1
|
Campos-Roldán CA, Gasmi A, Ennaji M, Stodel M, Martens I, Filhol JS, Blanchard PY, Cavaliere S, Jones D, Drnec J, Chattot R. Metal-oxide phase transition of platinum nanocatalyst below fuel cell open-circuit voltage. Nat Commun 2025; 16:936. [PMID: 39843927 PMCID: PMC11754633 DOI: 10.1038/s41467-024-55299-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/05/2024] [Indexed: 01/24/2025] Open
Abstract
The long-term stability of Pt-based catalysts is critical to the reliability of proton exchange membrane fuel cells (PEMFCs), and receives constant attention. However, the current knowledge of Pt oxidation is restricted to unrealistic PEMFC cathode environment or operation, which questions its practical relevance. Herein, Pt oxidation is investigated directly in a PEMFC with stroboscopic operando high energy X-ray scattering. The onset potential for phase transition of the nanoparticles surface from metallic to amorphous electrochemical oxide is observed far below previously reported values, and most importantly, below the open-circuit potential of PEMFC cathode. Such phase transition is shown to impact PEMFC performance and its role on Pt transient dissolution is verified by electrochemical on-line inductively coupled plasma mass spectrometry. By further demonstrating and resolving the limitations of currently employed accelerated stress test protocols in the light of metal-oxide phase transitions kinetics, this picture of Pt oxidation enables new mitigation strategies against PEMFC degradation.
Collapse
Affiliation(s)
| | - Amir Gasmi
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34095, Montpellier, France
| | - Meryem Ennaji
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34095, Montpellier, France
| | - Morgane Stodel
- CIRIMAT, Université Toulouse 3 Paul Sabatier, Toulouse INP, CNRS, Université de Toulouse, 118 Route de Narbonne, 31062, Toulouse, France
| | - Isaac Martens
- ESRF, The European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS40220, 38043, Grenoble, France
| | | | | | - Sara Cavaliere
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34095, Montpellier, France
| | - Deborah Jones
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34095, Montpellier, France
| | - Jakub Drnec
- ESRF, The European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS40220, 38043, Grenoble, France
| | - Raphaël Chattot
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34095, Montpellier, France.
| |
Collapse
|
2
|
Wu ZP, Dinh D, Maswadeh Y, Caracciolo DT, Zhang H, Li T, Vargas JA, Madiou M, Chen C, Kong Z, Li Z, Zhang H, Ruiz Martínez J, Lu SS, Wang L, Ren Y, Petkov V, Zhong CJ. Interfacial Reactivity-Triggered Oscillatory Lattice Strains of Nanoalloys. J Am Chem Soc 2024; 146:35264-35274. [PMID: 39656092 DOI: 10.1021/jacs.4c12550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Understanding the structure evolution of nanoalloys under reaction conditions is vital to the design of active and durable catalysts. Herein, we report an operando measurement of the dynamic lattice strains of dual-noble-metal alloyed with an earth-abundant metal as a model electrocatalyst in a working proton-exchange membrane fuel cell using synchrotron high-energy X-ray diffraction coupled with pair distribution function analysis. The results reveal an interfacial reaction-triggered oscillatory lattice strain in the alloy nanoparticles upon surface dealloying. Analysis of the lattice strains with an apparent oscillatory irregularity in terms of frequency and amplitude using time-frequency domain transformation and theoretical calculation reveals its origin from a metal atom vacancy diffusion pathway to facilitate realloying upon dealloying. This process, coupled with surface metal partial oxidation, constitutes a key factor for the nanoalloy's durability under the electrocatalytic oxygen reduction reaction condition, which serves as a new guiding principle for engineering durable or self-healable electrocatalysts for sustainable fuel cell energy conversion.
