for tuning the charge transport characteristics of organic photoelectronic devices.
Collapse
Affiliation(s)
- Qi Zou
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuanying Chen
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yu Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xin Jin
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiyun Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jin Qiu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Rui Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jianhua Su
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
14
|
Tasić M, Ruiz-Soriano A, Strand D. Copper(I) Catalyzed Decarboxylative Synthesis of Diareno[ a, e]cyclooctatetraenes. J Org Chem 2022; 87:7501-7508. [PMID: 35587005 PMCID: PMC9490866 DOI: 10.1021/acs.joc.2c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Diareno[a,e]cyclooctatetraenes
find widespread applications as building blocks, ligands, and responsive
cores in topologically switchable materials. However, current synthetic
methods to these structures suffer from low yields or operational
disadvantages. Here, we describe a practical three-step approach to
diareno[a,e]cyclooctatetraenes using
an efficient copper(I) catalyzed double decarboxylation as the key
step. The sequence relies on cheap and abundant reagents, is readily
performed on scale, and is amenable also to unsymmetrical derivatives
that expand the utility of this intriguing class of structures.
Collapse
Affiliation(s)
- Magdalena Tasić
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Albert Ruiz-Soriano
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Daniel Strand
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
15
|
Emerging applications of curved aromatic compounds. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Aoki T, Ueda M, Aida T, Itoh Y. Supramolecular Polymerization of a Photo-Fluttering Chiral Monomer: A Temporarily Suspendable Chain Growth by Light. J Am Chem Soc 2022; 144:7080-7084. [PMID: 35385273 DOI: 10.1021/jacs.2c02176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Using a photochemically fluttering thiophene-fused cyclooctatetraene derivative (COT) as a nonplanar chiral monomer, we have succeeded in remotely suspending the supramolecular polymerization in a temporal manner by a completely new strategy. The COT monomer with an 8π electron core adopts a saddle shape in the ground state and flutters 5.8 × 103 times faster upon photoirradiation than in the dark as a result of the stabilized planar conformation by the excited-state aromaticity (Baird aromaticity). Detailed investigation revealed that without photoirradiation the rate constant of the fluttering motion is 1/560 times smaller than that of the chain elongation, indicating that the fluttering of COT does not affect the chain elongation in the dark. In contrast, under photoirradiation (365 nm), the fluttering of COT is at least 11 times more rapid than the chain elongation, thereby suppressing the elongation event. The rapid fluttering of COT to suspend the chain elongation is not accompanied by a decrease in active monomer concentration, leading to depolymerization.
Collapse
Affiliation(s)
- Tsubasa Aoki
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Michihisa Ueda
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Takuzo Aida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan.,RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshimitsu Itoh
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan.,Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
17
|
Jin X, Li S, Guo L, Hua J, Qu DH, Su J, Zhang Z, Tian H. Interplay of Steric Effects and Aromaticity Reversals to Expand the Structural/Electronic Responses of Dihydrophenazines. J Am Chem Soc 2022; 144:4883-4896. [PMID: 35259298 DOI: 10.1021/jacs.1c12610] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To gain insights into the coupling of conformational and electronic variables, we exploited steric hindrance to modulate a polycyclic skeleton with a bent conformation in the S0 state and a twisted conformation in the S1 state under the guidance of photoexcited aromaticity reversals. Polycyclic 5,10-dihydrophenazine (DHP) adopted a bent structure in S0 but involved a bent-to-planar transformation in S1 due to the excited-state aromaticity of the 8π-electron central ring. The N,N'-locations and 1,4,6,9-sites of the DHP skeleton provided a versatile chemical handle for fine-tuning intramolecular steric hindrance. Specifically, N,N'-diphenyl-5,10-dihydrophenazine (DPP-00) and its derivatives DPP-10-DPP-22 were synthesized with different numbers of methyl groups on the 1,4,6,9-sites. X-ray crystal analyses suggested that the DHP skeletons of DPP-00-DPP-22 had more bending configurations along the N···N axis with an increase in the number of methyl groups. Following the bending-promoted interruption of π-conjugation, the absorption spectra of DPP-00-DPP-22 significantly blue-shifted from 416 to 324 nm. By contrast, the emission bands exhibited a reverse shift to longer wavelengths from 459 to 584 nm as the number of methyl substituents increased. Theoretical calculations revealed that introducing methyl groups caused the planar DHP skeleton in S1 to further twist along the N···N axis, resulting in a twisted high-strain conformation. The greater Stokes shift of the more steric-hindered structure can be attributed to the release of larger strain and aromatic stabilization energy. This research highlighted the potential promise associated with the interplay of steric effects and aromaticity reversals in a single fluorophore.
