1
|
Patel RI, Saxena B, Sharma A. Photoactivation of Thianthrenium Salts: An Electron-Donor-Acceptor (EDA)-Complex Approach. J Org Chem 2025; 90:6617-6643. [PMID: 40368878 DOI: 10.1021/acs.joc.5c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Thianthrenium salts have emerged as one of the most versatile reagents, gaining significant popularity within the synthetic community for their utility in the construction of C-C and C-X (X = N, O, S, P, halogens) bonds. The use of photoredox and transition metal catalysis with thianthrenium salts for C-C and C-heteroatom bond formation is well established. However, most of these methods require elevated temperatures, expensive catalysts, and ligands under stringent conditions for effective execution. In contrast, the photocatalysis- and transition-metal-free approaches for constructing C-C and C-X bonds using thianthrenium salt derivatives have become increasingly sought after. In this regard, electron-donor-acceptor (EDA)-complex reactions have emerged as a powerful strategy in organic synthesis, eliminating the need for photocatalysts under visible light irradiation. EDA-complex photochemistry exploits the electron-acceptor properties of thianthrenium salts, facilitating the rapid generation of radical intermediates via the C-S bond cleavage. These radical intermediates play a pivotal role in enabling a variety of valuable C-C and C-X formations. In this Perspective, we highlight significant advances in the EDA-complex-mediated reactions involving thianthrenium salts with mechanisms, substrate scope, and limitations for constructing C-C and C-heteroatom bonds. For the sake of brevity, the article is organized into five main sections: (1) Nitrogen-based donor reactions, (2) Oxygen-based donor reactions, (3) Sulfur-based donor reactions, (4) Phosphorus-based donor reactions, and (5) π-based donor reactions, with a focus on C-C, C-S, C-B and C-P bond formations.
Collapse
Affiliation(s)
- Roshan I Patel
- Green Organic Synthesis Laboratory, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Barakha Saxena
- Green Organic Synthesis Laboratory, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Anuj Sharma
- Green Organic Synthesis Laboratory, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| |
Collapse
|
2
|
Tyagi K, Kumari R, Venkatesh V. Harnessing the Sulfur-for-Oxygen Shift: A Magic Bullet for Dynamic Photophysical and Anticancer Activities of Indole-Barbituric Acid Construct. ChemMedChem 2025; 20:e202400849. [PMID: 39786330 DOI: 10.1002/cmdc.202400849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/12/2024] [Accepted: 01/08/2025] [Indexed: 01/12/2025]
Abstract
The development of small molecule-based drugs emerged as a cornerstone of modern drug discovery. Structural activity relationship (SAR) studies in medicinal chemistry are crucial for lead optimization, where a subtle change in the substituent can significantly alter its binding affinity with the biological target. Herein, a highly efficient single-atom substitution (SAS) approach has been developed, where sulfur for oxygen strategy is utilized as a powerful molecular editing technique to identify N-vinyl Indole-thiobarbituric acid (6 a) as a novel small molecule-based scaffold with tunable photophysical and antiproliferative activities. A series of NIR-emitting indole-barbituric/thiobarbituric acid conjugates exhibiting aggregation-induced emission (AIE) were prepared, where the replacement of oxygen for sulfur strategy emerged as a magic bullet. On the evaluation of photophysical properties and chemopreventive efficacies, a significant improvement in the absorption and emission profile, cellular uptake, and antiproliferative activity was noted for sulfur counterparts. From the pool of the molecules, the lead molecule 6 a unveils a 55 nm emission shift, 142-fold increased anticancer profile, and ~4-fold elevated cellular uptake. Furthermore, the colocalization experiment unravels the nuclear localization of 6 a, where it causes severe DNA damage, arrests the cell cycle in the G2/M phase, and leads to the activation of p53-mediated apoptosis. Our experimental findings represent 6 a as a potential lead molecule possessing excellent anticancer potency in the HCT 116 cell line and HCT 116-derived 3D spheroid model.
Collapse
Affiliation(s)
- Kartikay Tyagi
- Laboratory of Chemical Biology and Medicinal Chemistry, Department of Chemistry, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Reena Kumari
- Laboratory of Chemical Biology and Medicinal Chemistry, Department of Chemistry, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - V Venkatesh
- Laboratory of Chemical Biology and Medicinal Chemistry, Department of Chemistry, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
3
|
Wang QD, Chen X, Wu YS, Miao C, Yang JM, Shen ZL. Palladium-Catalyzed α-Arylation of Sulfoxonium Ylides with Aryl Thianthrenium Salts via C-S and C-H Bond Activation. Chem Asian J 2025:e202401873. [PMID: 40016172 DOI: 10.1002/asia.202401873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/01/2025]
Abstract
Diverse α-aryl α-carbonyl sulfoxonium ylides were efficiently synthesized in yields ranging from moderate to high via a palladium-catalyzed α-arylation of sulfoxonium ylides with aryl thianthrenium salts. The reactions proceeded smoothly via C-S and C-H bond functionalization, exhibiting broad substrate scope and good compatibility to various functionalities. In addition, the scale-up synthesis could be achieved, and the one-pot protocol commencing from the use of simple arene as the precursor of aryl thianthrenium salt could also be accomplished.
Collapse
Affiliation(s)
- Qing-Dong Wang
- School of Pharmacy, Yancheng Teachers University, Yancheng, 224007, China
| | - Xue Chen
- School of Pharmacy, Yancheng Teachers University, Yancheng, 224007, China
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yuan-Shuai Wu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Chengping Miao
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Jin-Ming Yang
- School of Pharmacy, Yancheng Teachers University, Yancheng, 224007, China
| | - Zhi-Liang Shen
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
4
|
Mravíková Z, Peňaška T, Horniaková D, Šebesta R. Mechanochemical Palladium-Catalyzed Cross-Coupling of Thianthrenium Salts and Arylboronic Acids. CHEMSUSCHEM 2025:e202402599. [PMID: 39831425 DOI: 10.1002/cssc.202402599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 01/22/2025]
Abstract
Cross-coupling reactions are indispensable for the construction of complex molecular scaffolds. In this work, we developed a sustainable methodology for the cross-coupling reaction of arene thianthrenium salts with aryl boronic acids, which can be effectively realized under mechanochemical conditions. Liquid-assisted grinding (LAG) enabled fast and high-yielding synthesis of a range of biaryls via Pd/RuPhos-catalyzed cross-coupling. The transformation works under ambient temperature and on air. Environmentally friendly solvent 2-methyltetrahydrofurane (Me-THF) was used as a LAG additive. Moreover, the major by-product of the cross-coupling reaction, thianthrene, can be recovered and reused.
Collapse
Affiliation(s)
- Zuzana Mravíková
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Mlynská dolina, Ilkovičova 6, Bratislava, 842 15, Slovakia
| | - Tibor Peňaška
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Mlynská dolina, Ilkovičova 6, Bratislava, 842 15, Slovakia
| | - Daniela Horniaková
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Mlynská dolina, Ilkovičova 6, Bratislava, 842 15, Slovakia
| | - Radovan Šebesta
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Mlynská dolina, Ilkovičova 6, Bratislava, 842 15, Slovakia
| |
Collapse
|
5
|
Du Z, Gong W, Yuan S, Ren Y, Huang C, Zeng X. Copper-Catalyzed Difluoromethylation of Alkenyl Thianthrenium Salts. Org Lett 2024; 26:11062-11066. [PMID: 39635920 DOI: 10.1021/acs.orglett.4c04250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
We have developed a novel and straightforward protocol that facilitates the transformation of alkenylsulfonium salts leading to the direct synthesis of E-difluoromethylated alkenes. The success of this method relies on the use of copper catalysis and Vicic-Mikami reagent (DMPU)2Zn(CF2H)2. These mild protocols offer the advantage of selectively synthesizing either aromatic or aliphatic difluoromethylated alkenes. Furthermore, our methodology extends to the perfluoroalkylation of alkenylsulfonium salts. Notably, this approach is conducive to large-scale synthesis and holds promise for diverse applications.