Collapse
Affiliation(s)
- Zhi-Peng Wu
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Dong Dinh
- Department of Systems Science and Industrial Engineering, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Yazan Maswadeh
- Department of Physics, Central Michigan University, Mt. Pleasant, Michigan 48859, United States
- Material Science Division, Eurofins EAG Laboratories, Sunnyvale, California 94086, United States
| | - Dominic T Caracciolo
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Hui Zhang
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Electron Microscopy Center, South China University of Technology, Guangzhou 510640, China
| | - Tianyi Li
- X-ray Science Division, Advanced Photon Sources, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jorge A Vargas
- Department of Physics, Central Michigan University, Mt. Pleasant, Michigan 48859, United States
- Unidad Académica de Física, Universidad Autónoma de Zacatecas, Zacatecas 98098, Mexico
| | - Merry Madiou
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Cailing Chen
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Zhijie Kong
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Zeqi Li
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Huabin Zhang
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Javier Ruiz Martínez
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Susan S Lu
- Department of Systems Science and Industrial Engineering, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Lichang Wang
- Department of Chemistry and Biochemistry and the Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Yang Ren
- X-ray Science Division, Advanced Photon Sources, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Physics, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Valeri Petkov
- Department of Physics, Central Michigan University, Mt. Pleasant, Michigan 48859, United States
| | - Chuan-Jian Zhong
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| |
Collapse
|
3
|
Aliyah K, Appel C, Lazaridis T, Prehal C, Ammann M, Xu L, Guizar-Sicairos M, Gubler L, Büchi FN, Eller J. Operando Scanning Small-/Wide-Angle X-ray Scattering for Polymer Electrolyte Fuel Cells: Investigation of Catalyst Layer Saturation and Membrane Hydration- Capabilities and Challenges. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25938-25952. [PMID: 38740377 PMCID: PMC11129111 DOI: 10.1021/acsami.3c11173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 05/16/2024]
Abstract
Polymer electrolyte fuel cells are an essential technology for future local emission-free mobility. One of the critical challenges for thriving commercialization is water management in the cells. We propose small- and wide-angle X-ray scattering as a suitable diagnostic tool to quantify the liquid saturation in the catalyst layer and determine the hydration of the ion-conducting membrane in real operating conditions. The challenges that may occur in operando data collection are described in detail─separation of the anode and cathode, cell alignment to the beam, X-ray radiation damage, and the possibility of membrane swelling. A synergistic development of experimental setup, data acquisition, and data interpretation circumvents the major challenges and leads to practical and reliable insights.
Collapse
Affiliation(s)
- Kinanti Aliyah
- Electrochemistry
Laboratory, Paul Scherrer Institut, CH-5232, Villigen, Switzerland
| | - Christian Appel
- Photon
Science Division, Swiss Light Source, Paul
Scherrer Institut, CH-5232, Villigen, Switzerland
| | - Timon Lazaridis
- Chair
of Technical Electrochemistry, Department of Chemistry and Catalysis
Research Center, Technical University of
Munich, Munich 80333, Germany
| | - Christian Prehal
- Department
of Information Technology and Electrical Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Martin Ammann
- Electrochemistry
Laboratory, Paul Scherrer Institut, CH-5232, Villigen, Switzerland
| | - Linfeng Xu
- Electrochemistry
Laboratory, Paul Scherrer Institut, CH-5232, Villigen, Switzerland
| | - Manuel Guizar-Sicairos
- Photon
Science Division, Swiss Light Source, Paul
Scherrer Institut, CH-5232, Villigen, Switzerland
- Institute
of Physics, École Polytechnique Fédérale
de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Lorenz Gubler
- Electrochemistry
Laboratory, Paul Scherrer Institut, CH-5232, Villigen, Switzerland
| | - Felix N. Büchi
- Electrochemistry
Laboratory, Paul Scherrer Institut, CH-5232, Villigen, Switzerland
| | - Jens Eller
- Electrochemistry
Laboratory, Paul Scherrer Institut, CH-5232, Villigen, Switzerland
| |
Collapse
|
4
|
Magnussen OM, Drnec J, Qiu C, Martens I, Huang JJ, Chattot R, Singer A. In Situ and Operando X-ray Scattering Methods in Electrochemistry and Electrocatalysis. Chem Rev 2024; 124:629-721. [PMID: 38253355 PMCID: PMC10870989 DOI: 10.1021/acs.chemrev.3c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/02/2023] [Accepted: 11/13/2023] [Indexed: 01/24/2024]
Abstract
Electrochemical and electrocatalytic processes are of key importance for the transition to a sustainable energy supply as well as for a wide variety of other technologically relevant fields. Further development of these processes requires in-depth understanding of the atomic, nano, and micro scale structure of the materials and interfaces in electrochemical devices under reaction conditions. We here provide a comprehensive review of in situ and operando studies by X-ray scattering methods, which are powerful and highly versatile tools to provide such understanding. We discuss the application of X-ray scattering to a wide variety of electrochemical systems, ranging from metal and oxide single crystals to nanoparticles and even full devices. We show how structural data on bulk phases, electrode-electrolyte interfaces, and nanoscale morphology can be obtained and describe recent developments that provide highly local information and insight into the composition and electronic structure. These X-ray scattering studies yield insights into the structure in the double layer potential range as well as into the structural evolution during electrocatalytic processes and phase formation reactions, such as nucleation and growth during electrodeposition and dissolution, the formation of passive films, corrosion processes, and the electrochemical intercalation into battery materials.