Collapse
Affiliation(s)
- Xin Jin
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| | - Sifan Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| | - Lifang Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| | - Jianli Hua
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| | - Jianhua Su
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| | - Zhiyun Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
18
|
Kimura R, Kitakado H, Yamakado T, Yoshida H, Saito S. Probing a microviscosity change at the nematic-isotropic liquid crystal phase transition by a ratiometric flapping fluorophore. Chem Commun (Camb) 2022; 58:2128-2131. [PMID: 35072199 DOI: 10.1039/d1cc06111a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the microviscosity of soft condensed matter is important to clarify the mechanisms of chemical, physical or biological events occurring at the nanoscale. Here, we report that flapping fluorophores (FLAP) can serve as microviscosity probes capable of detecting small changes. By the ratiometric fluorescence analysis, one of the FLAP probes detects a macroscopic viscosity change of a few cP, occurring at the thermal phase transition of a nematic liquid crystal. We discuss the impact of the chemical structure on the detection capability, and the orientation of the FLAP molecules in the ground and excited states. This work contributes to experimentally providing a molecular picture of liquid crystals, which are often viewed as a continuum.
Collapse
Affiliation(s)
- Ryo Kimura
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake, Sakyo, Kyoto 606-8502, Japan.
| | - Hidetsugu Kitakado
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake, Sakyo, Kyoto 606-8502, Japan.
| | - Takuya Yamakado
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake, Sakyo, Kyoto 606-8502, Japan.
| | - Hiroyuki Yoshida
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shohei Saito
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake, Sakyo, Kyoto 606-8502, Japan.
| |
Collapse
|
19
|
Yamakado T, Saito S. Ratiometric Flapping Force Probe That Works in Polymer Gels. J Am Chem Soc 2022; 144:2804-2815. [PMID: 35108003 DOI: 10.1021/jacs.1c12955] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polymer gels have recently attracted attention for their application in flexible devices, where mechanically robust gels are required. While there are many strategies to produce tough gels by suppressing nanoscale stress concentration on specific polymer chains, it is still challenging to directly verify the toughening mechanism at the molecular level. To solve this problem, the use of the flapping molecular force probe (FLAP) is promising because it can evaluate the nanoscale forces transmitted in the polymer chain network by ratiometric analysis of a stress-dependent dual fluorescence. A flexible conformational change of FLAP enables real-time and reversible responses to the nanoscale forces at the low force threshold, which is suitable for quantifying the percentage of the stressed polymer chains before structural damage. However, the previously reported FLAP only showed a negligible response in solvated environments because undesirable spontaneous planarization occurs in the excited state, even without mechanical force. Here, we have developed a new ratiometric force probe that functions in common organogels. Replacement of the anthraceneimide units in the flapping wings with pyreneimide units largely suppresses the excited-state planarization, leading to the force probe function under wet conditions. The FLAP-doped polyurethane organogel reversibly shows a dual-fluorescence response under sub-MPa compression. Moreover, the structurally modified FLAP is also advantageous in the wide dynamic range of its fluorescence response in solvent-free elastomers, enabling clearer ratiometric fluorescence imaging of the molecular-level stress concentration during crack growth in a stretched polyurethane film.
Collapse
Affiliation(s)
- Takuya Yamakado
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shohei Saito
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
20
|
Kotani R, Yokoyama S, Nobusue S, Yamaguchi S, Osuka A, Yabu H, Saito S. Bridging pico-to-nanonewtons with a ratiometric force probe for monitoring nanoscale polymer physics before damage. Nat Commun 2022; 13:303. [PMID: 35027559 PMCID: PMC8758707 DOI: 10.1038/s41467-022-27972-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023] Open
Abstract
Understanding the transmission of nanoscale forces in the pico-to-nanonewton range is important in polymer physics. While physical approaches have limitations in analyzing the local force distribution in condensed environments, chemical analysis using force probes is promising. However, there are stringent requirements for probing the local forces generated before structural damage. The magnitude of those forces corresponds to the range below covalent bond scission (from 200 pN to several nN) and above thermal fluctuation (several pN). Here, we report a conformationally flexible dual-fluorescence force probe with a theoretically estimated threshold of approximately 100 pN. This probe enables ratiometric analysis of the distribution of local forces in a stretched polymer chain network. Without changing the intrinsic properties of the polymer, the force distribution was reversibly monitored in real time. Chemical control of the probe location demonstrated that the local stress concentration is twice as biased at crosslinkers than at main chains, particularly in a strain-hardening region. Due to the high sensitivity, the percentage of the stressed force probes was estimated to be more than 1000 times higher than the activation rate of a conventional mechanophore.
Collapse
Affiliation(s)
- Ryota Kotani
- Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Soichi Yokoyama
- Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Shunpei Nobusue
- Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Japan
| | | | - Atsuhiro Osuka
- Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Hiroshi Yabu
- WPI-Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai, 980-8577, Japan.
| | - Shohei Saito
- Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan.
- PRESTO, Japan Science and Technology Agency, Kyoto, 606-8502, Japan.
| |
Collapse
|