Collapse
Affiliation(s)
- Zhibin Du
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Wenbo Gong
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Shulin Yuan
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yifan Ren
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Chenteng Huang
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiaojun Zeng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| |
Collapse
|
6
|
Timmann S, Feng Z, Alcarazo M. Recent Applications of Sulfonium Salts in Synthesis and Catalysis. Chemistry 2024; 30:e202402768. [PMID: 39282878 DOI: 10.1002/chem.202402768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Indexed: 11/06/2024]
Abstract
The use of sulfonium salts in organic synthesis has experienced a dramatic increase during the last years that can arguably be attributed to three main factors; the development of more direct and efficient synthetic methods that make easily available sulfonium reagents of a wide structural variety, their intrinsic thermal stability, which facilitates their structural modification, handling and purification even on large scale, and the recognition that their reactivity resembles that of hypervalent iodine compounds and therefore, they can be used as replacement of such reagents for most of their uses. This renewed interest has led to the improvement of already existing reactions, as well as to the discovery of unprecedented transformations; in particular, by the implementation of photocatalytic protocols. This review aims to summarize the most recent advancements on the area focusing on the work published during and after 2020. The scope of the methods developed will be highlighted and their limitations critically evaluated.
Collapse
Affiliation(s)
- Sven Timmann
- Institut für Organische und Biomolekulare Chemie, Georg-August University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Zeyu Feng
- Institut für Organische und Biomolekulare Chemie, Georg-August University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie, Georg-August University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| |
Collapse
|
7
|
Ortiz KG, Brusoe AT, An J, Chong E, Wu L. Green Synthesis of Morpholines via Selective Monoalkylation of Amines. J Am Chem Soc 2024; 146:29847-29856. [PMID: 39415732 DOI: 10.1021/jacs.4c11708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Morpholines are common heterocycles in pharmaceutical and agricultural products, yet methods to synthesize them from 1,2-amino alcohols are inefficient. We report the simple, high yielding, one or two-step, redox neutral protocol using inexpensive reagents (ethylene sulfate and tBuOK) for the conversion of 1,2-amino alcohols to morpholines. Key to this methodology is the identification of general conditions that allow for the clean isolation of monoalkylation products derived from a simple SN2 reaction between an amine and ethylene sulfate. Experiments suggest that the degree of selectivity is dependent upon the structure of reacting 1,2-amino alcohol as well as the unique properties of ethylene sulfate. This method can be used for the synthesis of a variety of morpholines containing substituents at various positions, including 28 examples derived from primary amines and multiple examples contained in known active pharmaceutical ingredients. We have conducted multiple examples on >50 g scale. We have also demonstrated the formal synthesis of a morpholine from a simple primary amine using ethylene sulfate. Overall, while this new methodology has many environmental and safety benefits relative to the traditional methods used to prepare morpholines from 1,2-amino alcohols, the most striking feature is the facile selective monoalkylation of a variety of primary amines. We have also explored various reactions beyond those related to the synthesis of morpholines, including obtaining proof-of-principle that ethylene sulfate can be used for the synthesis of piperazines and as a 2-carbon electrophile for fragment couplings.
Collapse
Affiliation(s)
- Kacey G Ortiz
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877-0368, United States
| | - Andrew T Brusoe
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877-0368, United States
| | - Jason An
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877-0368, United States
| | - Eugene Chong
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877-0368, United States
| | - Lifen Wu
- Material and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877-0368, United States
| |
Collapse
|
8
|
Fu QQ, Liang Y, Sun XX, Chu XQ, Xu H, Zhou X, Rao W, Shen ZL. Palladium-Catalyzed Cross-Electrophile Couplings of Aryl Thianthrenium Salts with Aryl Bromides via C-S Bond Activation. Org Lett 2024; 26:8577-8582. [PMID: 39348243 DOI: 10.1021/acs.orglett.4c03208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
We report here a step-economic and cost-effective cross-electrophile coupling of aryl thianthrenium salts with widely available aryl bromides, which proceeded effectively via C-S bond activation at ambient temperature in THF in the presence of a palladium catalyst, magnesium turnings, and lithium chloride to enable the facile assembly of a wide array of structurally diverse biaryls in modest to good yields with good functional group compatibility. In addition, the gram-scale reaction could also be realized.
Collapse
Affiliation(s)
- Qian-Qian Fu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yuan Liang
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiao-Xiao Sun
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hao Xu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaocong Zhou
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Weidong Rao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
9
|
Shi H, Zhang J, Li X, He J, Sun Y, Wu J, Du Y. Thianthrene/TfOH-catalyzed electrophilic halogenations using N-halosuccinimides as the halogen source. Chem Sci 2024; 15:13058-13067. [PMID: 39148788 PMCID: PMC11323329 DOI: 10.1039/d4sc04461d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
Organohalides are vital organic building blocks with applications spanning various fields. However, direct halogenation of certain neutral or unreactive substrates by using solely the regular halogenating reagents has proven challenging. Although various halogenation approaches via activating halogenating reagents or substrates have emerged, a catalytic system enabling broad substrate applicability and diverse halogenation types remains relatively underexplored. Inspired by the halogenation of arenes via thianthrenation of arenes, here we report that thianthrene, in combined use with trifluoromethanesulfonic acid (TfOH), could work as an effective catalytic system to activate regular halogenating reagents (NXS). This new protocol could accomplish multiple types of halogenation of organic compounds including aromatics, olefins, alkynes and ketones. The mechanism study indicated that a highly reactive electrophilic halogen thianthrenium species, formed in situ from the reaction of NXS with thianthrene in the presence of TfOH, was crucial for the efficient halogenation process.
Collapse
Affiliation(s)
- Haofeng Shi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University Tianjin 300072 China
| | - Jingran Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University Tianjin 300072 China
| | - Xuemin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University Tianjin 300072 China
| | - Jiaxin He
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University Tianjin 300072 China
| | - Yuli Sun
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University Tianjin 300072 China
| | - Jialiang Wu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University Tianjin 300072 China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University Tianjin 300072 China
| |
Collapse
|
10
|
Zhao YH, Gu XW, Wu XF. Palladium-Catalyzed Carbonylative Sonogashira Coupling of Aryl Thianthrenium Salts with Arylalkynes. Org Lett 2024; 26:6507-6511. [PMID: 39023056 DOI: 10.1021/acs.orglett.4c02440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Alkynones are valuable compounds with applications in various areas. In this work, we developed an efficient carbonylation procedure for the carbonylative cross-coupling of aryl thianthrenium salts with aromatic alkynes. Various useful alkynones were produced in moderate to excellent yields under mild conditions. Notably, among the various tolerated functional groups, the bromide group can be maintained, which is ready for further coupling reactions.
Collapse
Affiliation(s)
- Yan-Hua Zhao
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Xing-Wei Gu
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning, China
| |
Collapse
|
11
|
Mondal B, Chatterjee A, Saha NC, Jana M, Saha J. Thianthrenation-promoted photoinduced alkene difunctionalization and aryl allylation with Morita-Baylis-Hillman adducts. Chem Commun (Camb) 2024; 60:7184-7187. [PMID: 38904419 DOI: 10.1039/d4cc01792g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
An organophotoredox-catalyzed alkoxyallylation of feed-stock olefins, through thianthrenation using a Morita-Baylis-Hillman adduct as an allylating agent, is described. Site-selective addition of MeOH to an alkene-thianthrenium salt and its subsequent conversion into a nucleophilic radical species forms the basis of this unique difunctionalization strategy. The scope is also expanded into radical aryl allylation.