Collapse
Affiliation(s)
- Olaf M. Magnussen
- Kiel
University, Institute of Experimental and
Applied Physics, 24098 Kiel, Germany
- Ruprecht-Haensel
Laboratory, Kiel University, 24118 Kiel, Germany
| | - Jakub Drnec
- ESRF,
Experiments Division, 38000 Grenoble, France
| | - Canrong Qiu
- Kiel
University, Institute of Experimental and
Applied Physics, 24098 Kiel, Germany
| | | | - Jason J. Huang
- Department
of Materials Science and Engineering, Cornell
University, Ithaca, New York 14853, United States
| | - Raphaël Chattot
- ICGM,
Univ. Montpellier, CNRS, ENSCM, 34095 Montpellier Cedex 5, France
| | - Andrej Singer
- Department
of Materials Science and Engineering, Cornell
University, Ithaca, New York 14853, United States
| |
Collapse
|
5
|
Maitra S, Roy K, Ghosh D, Kumar P. Lattice strain induced d-band centre engineering enabled pseudocapacitive energy storage in 2D hypo-hyper electronic V-NiCo 2O 4 for asymmetric supercapacitors. NANOSCALE 2023; 15:18368-18382. [PMID: 37933197 DOI: 10.1039/d3nr03251e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Understanding the role of fundamental structural engineering of materials in unravelling the underlying rudimentary electronic structure-dependent charge storage mechanisms is crucial for developing new strategic approaches toward high-performance electrochemical energy storage devices. Here, we demonstrate the role of strain engineering by V doping-induced lattice contraction in NiCo2O4 for increasing the energy density and power density of aqueous asymmetric hybrid supercapacitors. For application in energy storage, we demonstrate the influence of electron-deficient V4+/5+ doping in electron-rich Ni2+ sites, which has been found to result in the formation of a hypo-hyper electronically coupled cation pair causing a shift in the d-band and O 2p band centres and distortion of CoO6 octahedra. Optimization of V doping to 3 mol%, achieved by a binder-free one-step hydrothermal method, has yielded a 96% increase in specific capacitance of up to 2316 F g-1 from 1193 F g-1 in pristine materials at 1 A g-1 in a three-electrode configuration with a coulombic efficiency (η%) of 94% and a 24% increase in rate capacity. A two-fold increase in specific capacitance in the pouch cell device, fabricated with a functionalized carbon nanosphere positive electrode, has been observed for the V-doped samples at 1 A g-1 with a η% of 97% and a maximum energy density of 96.3 W h g-1 and a maximum power density of 8733.6 W g-1 which are 41% and 24.3% higher than the pristine device, respectively. Excellent cycling stability of 95.4% capacitance retention has been observed after 6000 cycles. DFT calculations have been carried out to understand the previously unexplored effect of lattice strain on charge transport and quantum capacitance, and ultimately its effect on the transition state kinetics of energy storage faradaic reaction mechanisms. The aim of this work is to establish a fresh perspective on developing a deep understanding of the fundamental electronic and structural properties of materials by drawing in concepts from descriptor models in electrocatalysis to reveal the role of lattice strain and d-band centre tailoring in enabling pseudocapacitive energy storage.
