1
|
Lu Y, You XY, Zhang Q, Lu QT, Hou JL, Cai Q. Enantioselective Total Synthesis of Fortimicin B. Angew Chem Int Ed Engl 2025; 64:e202424235. [PMID: 40079796 DOI: 10.1002/anie.202424235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/17/2025] [Accepted: 03/13/2025] [Indexed: 03/15/2025]
Abstract
Fortimicins, featuring a pseudodisaccharide scaffold, are an unusual class of aminoglycosides (AGs) with potent efficacy against several aminoglycoside-resistant bacterial strains. Notably, these molecules also exhibit lower inherent ototoxicity and nephrotoxicity than common aminoglycosides. Consequently, fortimicins are a promising type of protoypical molecules for the development of the next generation of aminoglycoside antibiotics. Here, we report the asymmetric total synthesis of fortimicin B in 12 steps (longest linear sequence, LLS) from readily available starting materials. An enantioselective Cu(II)-catalyzed inverse-electron-demand Diels-Alder (IEDDA) reaction of 2-pyrones and N-substituted 2-oxazolones was developed for the efficient synthesis of the fortamine fragment, which previously required a lengthy multistep synthesis owing to its complex stereochemistry. The 6-epi-purpurosamine B fragment was efficiently synthesized through a Cr(II)/Co(I)-mediated C─C bond coupling between aldehydes and alkyl halides. Within these two fragments, the stereoselective construction of the α-glycosidic bond of fortimicin B was realized via the gold(I)-catalyzed glycosylation. Overall, this study provides an efficient synthetic platform for future investigations into the structure-activity relationships of fortimicins.
Collapse
Affiliation(s)
- Yang Lu
- Department of Chemistry, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Xin-Yu You
- Department of Chemistry, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Qianwei Zhang
- Department of Chemistry, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Qi-Tao Lu
- Department of Chemistry, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Jun-Li Hou
- Department of Chemistry, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Quan Cai
- Department of Chemistry, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| |
Collapse
|
2
|
Ding K, Pan X, Yin W, Li L, Bai H, Bai M, Xu J, He J, Zhang W. Natural promising daphnane diterpenoids: An integrated review of their sources, structural classification, biological activities, and synthesis. PHYTOCHEMISTRY 2025; 233:114376. [PMID: 39814091 DOI: 10.1016/j.phytochem.2024.114376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/18/2024] [Accepted: 12/27/2024] [Indexed: 01/18/2025]
Abstract
Daphnane diterpenoids, as one of the representative types of diterpenoid compounds with rich structural diversity and significant biological activities, have an uncommon 5/7/6 tricyclic skeleton mainly found in species of Thymelaeaceae and Euphorbiaceae families. Due to the unique peculiarity of the framework and remarkable pharmacological activities, over the past three decades, novel structures have been continuously discovered and more structural subtypes have been derived. However, there is always a lack of a unified and convincing structural classification strategy for the summary of daphnane diterpenoids, which affects the in-depth and systematic research of pharmaceutical chemists and pharmacologists. In addition, the distinctive skeleton, continuous chiral centers, and prominent bioactivities of daphnane diterpenoids have attracted widespread interest among synthetic chemists. However, there are currently only a few reports of complete synthesis of compounds with low overall yields. Given the broad attention paid to daphnane diterpenoids in recent years, this review summarized the sources, structural classification, biological activities, and synthesis of around 300 natural daphnane diterpenoids discovered from 1993 to 2023, providing a reference for further discovery of novel structures, chemical and biological synthesis, and drug research.
Collapse
Affiliation(s)
- Kang Ding
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Xuege Pan
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Weifeng Yin
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Lin Li
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hongjin Bai
- College of Life Sciences, Tarim University, Alar, 843300, China
| | - Maoli Bai
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jiekun Xu
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jun He
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Weiku Zhang
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
3
|
Tu C, Yang Y, Du J, Ling C, Fu S, Liu B. Asymmetric Construction of the Tricyclic Core Structure of Prostratin. Org Lett 2025; 27:1579-1583. [PMID: 39920087 DOI: 10.1021/acs.orglett.4c03606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
A synthetic study on asymmetric construction of the tricyclic core structure of prostratin is developed through a convergent strategy. Critical to the success of this endeavor is the strategic use of intermolecular allylic nucleophilic substitution to assemble the ring A system and ring C system while utilizing intramolecular nucleophilic addition to close the seven-membered ring.