Collapse
Affiliation(s)
- Biplab Mondal
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research (CBMR), Lucknow 226014, India
| | - Ayan Chatterjee
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research (CBMR), Lucknow 226014, India
| | | | - Manoranjan Jana
- Department of Chemistry, University of Kalyani, West Bengal, India
| | - Jaideep Saha
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Mohali 160062, India.
| |
Collapse
|
12
|
Wu H, Wang J, Jing H, Zhang Z, Ou W, Su C. Base-Mediated Divergent Synthesis of Spiro-heterocycles Using Pronucleophiles and Ethylene via Thianthrenation. Org Lett 2024; 26:5415-5419. [PMID: 38917369 DOI: 10.1021/acs.orglett.4c01435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Spirocyclic compounds are abundant in biologically active products. However, the divergent synthesis of spirocyclic compounds using low-cost and abundant available starting materials remains a challenge. Herein, we report an effective method for producing spirocyclic motifs using a cyclic β-carbonyl ester or amide and ethylene via thianthrenation. This strategy highlights the exciting possibility of utilizing abundant ethylene as a C-2 synthon and allows regulating the core structure of the spirocyclic compound by simply altering the base type.
Collapse
Affiliation(s)
- Hongru Wu
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Jie Wang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Haochuan Jing
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Zhaofei Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Wei Ou
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Chenliang Su
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
13
|
Luo M, Zhu S, Yang C, Guo L, Xia W. Photoinduced Regioselective Fluorination and Vinylation of Remote C(sp 3)-H Bonds Using Thianthrenium Salts. Org Lett 2024; 26:4388-4393. [PMID: 38752694 DOI: 10.1021/acs.orglett.4c01420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Herein, a photoredox-driven practical protocol for fluorinated alkene synthesis using easily accessible and modular thianthrenium salts with electron-withdrawing alkynes or propargyl alcohols is reported. Vinyl radical intermediates, formed by the reaction between the alkyl or trifluoromethyl thianthrenium salts and electronically diverse alkynes, can mediate the key 1,5-HAT process of regioselective C(sp3)-H fluorination and vinylation. This protocol provides straightforward access to structurally diverse trifluoromethyl- or distally fluoro-functionalized alkene products in 21-79% yields with a broad substrate range under mild photocatalytic conditions.
Collapse
Affiliation(s)
- Mengqi Luo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Shibo Zhu
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
14
|
Targos K, Gogoi AR, Rentería-Gómez Á, Ji Kim M, Gutierrez O, Wickens ZK. Mechanism of Z-Selective Allylic Functionalization via Thianthrenium Salts. J Am Chem Soc 2024; 146:13689-13696. [PMID: 38739163 PMCID: PMC12057759 DOI: 10.1021/jacs.4c00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
A detailed mechanistic study of the Z-selective allylic functionalization via thianthrenium salts is presented. Kinetic analyses, deuterium labeling experiments, and computational methods are used to rationalize the observed reactivity and selectivity. We find that the reaction proceeds via a rate-determining and stereodetermining allylic deprotonation of an alkenylthianthrenium species. The Z-configuration of the resultant allylic ylide is translated into the Z-allylic amine product through a sequence of subsequent fast and irreversible steps: protonation to form a Z-allylic thianthrenium electrophile and then regioselective substitution by the nucleophile. In the stereodetermining deprotonation step, computational studies identified a series of stabilizing nonbonding interactions in the Z-alkene-forming transition state that contribute to the stereoselectivity.
Collapse
Affiliation(s)
- Karina Targos
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
| | - Achyut R. Gogoi
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Ángel Rentería-Gómez
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Min Ji Kim
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Zachary K. Wickens
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
15
|
Kumar R, Dohi T, Zhdankin VV. Organohypervalent heterocycles. Chem Soc Rev 2024; 53:4786-4827. [PMID: 38545658 DOI: 10.1039/d2cs01055k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
This review summarizes the structural and synthetic aspects of heterocyclic molecules incorporating an atom of a hypervalent main-group element. The term "hypervalent" has been suggested for derivatives of main-group elements with more than eight valence electrons, and the concept of hypervalency is commonly used despite some criticism from theoretical chemists. The significantly higher thermal stability of hypervalent heterocycles compared to their acyclic analogs adds special features to their chemistry, particularly for bromine and iodine. Heterocyclic compounds of elements with double bonds are not categorized as hypervalent molecules owing to the zwitterionic nature of these bonds, resulting in the conventional 8-electron species. This review is focused on hypervalent heterocyclic derivatives of nonmetal main-group elements, such as boron, silicon, nitrogen, carbon, phosphorus, sulfur, selenium, bromine, chlorine, iodine(III) and iodine(V).
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Chemistry, J C Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, 121006, Haryana, India.
| | - Toshifumi Dohi
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Viktor V Zhdankin
- Department of Chemistry and Biochemistry, 1038 University Drive, 126 HCAMS University of Minnesota Duluth, Duluth, Minnesota 55812, USA.
| |
Collapse
|
16
|
Kaplaneris N, Akdeniz M, Fillols M, Arrighi F, Raymenants F, Sanil G, Gryko DT, Noël T. Photocatalytic Functionalization of Dehydroalanine-Derived Peptides in Batch and Flow. Angew Chem Int Ed Engl 2024; 63:e202403271. [PMID: 38497510 DOI: 10.1002/anie.202403271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/19/2024]
Abstract
Unnatural amino acids, and their synthesis by the late-stage functionalization (LSF) of peptides, play a crucial role in areas such as drug design and discovery. Historically, the LSF of biomolecules has predominantly utilized traditional synthetic methodologies that exploit nucleophilic residues, such as cysteine, lysine or tyrosine. Herein, we present a photocatalytic hydroarylation process targeting the electrophilic residue dehydroalanine (Dha). This residue possesses an α,β-unsaturated moiety and can be combined with various arylthianthrenium salts, both in batch and flow reactors. Notably, the flow setup proved instrumental for efficient scale-up, paving the way for the synthesis of unnatural amino acids and peptides in substantial quantities. Our photocatalytic approach, being inherently mild, permits the diversification of peptides even when they contain sensitive functional groups. The readily available arylthianthrenium salts facilitate the seamless integration of Dha-containing peptides with a wide range of arenes, drug blueprints, and natural products, culminating in the creation of unconventional phenylalanine derivatives. The synergistic effect of the high functional group tolerance and the modular characteristic of the aryl electrophile enables efficient peptide conjugation and ligation in both batch and flow conditions.
Collapse
Affiliation(s)
- Nikolaos Kaplaneris
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Merve Akdeniz
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Méritxell Fillols
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Francesca Arrighi
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Fabian Raymenants
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Gana Sanil
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Timothy Noël
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Moon H, Jung J, Choi JH, Chung WJ. Stereospecific syn-dihalogenations and regiodivergent syn-interhalogenation of alkenes via vicinal double electrophilic activation strategy. Nat Commun 2024; 15:3710. [PMID: 38697968 PMCID: PMC11066093 DOI: 10.1038/s41467-024-47942-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024] Open
Abstract
Whereas the conventional anti-dihalogenation of alkenes is a valuable synthetic tool with highly predictable stereospecificity, the restricted reaction mechanism makes it challenging to alter the diastereochemical course into the complementary syn-dihalogenation process. Only a few notable achievements were made recently by inverting one of the stereocenters after anti-addition using a carefully designed reagent system. Here, we report a conceptually distinctive strategy for the simultaneous double electrophilic activation of the two alkene carbons from the same side. Then, the resulting vicinal leaving groups can be displaced iteratively by nucleophilic halides to complete the syn-dihalogenation. For this purpose, thianthrenium dication is employed, and all possible combinations of chlorine and bromine are added onto internal alkenes successfully, particularly resulting in the syn-dibromination and the regiodivergent syn-bromochlorination.