Collapse
Affiliation(s)
- Soumyajit Maitra
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Krishnendu Roy
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Dibyendu Ghosh
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Praveen Kumar
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| |
Collapse
|
6
|
Atlan C, Chatelier C, Martens I, Dupraz M, Viola A, Li N, Gao L, Leake SJ, Schülli TU, Eymery J, Maillard F, Richard MI. Imaging the strain evolution of a platinum nanoparticle under electrochemical control. NATURE MATERIALS 2023:10.1038/s41563-023-01528-x. [PMID: 37095227 DOI: 10.1038/s41563-023-01528-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/09/2023] [Indexed: 05/03/2023]
Abstract
Surface strain is widely employed in gas phase catalysis and electrocatalysis to control the binding energies of adsorbates on active sites. However, in situ or operando strain measurements are experimentally challenging, especially on nanomaterials. Here we exploit coherent diffraction at the new fourth-generation Extremely Brilliant Source of the European Synchrotron Radiation Facility to map and quantify strain within individual Pt catalyst nanoparticles under electrochemical control. Three-dimensional nanoresolution strain microscopy, together with density functional theory and atomistic simulations, show evidence of heterogeneous and potential-dependent strain distribution between highly coordinated ({100} and {111} facets) and undercoordinated atoms (edges and corners), as well as evidence of strain propagation from the surface to the bulk of the nanoparticle. These dynamic structural relationships directly inform the design of strain-engineered nanocatalysts for energy storage and conversion applications.
Collapse
Affiliation(s)
- Clément Atlan
- Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRX, Grenoble, France.
- ESRF - The European Synchrotron, Grenoble, France.
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, Grenoble, France.
| | - Corentin Chatelier
- Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRX, Grenoble, France.
- ESRF - The European Synchrotron, Grenoble, France.
| | | | - Maxime Dupraz
- Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRX, Grenoble, France
- ESRF - The European Synchrotron, Grenoble, France
| | - Arnaud Viola
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, Grenoble, France
| | - Ni Li
- Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRX, Grenoble, France
- ESRF - The European Synchrotron, Grenoble, France
| | - Lu Gao
- Laboratory for Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, the Netherlands
| | | | | | - Joël Eymery
- Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRX, Grenoble, France
| | - Frédéric Maillard
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, Grenoble, France.
| | - Marie-Ingrid Richard
- Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRX, Grenoble, France.
- ESRF - The European Synchrotron, Grenoble, France.
| |
Collapse
|
7
|
Thomä SLJ, Zobel M. Beam-induced redox chemistry in iron oxide nanoparticle dispersions at ESRF-EBS. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:440-444. [PMID: 36891857 PMCID: PMC10000811 DOI: 10.1107/s1600577522011523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/30/2022] [Indexed: 06/08/2023]
Abstract
The storage ring upgrade of the European Synchrotron Radiation Facility makes ESRF-EBS the most brilliant high-energy fourth-generation light source, enabling in situ studies with unprecedented time resolution. While radiation damage is commonly associated with degradation of organic matter such as ionic liquids or polymers in the synchrotron beam, this study clearly shows that highly brilliant X-ray beams readily induce structural changes and beam damage in inorganic matter, too. Here, the reduction of Fe3+ to Fe2+ in iron oxide nanoparticles by radicals in the brilliant ESRF-EBS beam, not observed before the upgrade, is reported. Radicals are created due to radiolysis of an EtOH-H2O mixture with low EtOH concentration (∼6 vol%). In light of extended irradiation times during insitu experiments in, for example, battery and catalysis research, beam-induced redox chemistry needs to be understood for proper interpretation of insitu data.