Collapse
Affiliation(s)
- Canhui Tu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yunlong Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jiaxin Du
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Cichang Ling
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shaomin Fu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
4
|
Rana A, Mishra A, Awasthi SK. Recent advancements in the chemistry of Diels-Alder reaction for total synthesis of natural products: a comprehensive review (2020-2023). RSC Adv 2025; 15:4496-4525. [PMID: 39931410 PMCID: PMC11808662 DOI: 10.1039/d4ra07989b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
Despite being discovered nearly a century ago, the Diels-Alder (DA) reaction remains a crucial tool in the total synthesis of natural products. It accommodates a broad range of building blocks with varying complexity and levels of derivatization, allowing the formation of six-membered rings with precise stereochemistry. This, in turn, simplifies the synthesis of core structures found in many natural products. In recent years, modifications to the traditional Diels-Alder reaction have expanded its scope. These modifications include the inverse electron demand Diels-Alder reaction, dehydro Diels-Alder reaction, hetero-Diels-Alder reaction, photoenolization Diels-Alder reaction, asymmetric Diels-Alder reaction, and domino Diels-Alder reaction have been employed to extend the scope of this process in the synthesis of natural products. This review discusses the application of the Diels-Alder reaction in the total synthesis of natural products from 2020 to 2023, along with select methodologies that are inspired by or can be used to synthesize natural products.
Collapse
Affiliation(s)
- Anitesh Rana
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi Delhi 110007 India
| | - Anupam Mishra
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi Delhi 110007 India
| | - Satish K Awasthi
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi Delhi 110007 India
| |
Collapse
|
5
|
Meng L, Liu J, Sun Z, Hou Y, Huang Q, Tang P. Forging the tricyclic core framework of euphordraculoate B via a Barbier-type allyl addition. Org Biomol Chem 2025; 23:589-592. [PMID: 39607753 DOI: 10.1039/d4ob01743a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
A novel strategy for the synthesis of an advanced intermediate en route to the tigliane derivative euphordraculoate B was described, which led to the successful construction of the 5/5/6 tricyclic core framework as well as the multiple consecutive stereocenters on the skeleton. Key steps of the strategy include a chlorination reaction, an aldol reaction, and a Barbier-type allyl addition.
Collapse
Affiliation(s)
- Lingduan Meng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Jingjing Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Zeying Sun
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yangdong Hou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Qingyun Huang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Pingping Tang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
6
|
Phun GS, Slocumb HS, Ruud KJ, Nie S, Antonio C, Furche F, Dong VM, Yang XH. Hydroselenation of olefins: elucidating the β-selenium effect. Chem Sci 2024; 15:20523-20533. [PMID: 39600504 PMCID: PMC11586760 DOI: 10.1039/d4sc05766j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
We report a light-promoted hydroselenation of alkenes with high anti-Markovnikov selectivity. Blue light activates an aryl diselenide to generate a seleno radical with subsequent addition into an alkene to form a β-seleno carbon radical. Hydrogen atom transfer (HAT) from the selenol to the carbon radical generates the linear selenide with high selectivity in preference to the branched isomer. These studies reveal a unique β-selenium effect, where a selenide β to a carbon radical imparts high anti-selectivity for radical addition through delocalization of the HAT transition state.
Collapse
Affiliation(s)
- Gabriel S Phun
- Department of Chemistry, University of California Irvine California 92697 USA
| | - Hannah S Slocumb
- Department of Chemistry, University of California Irvine California 92697 USA
| | - Kirsten J Ruud
- Department of Chemistry, University of California Irvine California 92697 USA
| | - Shaozhen Nie
- Department of Medicinal Chemistry Glaxo-Smith-Kline, Collegeville Pennsylvania 19426 USA
| | - Cheyenne Antonio
- Department of Chemistry, University of California San Francisco California 94143 USA
| | - Filipp Furche
- Department of Chemistry, University of California Irvine California 92697 USA
| | - Vy M Dong
- Department of Chemistry, University of California Irvine California 92697 USA
| | - Xiao-Hui Yang
- Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology Beijing 100081 P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
7
|
Xu J, Zhang Y, Cai Q, Chen L, Sun Y, Liu Q, Gao Y, Chen H. Green Late-Stage Functionalization of Tryptamines. Chemistry 2024; 30:e202401436. [PMID: 38869004 DOI: 10.1002/chem.202401436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/14/2024]
Abstract
An efficient and rapid protocol for the oxidative halogenation of tryptamines with 10 % aqueous NaClO has been developed. This reaction is featured by its operational simplicity, metal-free conditions, no purification, and high yield. Notably, the resulting key intermediates are suitable for further functionalization with various nucleophiles, including amines, N-aromatic heterocycles, indoles and phenols. The overall transformation exhibits broad functional-group tolerance and is applicable to the late-stage functionalization of complex biorelevant molecules.