Collapse
Affiliation(s)
- Hyeon Moon
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jungi Jung
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jun-Ho Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| | - Won-Jin Chung
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
18
|
Timmann S, Wu TH, Golz C, Alcarazo M. Reactivity of α-diazo sulfonium salts: rhodium-catalysed ring expansion of indenes to naphthalenes. Chem Sci 2024; 15:5938-5943. [PMID: 38665534 PMCID: PMC11040645 DOI: 10.1039/d4sc01138d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
In the presence of catalytic amounts of the paddlewheel dirhodium complex Rh2(esp)2, α-diazo dibenzothiophenium salts generate highly electrophilic Rh-coordinated carbenes, which evolve differently depending on their substitution pattern. Keto-moieties directly attached to the azomethinic carbon promote carbene insertion into one of the adjacent C-S bonds, giving rise to highly electrophilic dibenzothiopyrilium salts. This intramolecular pathway is not operative when the carbene carbon bears ester or trifluoromethyl substituents; in fact, these species react with olefins delivering easy to handle cyclopropyl-substituted sulfonium salts. When indenes are the olefins of choice, the initially formed cyclopropyl rings smoothly open with concomitant departure of dibenzothiophene, enabling access to a series of 2-functionalized naphthalenes.
Collapse
Affiliation(s)
- Sven Timmann
- Institut für Organische und Biomolekulare Chemie, Georg August Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| | - Tun-Hui Wu
- Institut für Organische und Biomolekulare Chemie, Georg August Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie, Georg August Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie, Georg August Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| |
Collapse
|
19
|
Kikuchi J, Nakajima R, Yoshikai N. Three-component N-alkenylation of azoles with alkynes and iodine(III) electrophile: synthesis of multisubstituted N-vinylazoles. Beilstein J Org Chem 2024; 20:891-897. [PMID: 38711595 PMCID: PMC11070964 DOI: 10.3762/bjoc.20.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/11/2024] [Indexed: 05/08/2024] Open
Abstract
A stereoselective N-alkenylation of azoles with alkynes and iodine(III) electrophile is reported. The reaction between various azoles and internal alkynes is mediated by benziodoxole triflate as the electrophile in a trans-fashion, affording azole-bearing vinylbenziodoxoles in moderate to good yields. The tolerable azole nuclei include pyrazole, indazole, 1,2,3-triazole, benzotriazole, and tetrazole. The iodanyl group in the product can be leveraged as a versatile synthetic handle, allowing for the preparation of hitherto inaccessible types of densely functionalized N-vinylazoles.
Collapse
Affiliation(s)
- Jun Kikuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Roi Nakajima
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Naohiko Yoshikai
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
20
|
Kim MJ, Targos K, Holst DE, Wang DJ, Wickens ZK. Alkene Thianthrenation Unlocks Diverse Cation Synthons: Recent Progress and New Opportunities. Angew Chem Int Ed Engl 2024; 63:e202314904. [PMID: 38329158 PMCID: PMC11503931 DOI: 10.1002/anie.202314904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Indexed: 02/09/2024]
Abstract
Oxidative alkene functionalization reactions are a fundamental class of complexity-building organic transformations. However, the majority of established approaches rely on electrophilic reagents that limit the diversity of groups that can be installed. Recent advances have established a new approach that instead relies on the transformation of alkenes into thianthrene-derived cationic electrophiles. These linchpin intermediates can be generated selectively and undergo a diverse array of mechanistically distinct reactions with abundant nucleophiles. Taken together, this unlocks a suite of net oxidative alkene transformations that have been elusive using conventional strategies. This Minireview describes these advances and is organized around the three distinct synthons formally accessible from alkenes via thianthrenation: 1) alkenyl cations; 2) vicinal dications; 3) allyl cations. Throughout the Minireview, we illustrate how thianthrenium salts address key limitations endemic to classic alkene-derived electrophiles and highlight the mechanistic origins of these distinctions wherever possible.
Collapse
Affiliation(s)
| | | | - Dylan E. Holst
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706 (USA)
| | - Diana J. Wang
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706 (USA)
| | - Zachary K. Wickens
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706 (USA)
| |
Collapse
|
21
|
Dang QQ, Liu XN, Li H, Wen ZK. Desulfurative Functionalization of β-Acyl Allylic Sulfides with N-H Free Indoles Highly Regioselective at C3 and N1 Positions: Rapid Access to α-Branched Enones. J Org Chem 2024; 89:5200-5206. [PMID: 38500359 DOI: 10.1021/acs.joc.4c00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
A regiodivergent allylation of 1H-indoles highly selectively at the C3 and N1 positions with β-acyl allylic sulfides through desulfurative C-C/C-N bond-forming reactions has been developed under mild conditions. Notably, the remarkable site-selective switch can be achieved by a delicate choice of solvents and bases. This cost-efficient method displays a broad substrate scope, good functional compatibility, and excellent site-selectivity, thus offering a divergent synthesis of indole substituted α-branched enones, which possess diverse potential opportunities for further applications and derivatization.
Collapse
Affiliation(s)
- Qin-Qin Dang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xue-Ni Liu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Hui Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Zhen-Kang Wen
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
22
|
Hartmann P, Bohdan K, Hommrich M, Juliá F, Vogelsang L, Eirich J, Zangl R, Farès C, Jacobs JB, Mukhopadhyay D, Mengeler JM, Vetere A, Sterling MS, Hinrichs H, Becker S, Morgner N, Schrader W, Finkemeier I, Dietz KJ, Griesinger C, Ritter T. Chemoselective umpolung of thiols to episulfoniums for cysteine bioconjugation. Nat Chem 2024; 16:380-388. [PMID: 38123842 PMCID: PMC10914617 DOI: 10.1038/s41557-023-01388-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 10/27/2023] [Indexed: 12/23/2023]
Abstract
Cysteine conjugation is an important tool in protein research and relies on fast, mild and chemoselective reactions. Cysteinyl thiols can either be modified with prefunctionalized electrophiles, or converted into electrophiles themselves for functionalization with selected nucleophiles in an independent step. Here we report a bioconjugation strategy that uses a vinyl thianthrenium salt to transform cysteine into a highly reactive electrophilic episulfonium intermediate in situ, to enable conjugation with a diverse set of bioorthogonal nucleophiles in a single step. The reactivity profile can connect several nucleophiles to biomolecules through a short and stable ethylene linker, ideal for introduction of infrared labels, post-translational modifications or NMR probes. In the absence of reactive exogenous nucleophiles, nucleophilic amino acids can react with the episulfonium intermediate for native peptide stapling and protein-protein ligation. Ready synthetic access to isotopologues of vinyl thianthrenium salts enables applications in quantitative proteomics. Such diverse applications demonstrate the utility of vinyl-thianthrenium-based bioconjugation as a fast, selective and broadly applicable tool for chemical biology.