Collapse
Affiliation(s)
- Jiayi Xu
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yahui Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Qiling Cai
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China
| | - Li Chen
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China
| | - Yang Sun
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Qinying Liu
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Yu Gao
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Haijun Chen
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
8
|
Shao H, Ma ZH, Cheng YY, Guo XF, Sun YK, Liu WJ, Zhao YM. Bioinspired Total Synthesis of Cephalotaxus Diterpenoids and Their Structural Analogues. Angew Chem Int Ed Engl 2024; 63:e202402931. [PMID: 38527934 DOI: 10.1002/anie.202402931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Herein, we present a unified chemical synthesis of three subgroups of cephalotaxus diterpenoids. Key to the success lies in adopting a synthetic strategy that is inspired by biosynthesis but is opposite in nature. By employing selective one-carbon introduction and ring expansion operations, we have successfully converted cephalotane-type C18 dinorditerpenoids (using cephanolide B as a starting material) into troponoid-type C19 norditerpenoids and intact cephalotane-type C20 diterpenoids. This synthetic approach has enabled us to synthesize cephinoid H, 13-oxo-cephinoid H, 7-oxo-cephinoid H, fortalpinoid C, 7-epi-fortalpinoid C, cephanolide E, and 13-epi-cephanolide E. Furthermore, through the development of an intermolecular asymmetric Michael reaction between β-oxo esters and β-substituted enones, we have achieved the enantioselective synthesis of advanced intermediates within our synthetic sequence, thus formally realizing the asymmetric total synthesis of the cephalotaxus diterpenoids family.
Collapse
Affiliation(s)
- Hui Shao
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China
| | - Zhi-Hua Ma
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China
| | - Yang-Yang Cheng
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China
| | - Xiao-Feng Guo
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China
| | - Ya-Kui Sun
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China
| | - Wen-Jie Liu
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China
| | - Yu-Ming Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China
| |
Collapse
|
9
|
Watanabe A, Hikone Y, Nagatomo M, Inoue M. Conversion of Phorbol into Des-D-Ring Tricycle and Crotonianoid B via Peroxidation Reaction. Org Lett 2024; 26:4335-4339. [PMID: 38738923 DOI: 10.1021/acs.orglett.4c01363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Phorbol (1) has a tetracyclic ABCD-ring and is readily isolable from a natural source. We previously synthesized 1 and 16 structurally related natural products using common ABC-ring intermediate 2. Here we report a new synthetic route to 2 using 1 as a starting material. Key features of the synthesis are chemoselective removal of the D-ring via cyclopropane opening, peroxidation, and retro-aldol reactions. The high utility of the peroxidation was further demonstrated in the first synthesis of crotonianoid B (9).
Collapse
Affiliation(s)
- Ayumu Watanabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuto Hikone
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masanori Nagatomo
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
10
|
Liu M, Wu C, Xie X, Li H, She X. Total Synthesis of the Euphorbia Diterpenoid Pepluacetal. Angew Chem Int Ed Engl 2024; 63:e202400943. [PMID: 38509839 DOI: 10.1002/anie.202400943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 03/22/2024]
Abstract
The first total synthesis of the Euphorbia diterpenoid pepluacetal is disclosed in both racemic and chiral fashions. The synthesis strategically relies on a photo-induced Wolff rearrangement/lactonization cascade (WRLC) reaction to access the cyclobutane moiety, a ring-closing metathesis/cyclopropanation sequence to rapidly forge the 7-3 bicyclic system, and a late-stage Rh-catalyzed transannular carbenoid insertion to C(sp3)-H bond followed by a Baeyer-Villiger oxidation and ring-opening manipulations to install the side chain. The synthetic route demonstrates excellent stereochemical control on the non-classical concave-face bond formation, remote traceless stereochemical relay and high scalability to provide 20 mg of (+)-pepluacetal.