Collapse
Affiliation(s)
- Philipp Hartmann
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Kostiantyn Bohdan
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Moritz Hommrich
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Fabio Juliá
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Lara Vogelsang
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Jürgen Eirich
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Rene Zangl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt/Main, Frankfurt/Main, Germany
| | - Christophe Farès
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | | | | | | | - Alessandro Vetere
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | | | - Heike Hinrichs
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Stefan Becker
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt/Main, Frankfurt/Main, Germany
| | - Wolfgang Schrader
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | | | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany.
| |
Collapse
|
23
|
Wang Z, Shao Z, Wang C, Wen J. Base-Promoted Ring-Opening Hydroxylation of Cyclic Sulfonium Salts. J Org Chem 2024; 89:3084-3091. [PMID: 38335534 DOI: 10.1021/acs.joc.3c02546] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Herein, we reported a general strategy for the synthesis of sulfur-containing primary alcohol derivatives by base-promoted ring-opening hydroxylation of cyclic sulfonium salts. A variety of sulfonium salts were successfully transformed into the desired hydroxylated products in moderate to excellent yields with good functional group tolerance. Moreover, the one-pot synthesis, scale-up reaction, and late-stage functionalization of complex molecules demonstrated the practicability of this synthetic protocol in the field of synthetic chemistry.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zeyu Shao
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Cheng Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jian Wen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
24
|
Site-selective episulfonium formation on protein surfaces. Nat Chem 2024; 16:312-313. [PMID: 38355828 DOI: 10.1038/s41557-024-01445-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
|
25
|
Zeisel L, Felber JG, Scholzen KC, Schmitt C, Wiegand AJ, Komissarov L, Arnér ESJ, Thorn-Seshold O. Piperazine-Fused Cyclic Disulfides Unlock High-Performance Bioreductive Probes of Thioredoxins and Bifunctional Reagents for Thiol Redox Biology. J Am Chem Soc 2024; 146:5204-5214. [PMID: 38358897 DOI: 10.1021/jacs.3c11153] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
We report piperazine-fused six-membered-cyclic disulfides as redox substrates that unlock best-in-class bioreduction probes for live cell biology, since their self-immolation after reduction is unprecedentedly rapid. We develop scalable, diastereomerically pure, six-step syntheses that access four key cis- and trans-piperazine-fused cyclic dichalcogenides without chromatography. Fluorogenic redox probes using the disulfide piperazines are activated >100-fold faster than the prior art monoamines, allowing us to deconvolute reduction and cyclization rates during activation. The cis- and trans-fused diastereomers have remarkably different reductant specificities, which we trace back to piperazine boat/chair conformation effects: the cis-fused disulfide C-DiThia is activated only by strong vicinal dithiol reductants, but the trans-disulfide T-DiThia is activated even by moderate concentrations of monothiols such as GSH. Thus, in cellular applications, cis-disulfide probes selectively report on the reductive activity of the powerful thioredoxin proteins, while trans-disulfides are rapidly but promiscuously reactive. Finally, we showcase late-stage diversifications of the piperazine-disulfides, promising their broad applicability as redox-cleavable cores for probes and prodrugs that interface powerfully with cellular thiol/disulfide redox biology, for solid phase synthesis and purification, and for stimulus-responsive linkers in bifunctional reagents and antibody-drug conjugates - in addition to their dithiols' potential as high-performance reducing agents.
Collapse
Affiliation(s)
- Lukas Zeisel
- Department of Pharmacy, LMU Munich, Butenandtstr. 5-13, Munich 81377, Germany
| | - Jan G Felber
- Department of Pharmacy, LMU Munich, Butenandtstr. 5-13, Munich 81377, Germany
| | - Karoline C Scholzen
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Carina Schmitt
- Department of Pharmacy, LMU Munich, Butenandtstr. 5-13, Munich 81377, Germany
| | - Alexander J Wiegand
- Department of Pharmacy, LMU Munich, Butenandtstr. 5-13, Munich 81377, Germany
| | - Leonid Komissarov
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark-Zwijnaarde 46, Ghent 9052, Belgium
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
- Department of Selenoprotein Research, National Institute of Oncology, Budapest 1122, Hungary
| | | |
Collapse
|
26
|
Guo H. Vinyl thianthrenium-mediated cysteine bioconjugation. Commun Chem 2024; 7:42. [PMID: 38413762 PMCID: PMC10899615 DOI: 10.1038/s42004-024-01111-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
|
27
|
Fan X, Zhang D, Xiu X, Xu B, Yuan Y, Chen F, Gao P. Nucleophilic functionalization of thianthrenium salts under basic conditions. Beilstein J Org Chem 2024; 20:257-263. [PMID: 38352071 PMCID: PMC10862136 DOI: 10.3762/bjoc.20.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
In recent years, S-(alkyl)thianthrenium salts have become an important means of functionalizing alcohol compounds. However, additional transition metal catalysts and/or visible light are required. Herein, a direct thioetherification/amination reaction of thianthrenium salts is realized under metal-free conditions. This strategy exhibits good functional-group tolerance, operational simplicity, and an extensive range of compatible substrates.
Collapse
Affiliation(s)
- Xinting Fan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Duo Zhang
- Medicine Center, Guangxi University of Science and Technology, Liushi Road 257, Liuzhou, Guangxi 545006, China
| | - Xiangchuan Xiu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Bin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yu Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Feng Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Pan Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
28
|
Liu MS, Du HW, Meng H, Xie Y, Shu W. Unified metal-free intermolecular Heck-type sulfonylation, cyanation, amination, amidation of alkenes by thianthrenation. Nat Commun 2024; 15:529. [PMID: 38225220 PMCID: PMC10789743 DOI: 10.1038/s41467-024-44746-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/22/2023] [Indexed: 01/17/2024] Open
Abstract
Direct and site-selective C-H functionalization of alkenes under environmentally benign conditions represents a useful and attractive yet challenging transformation to access value-added molecules. Herein, a unified protocol for a variety of intermolecular Heck-type functionalizations of Csp2-H bond of alkenes has been developed by thianthrenation. The reaction features metal-free and operationally simple conditions for exclusive cine-selective C-H functionalization of aliphatic and aryl alkenes to forge C-C, C-N, C-P, and C-S bonds at room temperature, providing a general protocol for intermolecular Heck-type reaction of alkenes with nucleophiles (Nu = sulfinates, cyanides, amines, amides). Alkenes undergo cine-sulfonylation, cyanation, amination to afford alkenyl sulfones, alkenyl nitriles and enamines.
Collapse
Affiliation(s)
- Ming-Shang Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, P. R. China
| | - Hai-Wu Du
- Shenzhen Grubbs Institute and Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, P. R. China
| | - Huan Meng
- Shenzhen Grubbs Institute and Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, P. R. China
| | - Ying Xie
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, 643000, Zigong, P. R. China
| | - Wei Shu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, P. R. China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, P. R. China.
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, 643000, Zigong, P. R. China.
| |
Collapse
|
29
|
Gao WC, Fan J, Wei YF, Zhang J, Chang HH, Tian J. N-Vinylthio Phthalimides ( N-VTPs): Modular Reagents for Vinylthio AIEgen Transfer. Org Lett 2024; 26:78-83. [PMID: 38038436 DOI: 10.1021/acs.orglett.3c03662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Novel sulfur reagents N-vinylthio phthalimides (N-VTPs) have been employed as modular reagents for vinylthiolation, enabling the construction of aggregation-induced emission (AIE)-active tetraaryldivinyl sulfides (TADVSs) and diarylvinyl sulfides (DAVSs). Notably, TADVSs with sulfur insertion to ethene stators are reported as AIE luminogens (AIEgens) for the first time, and the corresponding photophysical properties and aggregated confirmation have been detailed for the demonstration of the AIE effect. A water-soluble TADVS with a quinolinium salt was prepared for cell imaging.
Collapse
Affiliation(s)
- Wen-Chao Gao
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Jing Fan
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Ya-Feng Wei
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Juan Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Hong-Hong Chang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Jun Tian
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| |
Collapse
|
30
|
Lansbergen B, Tewari S, Tomczyk I, Seemann M, Buchholz HL, Rippegarten M, Cieminski DC, Juliá F, Ritter T. Reductive Cross-Coupling of a Vinyl Thianthrenium Salt and Secondary Alkyl Iodides. Angew Chem Int Ed Engl 2023; 62:e202313659. [PMID: 37966018 DOI: 10.1002/anie.202313659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/16/2023]
Abstract
We report the first reductive vinylation of alkyl iodides. The reaction uses a vinyl thianthrenium salt, a palladium catalyst, and an alkyl zinc intermediate formed in situ to trap the Ln PdII (vinyl) complex formed after oxidative addition before it undergoes undesired homocoupling to form butadiene.
Collapse
Affiliation(s)
- Beatrice Lansbergen
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Srija Tewari
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Ireneusz Tomczyk
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Maik Seemann
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Henning Louis Buchholz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Mike Rippegarten
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Daniel Chamier Cieminski
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Fabio Juliá
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
31
|
Zhu J, Sun J, Yan Y, Dong Z, Huang Y. Dithiolation of Alkenyl Sulfonium Salts with Arylthiols to Access 1,2-Dithioalkanes. J Org Chem 2023; 88:15767-15771. [PMID: 37922383 DOI: 10.1021/acs.joc.3c01806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
A dithiolation of alkenyl sulfonium salts with arylthiols is described, affording a series of 1,2-dithioalkanes in high yields. This protocol features mild and catalyst-free conditions and involves the formation of two C-S bonds sequentially via the regioselective addition of an arylthiol to the unsaturated C═C bonds, followed by the attack of another arylthiol to form 1,2-dithioalkanes exclusively.
Collapse
Affiliation(s)
- Jie Zhu
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jinghui Sun
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yifei Yan
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhuyong Dong
- Hangzhou Create Environment Energy and Technology Co. Ltd., Hangzhou, Zhejiang 311121, China
| | - Yinhua Huang
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
32
|
Wang S, Xu H, Zhang R, Zhang S, Chai Y, Yang B, Zhao J, Xu Y, Li P. Regioselective Synthesis of N-Vinyl Pyrazoles from Vinyl Sulfonium Salts with Diazo Compounds. Org Lett 2023; 25:6746-6750. [PMID: 37669415 DOI: 10.1021/acs.orglett.3c02653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Herein, we develop a base-promoted regioselective synthesis of N-vinyl pyrazoles from vinyl sulfonium salts with diazo compounds. This metal-free synthetic protocol provides an efficient and practical approach to diverse N-vinyl pyrazoles in good to excellent yields under mild conditions. The reaction appears to experience a [3 + 2] annulation of vinyl sulfonium salts and diazo anions rather than diazo compounds, followed by N-vinylation.
Collapse
Affiliation(s)
- Shichong Wang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Huayan Xu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Ruoyu Zhang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Siyu Zhang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Yun Chai
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Bingchuan Yang
- College of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong 250013, P. R. China
| | - Jingjing Zhao
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Yuanqing Xu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Pan Li
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
33
|
Hanamoto T. Fluorinated Vinyl Sulfonium Salts and Their Synthetic Utilization. CHEM REC 2023; 23:e202200270. [PMID: 36744592 DOI: 10.1002/tcr.202200270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/27/2022] [Indexed: 02/07/2023]
Abstract
The fluorinated building block strategy and the direct fluorination strategy are of great importance for the synthesis of new fluorinated molecules. These strategies complement each other and can be combined to develop a new methodology for the construction of a wide variety of fascinating organofluorine compounds. In our opinion, the versatile building blocks used in this method should satisfy the following conditions: 1) readily prepared from commercially available reagents; 2) easy to handle; 3) storage under ordinary conditions without noticeable decomposition; 4) wide applicability. Based on the aforementioned requirements, we focused on the use of vinyl sulfonium salts. This brief review describes the synthesis of five types of fluorinated vinyl sulfonium salts and their reactions. Especially, we featured typical fluorinated groups containing trifluoromethyl (CF3 ), difluoromethyl (CF2 H), monofluoromethyl (CFH2 ), monofluoro (F) or β-bromotetrafluoroethyl (BrCF2 CF2 ) moieties in combination with vinyl sulfonium salts.
Collapse
Affiliation(s)
- Takeshi Hanamoto
- Department of Chemistry & Applied Chemistry, Saga University, Honjyo-machi 1, Saga, 840-8502, Japan
| |
Collapse
|
34
|
Paul S, Filippini D, Ficarra F, Melnychenko H, Janot C, Silvi M. Oxetane Synthesis via Alcohol C-H Functionalization. J Am Chem Soc 2023; 145:15688-15694. [PMID: 37462721 PMCID: PMC10375527 DOI: 10.1021/jacs.3c04891] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Oxetanes are strained heterocycles with unique properties that have triggered significant advances in medicinal chemistry. However, their synthesis still presents significant challenges that limit the use of this class of compounds in practical applications. In this Letter, we present a methodology that introduces a new synthetic disconnection to access oxetanes from native alcohol substrates. The generality of the approach is demonstrated by the application in late-stage functionalization chemistry, which is further exploited to develop a single-step synthesis of a known bioactive synthetic steroid derivative that previously required at least four synthetic steps from available precursors.
Collapse
Affiliation(s)
- Subhasis Paul
- The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Nottingham NG7 2TU, United Kingdom
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Dario Filippini
- The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Nottingham NG7 2TU, United Kingdom
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Filippo Ficarra
- The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Nottingham NG7 2TU, United Kingdom
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Heorhii Melnychenko
- The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Nottingham NG7 2TU, United Kingdom
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Christopher Janot
- Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield, SK10 2NA, United Kingdom
| | - Mattia Silvi
- The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Nottingham NG7 2TU, United Kingdom
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
35
|
Zhu J, Ye Y, Yan Y, Sun J, Huang Y. Highly Regioselective Dichalcogenation of Alkenyl Sulfonium Salts to Access 1,1-Dichalcogenalkenes. Org Lett 2023. [PMID: 37418314 DOI: 10.1021/acs.orglett.3c01886] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
An unprecedented geminal olefinic dichalcogenation of alkenyl sulfonium salts with dichalcogenides ArYYAr (Y = S, Se, Te) is reported, providing various trisubstituted 1,1-dichalcogenalkenes [Ar1CH = C(YAr2)2] in a highly selective manner under mild and catalyst-free conditions. The key process involves the formation of two geminal olefinic C-Y bonds via sequential C-Y cross-coupling and C-H chalcogenation. A mechanistic rationale is further supported by control experiments and density functional theory calculations.
Collapse
Affiliation(s)
- Jie Zhu
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yun Ye
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yifei Yan
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jinghui Sun
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yinhua Huang
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
36
|
Ariyarathna JP, Baskaran P, Chhikara A, Kaur N, Nguyen AM, Premathilaka SM, Huynh MM, Truong JT, Li W. Tunable [3+2] and [4+2] annulations for pyrrolidine and piperidine synthesis. Chem Commun (Camb) 2023; 59:6418-6421. [PMID: 37161704 PMCID: PMC10297810 DOI: 10.1039/d3cc01400b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
N-heterocycles are privileged pharmaceutical scaffolds in drug discovery and development. We disclose here divergent intermolecular coupling strategies that can access diverse N-heterocycles directly from olefins. The radical-to-polar mechanistic switching is key for the divergent cyclization processes. These distinctive annulations result in the coupling of alkenes with simple bifunctional reagents for divergent N-heterocycle syntheses.