Collapse
Affiliation(s)
- Meng Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Chuanhua Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Xingang Xie
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Huilin Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Xuegong She
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| |
Collapse
|
11
|
Watanabe A, Nagatomo M, Hirose A, Hikone Y, Kishimoto N, Miura S, Yasutake T, Abe T, Misumi S, Inoue M. Total Syntheses of Phorbol and 11 Tigliane Diterpenoids and Their Evaluation as HIV Latency-Reversing Agents. J Am Chem Soc 2024; 146:8746-8756. [PMID: 38486375 DOI: 10.1021/jacs.4c01589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Tigliane diterpenoids possess exceptionally complex structures comprising common 5/7/6/3-membered ABCD-rings and disparate oxygen functionalities. While tiglianes display a wide range of biological activities, compounds with HIV latency-reversing activity can eliminate viral reservoirs, thereby serving as promising leads for new anti-HIV agents. Herein, we report collective total syntheses of phorbol (13) and 11 tiglianes 14-24 with various acylation patterns and oxidation states, and their evaluation as HIV latency-reversing agents. The syntheses were strategically divided into five stages to increase the structural complexity. First, our previously established sequence enabled the expeditious preparation of ABC-tricycle 9 in 15 steps. Second, hydroxylation of 9 and ring-contractive D-ring formation furnished phorbol (13). Third, site-selective attachment of two acyl groups to 13 produced four phorbol diesters 14-17. Fourth, the oxygen functionalities were regio- and stereoselectively installed to yield five tiglianes 18-22. Fifth, further oxidation to the most densely oxygenated acerifolin A (23) and tigilanol tiglate (24) was realized through organizing a 3D shape of the B-ring. Assessment of the HIV latency-reversing activities of the 12 tiglianes revealed seven tiglianes (14-17 and 22-24) with 20- to 300-fold improved efficacy compared with prostratin (12), a representative latency-reversing agent. Therefore, the robust synthetic routes to a variety of tiglianes with promising activities devised in this study provide opportunities for advancing HIV eradication strategies.
Collapse
Affiliation(s)
- Ayumu Watanabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masanori Nagatomo
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akira Hirose
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuto Hikone
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Naoki Kishimoto
- Department of Environmental and Molecular Health Sciences, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Satoshi Miura
- Department of Environmental and Molecular Health Sciences, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Tae Yasutake
- Department of Environmental and Molecular Health Sciences, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Towa Abe
- Department of Environmental and Molecular Health Sciences, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Shogo Misumi
- Department of Environmental and Molecular Health Sciences, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
12
|
Zhang W, Yu PC, Feng CY, Li CC. Asymmetric Total Synthesis of Pedrolide. J Am Chem Soc 2024; 146:2928-2932. [PMID: 38289153 DOI: 10.1021/jacs.3c14150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The asymmetric total synthesis of pedrolide (>200 mg) with an unprecedented [5-5-5-6-6-3] hexacyclic core (pedrolane) was achieved. Its unique bicyclo[2.2.1]heptane ring system was efficiently constructed via an enantioselective ene reaction of cyclopentadiene followed by a Wittig reaction, isomerization, and a diastereoselective intramolecular Diels-Alder reaction cascade. The highly oxygenated carane [6-3] ring system was synthesized via a ring-closing metathesis reaction followed by an unusual free carbene cyclopropanation. Furthermore, the 12 contiguous stereocenters of pedrolide were installed diastereoselectively.
Collapse
Affiliation(s)
- Wen Zhang
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Peng-Cheng Yu
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chen-Yun Feng
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chuang-Chuang Li
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
13
|
Kato T, Hagiwara K, Inoue M. Generation and Coupling of Radical Species from α-Alkoxy Bridgehead Carboxylic Acid, Selenide, Telluride, Acyl Selenide, and Acyl Telluride. Chem Pharm Bull (Tokyo) 2024; 72:767-771. [PMID: 39198181 DOI: 10.1248/cpb.c24-00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
α-Alkoxy bridgehead radicals enable intermolecular construction of sterically congested C-C bonds due to their sterically accessible nature. We implemented these radical species into total syntheses of various densely oxygenated natural products and demonstrated their exceptional versatility. Herein, we employed different precursors to generate the same α-alkoxy bridgehead radical and compared the efficacy of the precursors for coupling reactions. Specifically, the bridgehead radical of the trioxaadamantane structure was formed from α-alkoxy carboxylic acid, selenide/telluride, and acyl selenide/acyl telluride, and reacted with 4-((tert-butyldimethylsilyl)oxy)cyclopent-2-en-1-one and 5-oxo-1-cyclopentene-1-carbonitrile. The efficiency of the bridgehead radical formation and subsequent coupling reaction significantly depended on the structures of the precursors and acceptors as well as the reaction conditions. Our findings provide new insights for selecting the appropriate substrates of key coupling reactions in the total synthesis of complex natural products.
Collapse
Affiliation(s)
- Takehiro Kato
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Koichi Hagiwara
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
14
|
Appendino G, Gaeta S. Tigliane Diterpenoids. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 125:1-189. [PMID: 39546131 DOI: 10.1007/978-3-031-67180-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The distribution, chemistry, and molecular bioactivity of tiglianes are reviewed from the very beginning of the studies on these diterpenoids, summarizing their clinical and toxicological literature mostly in its more recent and controversial aspects, and critically analyzing various proposals for their biosynthesis.