Collapse
Affiliation(s)
- Jeewani P Ariyarathna
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio 43606, USA.
| | - Prabagar Baskaran
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio 43606, USA.
| | - Akanksha Chhikara
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio 43606, USA.
| | - Navdeep Kaur
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio 43606, USA.
| | - Alex M Nguyen
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio 43606, USA.
| | - Shashini M Premathilaka
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio 43606, USA.
| | - Michelle M Huynh
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio 43606, USA.
| | - Jonathon T Truong
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio 43606, USA.
| | - Wei Li
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio 43606, USA.
| |
Collapse
|
37
|
Kim MJ, Wang DJ, Targos K, Garcia UA, Harris AF, Guzei IA, Wickens ZK. Diastereoselective Synthesis of Cyclopropanes from Carbon Pronucleophiles and Alkenes. Angew Chem Int Ed Engl 2023; 62:e202303032. [PMID: 36929023 PMCID: PMC10189787 DOI: 10.1002/anie.202303032] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023]
Abstract
Cyclopropanes are desirable structural motifs with valuable applications in drug discovery and beyond. Established alkene cyclopropanation methods give rise to cyclopropanes with a limited array of substituents, are difficult to scale, or both. Herein, we disclose a new cyclopropane synthesis through the formal coupling of abundant carbon pronucleophiles and unactivated alkenes. This strategy exploits dicationic adducts derived from electrolysis of thianthrene in the presence of alkene substrates. We find that these dielectrophiles undergo cyclopropanation with methylene pronucleophiles via alkenyl thianthrenium intermediates. This protocol is scalable, proceeds with high diastereoselectivity, and tolerates diverse functional groups on both the alkene and pronucleophile coupling partners. To validate the utility of this new procedure, we prepared an array of substituted analogs of an established cyclopropane that is en route to multiple pharmaceuticals.
Collapse
Affiliation(s)
- Min Ji Kim
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| | - Diana J. Wang
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| | - Karina Targos
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| | - Uriel A. Garcia
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| | - Alison F. Harris
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| | - Ilia A. Guzei
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| | - Zachary K. Wickens
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| |
Collapse
|
38
|
Kőnig B, Sztanó G, Holczbauer T, Soós T. Syntheses of 2- and 3-Substituted Morpholine Congeners via Ring Opening of 2-Tosyl-1,2-Oxazetidine. J Org Chem 2023; 88:6182-6191. [PMID: 37125664 PMCID: PMC10167689 DOI: 10.1021/acs.joc.3c00207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Diastereoselective and diastereoconvergent syntheses of 2- and 3-substituted morpholine congeners are reported. Starting from tosyl-oxazatedine 1 and α-formyl carboxylates 2, base catalysis is utilized to yield morpholine hemiaminals. Their further synthetic elaborations allowed the concise constructions of conformationally rigid morpholines. The observed diastereoselectivities and the unusual diastereoconvergence in the photoredox radical processes seem to be the direct consequence of the avoidance of pseudo A1,3 strain between the C-3 substituent and the N-tosyl group and the anomeric effect of oxygen atoms.
Collapse
Affiliation(s)
- Bálint Kőnig
- Institute of Organic Chemistry, Research Centre for Natural Sciences, 2 Magyar tudósok körútja, H-1117 Budapest, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, 1/A Pázmány Péter sétány, H-1117 Budapest, Hungary
| | - Gábor Sztanó
- Institute of Organic Chemistry, Research Centre for Natural Sciences, 2 Magyar tudósok körútja, H-1117 Budapest, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, 1/A Pázmány Péter sétány, H-1117 Budapest, Hungary
| | - Tamás Holczbauer
- Institute of Organic Chemistry, Research Centre for Natural Sciences, 2 Magyar tudósok körútja, H-1117 Budapest, Hungary
- Centre for Structural Science, Research Centre for Natural Sciences, 2 Magyar tudósok körútja, H-1117 Budapest, Hungary
| | - Tibor Soós
- Institute of Organic Chemistry, Research Centre for Natural Sciences, 2 Magyar tudósok körútja, H-1117 Budapest, Hungary
| |
Collapse
|
39
|
Holst DE, Dorval C, Winter CK, Guzei IA, Wickens ZK. Regiospecific Alkene Aminofunctionalization via an Electrogenerated Dielectrophile. J Am Chem Soc 2023. [PMID: 37023348 DOI: 10.1021/jacs.3c01137] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Modular strategies to rapidly increase molecular complexity have proven immensely synthetically valuable. In principle, transformation of an alkene into a dielectrophile presents an opportunity to deliver two unique nucleophiles across an alkene. Unfortunately, the selectivity profiles of known dielectrophiles have largely precluded this deceptively simple synthetic approach. Herein, we demonstrate that dicationic adducts generated through electrolysis of alkenes and thianthrene possess a unique selectivity profile relative to more conventional dielectrophiles. Specifically, these species undergo a single and perfectly regioselective substitution reaction with phthalimide salts. This observation unlocks an appealing new platform for aminofunctionalization reactions. As an illustrative example, we implement this new reactivity paradigm to address a longstanding synthetic challenge: alkene diamination with two distinct nitrogen nucleophiles. Studies into the mechanism of this process reveal a key alkenyl thianthrenium salt intermediate that controls the exquisite regioselectivity of the process and highlight the importance of proton sources in controlling the reactivity of alkenyl sulfonium salt electrophiles.
Collapse
Affiliation(s)
- Dylan E Holst
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Céline Dorval
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Casey K Winter
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ilia A Guzei
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Zachary K Wickens
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
40
|
Zhang J, Wu XF. Palladium-Catalyzed Carbonylative Synthesis of Diaryl Ketones from Arenes and Arylboronic Acids through C(sp 2)-H Thianthrenation. Org Lett 2023; 25:2162-2166. [PMID: 36943726 DOI: 10.1021/acs.orglett.3c00792] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The development of mild methodology for converting inert C-H bonds to value-added molecules has been an attractive research topic during the last few decades as it offers efficient preparation. Meanwhile, diaryl ketones hold potent applications in antitumor drugs, the agrochemical industry, and synthetic chemistry. Herein, we report versatile palladium-catalyzed carbonylative cross-coupling reactions of aryl thianthrenium salts with arylboronic acids. Arenes were transformed site selectively via C(sp2)-H thianthrenation, and various desired diaryl ketones were produced in good to excellent yields.
Collapse
Affiliation(s)
- Jiajun Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e.V., 18059 Rostock, Germany
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e.V., 18059 Rostock, Germany
| |
Collapse
|
41
|
Mondal K, Patra S, Halder P, Mukhopadhyay N, Das P. CuF 2/DMAP-Catalyzed N-Vinylation: Scope and Mechanistic Study. Org Lett 2023. [PMID: 36546851 DOI: 10.1021/acs.orglett.2c03856] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CuF2/DMAP has been established as an excellent catalytic system for vinylsilane-promoted N-vinylation of amides and azoles at room temperature without an external fluoride source. A mechanism has been proposed on the basis of the isolation of reactive intermediate [Cu(DMAP)4Cl2], fluoride ion-assisted transmetalation, and ultraviolet-visible spectroscopic studies. The catalytic efficiency of the synthesized and structurally characterized [Cu(DMAP)4Cl2] complex has been demonstrated. The valuable monomers for water-soluble polymers, viz., NVP, NVC, and NVIBA, were synthesized on a gram scale.