Collapse
Affiliation(s)
- Giovanni Appendino
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani, 2, 28100, Novara, Italy.
| | - Simone Gaeta
- Research & Development-Chemistry Research, QBiotics Group Limited, 165, Moggill Road, Taringa, QLD, 4068, Australia
| |
Collapse
|
15
|
Sun Y, Feng J, Qin S, Fu S, Liu B. Asymmetric Construction of the Core of C 6, C 7-Epoxy Daphnane Diterpenoid Orthoesters. Org Lett 2023; 25:8072-8076. [PMID: 37916924 DOI: 10.1021/acs.orglett.3c03136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Asymmetric construction of the core of C6, C7-epoxy daphnane diterpenoid orthoesters is developed through a convergent synthetic strategy. The salient features include a diastereoselective nucleophilic assembly of two bulky cyclic fragments, an oxidative cleavage/transesterification/aldol cascade to fashion the seven-membered ring, and a base-mediated transesterification/retro-aldol/aldol/epoxidation cascade to install the epoxy moiety with proper stereochemistry.
Collapse
Affiliation(s)
- Ying Sun
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jing Feng
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Song Qin
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shaomin Fu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
16
|
Ma RF, Liu H, Zhao XC, Shan P, Sun P, Xue JJ, Wei G, Zhang H. Meroterpenoids from Daphne genkwa shows promising in vitro antitumor activity via inhibiting PI3K/Akt/mTOR signaling pathway in A549 cells. Bioorg Chem 2023; 140:106803. [PMID: 37659144 DOI: 10.1016/j.bioorg.2023.106803] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
Phytochemical investigation into the leaves and branches of Daphne genkwa afforded 25 meroterpenoids (1-16) including nine pairs of enantiomers (1a/1b-8a/8b and 12a/12b), among which 20 compounds have been reported in the present work for the first time. The structures with absolute configurations of the new molecules (excluding 10-13) were established via comprehensive spectroscopic analyses especially electronic circular dichroism (ECD) and Mosher's methods. A preliminary in vitro cell viability assay revealed remarkable cytotoxicities of selective compounds against A549 (lung), Hela (cervical), MDA-MB231 (breast) and MCF-7 (breast) cancer cells, and compound 8a showed the best inhibitory activity with IC50 values in the range of 3.12-4.67 μM toward the four cell lines. Subsequent in vitro antitumor evaluation of 8a disclosed that it could inhibit the proliferation and metastasis, as well as induce significant apoptosis and cycle arrest, of A549 cells. Further mechanistic investigations revealed that 8a could exert its antitumor activity via inhibiting the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Ren-Fen Ma
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Hu Liu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Xue-Chun Zhao
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Peipei Shan
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Ping Sun
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Jun-Juan Xue
- School of Chinese Medicine, Shandong College of Traditional Chinese Medicine, Yantai 264199, China
| | - Guodong Wei
- School of Chinese Medicine, Shandong College of Traditional Chinese Medicine, Yantai 264199, China
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| |
Collapse
|
17
|
Imamura Y, Takaoka K, Komori Y, Nagatomo M, Inoue M. Total Synthesis of Taxol Enabled by Inter- and Intramolecular Radical Coupling Reactions. Angew Chem Int Ed Engl 2023; 62:e202219114. [PMID: 36646637 DOI: 10.1002/anie.202219114] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
Taxol is a clinically used drug for the treatment of various types of cancers. Its 6/8/6/4-membered ring (ABCD-ring) system is substituted by eight oxygen functional groups and flanked by four acyl groups, including a β-amino acid side chain. Here we report a 34-step total synthesis of this unusually oxygenated and intricately fused structure. Inter- and intramolecular radical coupling reactions connected the A- and C-ring fragments and cyclized the B-ring, respectively. Functional groups of the A- and C-rings were then efficiently decorated by employing newly developed chemo-, regio-, and stereoselective reactions. Finally, construction of the D-ring and conjugation with the β-amino acid delivered taxol. The powerful coupling reactions and functional group manipulations implemented in the present synthesis provide new valuable information for designing multistep target-oriented syntheses of diverse bioactive natural products.
Collapse
Affiliation(s)
- Yusuke Imamura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kyohei Takaoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuma Komori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masanori Nagatomo
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
18
|
Shimakawa T, Nakamura S, Asai H, Hagiwara K, Inoue M. Total Synthesis of Puberuline C. J Am Chem Soc 2023; 145:600-609. [PMID: 36538394 DOI: 10.1021/jacs.2c11259] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Puberuline C (1) is an architecturally complex C19-diterpenoid alkaloid with a unique ring fusion pattern. The 6/7/5/6/6/6-membered rings (ABCDEF-rings) contain one tertiary amine and six oxygen functionalities, and possess 12 contiguously aligned stereocenters, three of which are quaternary. These structural features of 1 make its chemical construction exceptionally challenging. Here, we disclose the first total synthesis of 1. The synthesis was accomplished from 2-cyclohexenone (9) by integrating radical cascade and Mukaiyama aldol reactions as the key transformations. A double Mannich reaction fused the A- and E-rings, and Sonogashira coupling attached the C-ring, efficiently leading to ACE-rings with the requisite 19 carbons of 1. The chemically stable tertiary chloride of the ACE-ring structure was then transformed to the corresponding bridgehead radical, which participated in the simultaneous cyclization of the B- and F-rings via a highly organized radical cascade process. This unusual step installed five contiguous stereocenters, including two quaternary carbons, without damaging the preexisting multiple polar functionalities. Subsequently, the intramolecular Mukaiyama aldol reaction between silyl enol ether and acetal was realized by applying a combination of SnCl4 and ZnCl2, forging the last remaining D-ring of the hexacycle. Finally, 3 was elaborated into 1 through regio- and stereoselective functionalizations of the BCD-rings. Our novel radical-based strategy achieved the total synthesis of 1 in 32 total steps from simple 9, demonstrating the power of the radical cascade reaction to streamline the assembly of highly complex molecules.
Collapse
Affiliation(s)
- Tsukasa Shimakawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Shu Nakamura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Hibiki Asai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Koichi Hagiwara
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| |
Collapse
|
19
|
Zhan ZJ, Li S, Chu W, Yin S. Euphorbia diterpenoids: isolation, structure, bioactivity, biosynthesis, and synthesis (2013-2021). Nat Prod Rep 2022; 39:2132-2174. [PMID: 36111621 DOI: 10.1039/d2np00047d] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: 2013 to 2021As the characteristic metabolites of Euphorbia plants, Euphorbia diterpenoids have always been a hot topic in related science communities due to their intriguing structures and broad bioactivities. In this review, we intent to provide an in-depth and extensive coverage of Euphorbia diterpenoids reported from 2013 to the end of 2021, including 997 new Euphorbia diterpenoids and 78 known ones with latest progress. Multiple aspects will be summarized, including their occurrences, chemical structures, bioactivities, and syntheses, in which the structure-activity relationship and biosynthesis of this class will be discussed for the first time.
Collapse
Affiliation(s)
- Zha-Jun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Shen Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China.
| | - Wang Chu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Sheng Yin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China.
| |
Collapse
|
20
|
Vasilev VH, Spessert L, Yu K, Maimone TJ. Total Synthesis of Resiniferatoxin. J Am Chem Soc 2022; 144:16332-16337. [PMID: 36043948 DOI: 10.1021/jacs.2c08200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
From both structural and functional perspectives, the large family of daphnane diterpene orthoesters (DDOs) represent a truly remarkable class of natural products. As potent lead compounds for the treatment of pain, neurodegeneration, HIV/AIDS, and cancer, their medicinal potential continues to be heavily investigated, yet synthetic routes to DDO natural products remain rare. Herein we report a distinct approach to this class of complex diterpenes, highlighted by a 15-step total synthesis of the flagship DDO, resiniferatoxin.