Collapse
Affiliation(s)
- Krishanu Mondal
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Susanta Patra
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Pallabi Halder
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Narottam Mukhopadhyay
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741 246, India
| | - Parthasarathi Das
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| |
Collapse
|
42
|
Lu C, Chen R, Wang R, Jing D, Zheng K. Synthesis of Sulfur-Containing Oxindoles by Photoinduced Alkene Difunctionalization via Sulfur 1,2-Relocation. Org Lett 2023; 25:750-755. [PMID: 36722744 DOI: 10.1021/acs.orglett.2c04189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Organosulfur compounds are prevalent in various natural products, which have been widely applied in agrochemicals and pharmaceuticals. Herein, a new approach for the efficient construction of sulfur-containing oxindoles by photoinduced alkene difunctionalization via sulfur 1,2-relocation is developed. The method exhibited a high functional group tolerance and broad substrate compatibility. A library of sulfur-containing oxindole derivatives were synthesized under mild conditions (metal-, photocatalyst-, and additive-free). Mechanistic investigations revealed this photochemical process was triggered by the formation of an EDA complex of oxindole enolates with a redox-active ester, and the in situ generation of alkenes from the C-S bond cleavage of β-sulfanyl radicals was a key step in this transformation.
Collapse
Affiliation(s)
- Cong Lu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Rui Chen
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Rui Wang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Dong Jing
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Ke Zheng
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
43
|
Paul S, Filippini D, Silvi M. Polarity Transduction Enables the Formal Electronically Mismatched Radical Addition to Alkenes. J Am Chem Soc 2023; 145:2773-2778. [PMID: 36718934 PMCID: PMC9912259 DOI: 10.1021/jacs.2c12699] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Indexed: 02/01/2023]
Abstract
The formation of carbon-carbon bonds via the intermolecular addition of alkyl radicals to alkenes is a cornerstone of organic chemistry and plays a central role in synthesis. However, unless specific electrophilic radicals are involved, polarity matching requirements restrict the alkene component to be electron deficient. This limits the scope of a fundamentally important carbon-carbon bond forming process that could otherwise be more universally applied. Herein, we introduce a polarity transduction strategy that formally overcomes this electronic limitation. Vinyl sulfonium ions are demonstrated to react with carbon-centered radicals, giving adducts that undergo in situ or sequential nucleophilic displacement to provide products that would be inaccessible via traditional methods. The broad generality of this strategy is demonstrated through the derivatization of unmodified complex bioactive molecules.
Collapse
|
44
|
Angyal P, Kotschy AM, Dudás Á, Varga S, Soós T. Intertwining Olefin Thianthrenation with Kornblum/Ganem Oxidations: Ene-type Oxidation to Furnish α,β-Unsaturated Carbonyls. Angew Chem Int Ed Engl 2023; 62:e202214096. [PMID: 36408745 PMCID: PMC10108043 DOI: 10.1002/anie.202214096] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Indexed: 11/22/2022]
Abstract
A widely applicable, practical, and scalable synthetic method for efficient ene-type double oxidation of alkenes is reported via a two-step alkenyl thianthrenium umpolung/Kornblum-Ganem oxidation strategy. This chemo- and stereoselective procedure allows easy access to various α,β-unsaturated carbonyls that may be otherwise difficult or cumbersome to synthesize by conventional methods. For α-olefins, this metal-free transformation can be tuned according to synthetic needs to produce either the elusive (Z)-unsaturated aldehydes or their (E) counterparts. Moreover, this strategy has enabled streamlined synthesis of distinct butadienyl pheromones and kairomones.
Collapse
Affiliation(s)
- Péter Angyal
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary.,Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
| | - András M Kotschy
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary.,Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
| | - Ádám Dudás
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary.,Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
| | - Szilárd Varga
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Tibor Soós
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| |
Collapse
|
45
|
Meng H, Liu MS, Shu W. Organothianthrenium salts: synthesis and utilization. Chem Sci 2022; 13:13690-13707. [PMID: 36544727 PMCID: PMC9710214 DOI: 10.1039/d2sc04507a] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/07/2022] [Indexed: 12/24/2022] Open
Abstract
Organothianthrenium salts are a class of compounds containing a positively charged sulfur atom and a neutral sulfur atom. Over the past years, organothianthrenium salts have been emerging as attractive precursors for a myriad of transformations to forge new C-C and C-X bonds due to their unique structural characteristics and chemical behaviors. The use of the thianthrenation strategy selectively transforms C-H, C-O, and other chemical bonds into organothianthrenium salts in a predictable manner, providing a straightforward alternative for regioselective functionalizations for arenes, alkenes, alkanes, alcohols, amines and so on through diverse reaction mechanisms under mild conditions. In this review, the preparation of different organothianthrenium salts is summarized, including aryl, alkenyl and alkyl thianthrenium salts. Moreover, the utilization of organothianthrenium salts in different catalytic processes and their synthetic potentials are also discussed.
Collapse
Affiliation(s)
- Huan Meng
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and TechnologyShenzhen 518055GuangdongP. R. China
| | - Ming-Shang Liu
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and TechnologyShenzhen 518055GuangdongP. R. China
| | - Wei Shu
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and TechnologyShenzhen 518055GuangdongP. R. China
| |
Collapse
|
46
|
Chen SJ, Li JH, He ZQ, Chen GS, Zhuang YY, Chen CP, Liu YL. N-Trifluoropropylation of Azoles through N-Vinylation and Sequential Hydrogenation. J Org Chem 2022; 87:15703-15712. [PMID: 36331418 DOI: 10.1021/acs.joc.2c02323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Installing a fluoroalkyl group onto the nitrogen atom of azoles represents a potential strategy for lead optimization in medicinal chemistry. Herein, we describe a method for the N-trifluoropropylation of azoles. This process is accomplished using a combination of regioselective N-vinylation and sequential hydrogenation. The two-step sequence is applicable to a diverse set of azoles and tolerates a wide range of functionalities. In addition, we showcase its practicability and utility through the gram-scale synthesis and the late-stage modification of a complex molecule.
Collapse
Affiliation(s)
- Shu-Jie Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China
| | - Jia-Hui Li
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China
| | - Zhi-Qing He
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China
| | - Guo-Shu Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China
| | - Yin-Yin Zhuang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China
| | - Chang-Ping Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China
| | - Yun-Lin Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.,Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
47
|
Ye Y, Zhu J, Xie H, Huang Y. Rhodium‐Catalyzed Divergent Arylation of Alkenylsulfonium Salts with Arylboroxines. Angew Chem Int Ed Engl 2022; 61:e202212522. [DOI: 10.1002/anie.202212522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Yun Ye
- College of Materials Chemistry and Chemical Engineering Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Jie Zhu
- College of Materials Chemistry and Chemical Engineering Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd. Hangzhou Zhejiang 310003 P. R. China
| | - Yinhua Huang
- College of Materials Chemistry and Chemical Engineering Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education Hangzhou Normal University Hangzhou 311121 P. R. China
| |
Collapse
|
48
|
Arya C, Chandrakanth M, Fabitha K, Thomas NM, Pramod RN, Gondru R, Banothu J. Coumarin – Benzimidazole hybrids: A review on Diverse synthetic strategies. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
49
|
Metal-free radical difunctionalization of ethylene. Chem 2022. [DOI: 10.1016/j.chempr.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
50
|
Liu M, Du H, Cui J, Shu W. Intermolecular Metal‐Free Cyclopropanation and Aziridination of Alkenes with XH
2
(X=N, C) by Thianthrenation**. Angew Chem Int Ed Engl 2022; 61:e202209929. [DOI: 10.1002/anie.202209929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Ming‐Shang Liu
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 Guangdong P.R. China
| | - Hai‐Wu Du
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 Guangdong P.R. China
| | - Jian‐Fang Cui
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 Guangdong P.R. China
| | - Wei Shu
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 Guangdong P.R. China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University 300071 Tianjin P.R. China
| |
Collapse
|