Collapse
Affiliation(s)
- Vasil H Vasilev
- Department of Chemistry, University of California-Berkeley, 826 Latimer Hall, Berkeley, California 94720, United States
| | - Lukas Spessert
- Department of Chemistry, University of California-Berkeley, 826 Latimer Hall, Berkeley, California 94720, United States
| | - Kuan Yu
- Department of Chemistry, University of California-Berkeley, 826 Latimer Hall, Berkeley, California 94720, United States
| | - Thomas J Maimone
- Department of Chemistry, University of California-Berkeley, 826 Latimer Hall, Berkeley, California 94720, United States
| |
Collapse
|
21
|
Yang F, Porco JA. Unified, Asymmetric Total Synthesis of the Asnovolins and Related Spiromeroterpenoids: A Fragment Coupling Approach. J Am Chem Soc 2022; 144:12970-12978. [DOI: 10.1021/jacs.2c05366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Feng Yang
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - John A. Porco
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
22
|
Hu R, Huang JL, Yuan FY, Wei X, Zou MF, Tang GH, Li W, Yin S. Crotonianoids A-C, Three Unusual Tigliane Diterpenoids from the Seeds of Croton tiglium and Their Anti-Prostate Cancer Activity. J Org Chem 2022; 87:9301-9306. [PMID: 35758034 DOI: 10.1021/acs.joc.2c01024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Crotonianoids A-C (1-3), three unusual tigliane diterpenoids, were isolated from the seeds of Croton tiglium. Compound 1 is a 13,14:13,15-diseco-tigliane featuring a unique spiro[bicyclo[5.3.0]decane-2,5'-2'(3'H,4'H)-furanone] core; 2 is a 13,15-seco-tigliane incorporating a rare peroxide bridge between C-13 and C-15; and 3 is the first example of a phorbol ester with a 10R-configuration. Their structures were determined by spectroscopic, computational, and X-ray diffraction methods. Compounds 1 and 2 markedly inhibited the growth and survival of prostate cancer cell C4-2B at micromolar concentrations and induced cell apoptosis. Mechanistic study revealed that 1 and 2 could suppress androgen receptor (AR) signaling pathway by promoting the degradation of AR protein.
Collapse
Affiliation(s)
- Rong Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Jia-Luo Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Fang-Yu Yuan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Xun Wei
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Ming-Feng Zou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Gui-Hua Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Wei Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Sheng Yin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
23
|
|
24
|
Abstract
Herein, we report an enantioselective and convergent total synthesis of (+)-pepluanol A, a structurally intriguing Euphorbia diterpenoid natural product featuring a 5/6/7/3-fused tetracyclic skeleton, from known building blocks in 11 steps. The successful strategy relies on a phenyl selenide-mediated Morita-Baylis-Hillman type reaction as a connective step, forging the precursor for the key intramolecular Diels-Alder reaction to construct the congested 5/6/7-tricyclic framework. A diastereoconvergent cascade starting with an acid-induced removal of the C1-MOM protecting group followed by a retro-aldol/aldol reaction resulted in the formation of a single diastereomer. This stereoconvergency allowed for the successful substrate-controlled diastereoselective cyclopropanation of an advanced intermediate to establish the full carboskeleton of (+)-pepluanol A (1).
Collapse
Affiliation(s)
- Po Yuan
- Institute of Organic Chemistry, University of Konstanz, Universitätsstrasse 10, Konstanz 78464, Germany
| | - Tanja Gaich
- Institute of Organic Chemistry, University of Konstanz, Universitätsstrasse 10, Konstanz 78464, Germany
| |
Collapse
|
25
|
Abstract
Terpenoids constitute a broad class of natural compounds with tremendous variability in structure and bioactivity, which resulted in a strong interest of the chemical community to this class of natural products over the last 150 years. The presence of strained small rings renders the terpenoid targets interesting for chemical synthesis, due to limited number of available methods and stability issues. In this feature article, a number of recent examples of total syntheses of terpenoids with complex carbon frameworks featuring small rings are discussed. Specific emphasis is given to the new developments in strategical and tactical approaches to construction of such systems.
Collapse
Affiliation(s)
- Gleb A Chesnokov
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Karl Gademann
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
26
|
Cui Y, Lv J, Song T, Ren J, Wang Z. Highly efficient construction of an oxa-[3.2.1]octane-embedded 5-7-6 tricyclic carbon skeleton and ring-opening of the bridged ring via C-O bond cleavage. RSC Adv 2022; 12:9519-9523. [PMID: 35424922 PMCID: PMC8985103 DOI: 10.1039/d2ra01315k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/21/2022] [Indexed: 12/03/2022] Open
Abstract
We report herein a highly efficient strategy for construction of a bridged oxa-[3.2.1]octane-embedded 5–7–6 tricyclic carbon skeleton through [3 + 2] IMCC (intramolecular [3 + 2] cross-cycloaddition), and the substituents and/or stereochemistries on C-4, C-6, C-7 and C-10 fully match those in the rhamnofolane, tigliane and daphnane diterpenoids. Furthermore, ring-opening of the bridged oxa-[3.2.1]octane via C–O bond cleavage was also successfully achieved. We reported a highly efficient construction of an oxa-[3.2.1]octane-embedded 5–7–6 tricyclic carbon skeleton with a full match of the substituents and stereochemistries on C-4/-6/-7/-10 with those in the rhamnofolane/tigliane/daphnane diterpenoids.![]()
Collapse
Affiliation(s)
- Yi Cui
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 PR China
| | - Jiayuan Lv
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 PR China
| | - Tianhang Song
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 PR China
| | - Jun Ren
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 PR China
| | - Zhongwen Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 PR China
| |
Collapse
|
27
|
Späth G, Fürstner A. Total Synthesis of Mycinamicin IV as Integral Part of a Collective Approach to Macrolide Antibiotics. Chemistry 2022; 28:e202104400. [PMID: 34910333 PMCID: PMC9305142 DOI: 10.1002/chem.202104400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Indexed: 11/09/2022]
Abstract
The total synthesis of the 16-membered macrolide mycinamicin IV is outlined, which complements our previously disclosed, largely catalysis-based route to the aglycone. This work must also be seen in the context of our recent conquest of aldgamycin N, a related antibiotic featuring a similar core but a distinctly different functionalization pattern. Taken together, these projects prove that the underlying blueprint is integrative and hence qualifies for a collective approach to this prominent class of natural products. In both cases, the final glycosylation phase mandated close attention and was accomplished only after robust de novo syntheses of the (di)deoxy sugars of the desosamine, chalcose, mycinose and aldgarose types had been established. Systematic screening of the glycosidation promoter was also critically important for success.
Collapse
Affiliation(s)
- Georg Späth
- Max-Planck-Institut für Kohlenforschung45470Mülheim/RuhrGermany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung45470Mülheim/RuhrGermany
| |
Collapse
|
28
|
Hikone Y, Kato T, Nagatomo M, Inoue M. Total Synthesis of Resiniferatoxin Enabled by Photocatalytic Decarboxylative Radical Cyclization. Org Lett 2022; 24:929-933. [PMID: 35043639 DOI: 10.1021/acs.orglett.1c04286] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Resiniferatoxin (1) is a complex daphnane diterpenoid with a highly oxygenated 5/7/6-membered ABC-ring system. Here we report a new synthetic route to 1 that requires 27 steps from a starting d-ribose derivative. The carbon spacer and A-ring are sequentially attached to the C-ring by radical allylation and Stille coupling reactions, respectively. An Ir(III)-catalyzed photoinduced decarboxylative radical reaction then forged the sterically hindered bond between the tetra- and trisubstituted carbons to cyclize the central seven-membered B-ring.
Collapse
Affiliation(s)
- Yuto Hikone
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takehiro Kato
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masanori Nagatomo
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
29
|
Yu XC, Zhang CC, Wang LT, Li JZ, Li T, Wei WT. The synthesis of seven- and eight-membered rings by radical strategies. Org Chem Front 2022. [DOI: 10.1039/d2qo00774f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Radical strategies for preparation of seven- or eight-membered rings.
Collapse
Affiliation(s)
- Xuan-Chi Yu
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Can-Can Zhang
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ling-Tao Wang
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jiao-Zhe Li
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ting Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, 473061, China
| | - Wen-Ting Wei
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
30
|
Xu M, Cai Q. Progress of Catalytic Asymmetric Diels-Alder Reactions of 2-Pyrones. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202109025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Affiliation(s)
- Shaomin Fu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Rd Chengdu Sichuan 610064 China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Rd Chengdu Sichuan 610064 China
| |
Collapse
|
32
|
Kim KE, Kim AN, McCormick CJ, Stoltz BM. Late-Stage Diversification: A Motivating Force in Organic Synthesis. J Am Chem Soc 2021; 143:16890-16901. [PMID: 34614361 PMCID: PMC9285880 DOI: 10.1021/jacs.1c08920] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interest in therapeutic discovery typically drives the preparation of natural product analogs, but these undertakings contribute significant advances for synthetic chemistry as well. The need for a highly efficient and scalable synthetic route to a complex molecular scaffold for diversification frequently inspires new methodological development or unique application of existing methods on structurally intricate systems. Additionally, synthetic planning with an aim toward late-stage diversification can provide access to otherwise unavailable compounds or facilitate preparation of complex molecules with diverse patterns of substitution around a shared carbon framework. For these reasons among others, programs dedicated to the diversification of natural product frameworks and other complex molecular scaffolds have been increasing in popularity, a trend likely to continue given their fruitfulness and breadth of impact. In this Perspective, we discuss our experience using late-stage diversification as a guiding principle for the synthesis of natural product analogs and reflect on the impact such efforts have on the future of complex molecule synthesis.
Collapse
Affiliation(s)
- Kelly E Kim
- Sciences and Mathematics Division, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, Washington 98402, United States
| | - Alexia N Kim
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Carter J McCormick
- Sciences and Mathematics Division, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, Washington 98402, United States
| | - Brian M Stoltz
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|