Collapse
Affiliation(s)
- Sabrina L. J. Thomä
- Institute of Crystallography, RWTH Aachen University, Jägerstraße 17–19, Aachen, 52066 Nordrhein-Westfalen, Germany
| | - Mirijam Zobel
- Institute of Crystallography, RWTH Aachen University, Jägerstraße 17–19, Aachen, 52066 Nordrhein-Westfalen, Germany
| |
Collapse
|
8
|
Moumaneix L, Rautakorpi A, Kallio T. Interactions between Hydrogen and Palladium Nanoparticles: Resolving Adsorption and Absorption Contributions. ChemElectroChem 2023. [DOI: 10.1002/celc.202201109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Lilian Moumaneix
- Department of Chemistry and Materials Science Aalto University Espoo 00076 Aalto Finland
| | - Akseli Rautakorpi
- Department of Chemistry and Materials Science Aalto University Espoo 00076 Aalto Finland
| | - Tanja Kallio
- Department of Chemistry and Materials Science Aalto University Espoo 00076 Aalto Finland
| |
Collapse
|
9
|
Sheyfer D, Mariano RG, Kawaguchi T, Cha W, Harder RJ, Kanan MW, Hruszkewycz SO, You H, Highland MJ. Operando Nanoscale Imaging of Electrochemically Induced Strain in a Locally Polarized Pt Grain. NANO LETTERS 2023; 23:1-7. [PMID: 36541700 DOI: 10.1021/acs.nanolett.2c01015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Developing new methods that reveal the structure of electrode materials under polarization is key to constructing robust structure-property relationships. However, many existing methods lack the spatial resolution in structural changes and fidelity to electrochemical operating conditions that are needed to probe catalytically relevant structures. Here, we combine a nanopipette electrochemical cell with three-dimensional X-ray Bragg coherent diffractive imaging to study how strain in a single Pt grain evolves in response to applied potential. During polarization, marked changes in surface strain arise from the Coulombic attraction between the surface charge on the electrode and the electrolyte ions in the electrochemical double layers, while the strain in the bulk of the crystal remains unchanged. The concurrent surface redox reactions have a strong influence on the magnitude and nature of the strain changes under polarization. Our studies provide a powerful blueprint to understand how structural evolution influences electrochemical performance at the nanoscale.
Collapse
Affiliation(s)
- Dina Sheyfer
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| | - Ruperto G Mariano
- Department of Chemistry, Stanford University, Stanford, California94305, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02141, United States
| | - Tomoya Kawaguchi
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
- Institute for Materials Research, Tohoku University, Sendai, 9808577, Japan
| | - Wonsuk Cha
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| | - Ross J Harder
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| | - Matthew W Kanan
- Department of Chemistry, Stanford University, Stanford, California94305, United States
| | - Stephan O Hruszkewycz
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| | - Hoydoo You
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| | - Matthew J Highland
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| |
Collapse
|
10
|
Chattot R, Roiron C, Kumar K, Martin V, Campos Roldan CA, Mirolo M, Martens I, Castanheira L, Viola A, Bacabe R, Cavaliere S, Blanchard PY, Dubau L, Maillard F, Drnec J. Break-In Bad: On the Conditioning of Fuel Cell Nanoalloy Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Raphaël Chattot
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier 34095 Cedex 5, France
| | - Camille Roiron
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP* (*Institute of Engineering and Management Univ. Grenoble Alpes), LEPMI, Grenoble 38000, France
| | - Kavita Kumar
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP* (*Institute of Engineering and Management Univ. Grenoble Alpes), LEPMI, Grenoble 38000, France
| | - Vincent Martin
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP* (*Institute of Engineering and Management Univ. Grenoble Alpes), LEPMI, Grenoble 38000, France
| | | | - Marta Mirolo
- ESRF, the European Synchrotron, 71 Avenue des Martyrs, CS40220, Grenoble 38043 Cedex 9, France
| | - Isaac Martens
- ESRF, the European Synchrotron, 71 Avenue des Martyrs, CS40220, Grenoble 38043 Cedex 9, France
| | - Luis Castanheira
- Symbio, 14 Rue Jean-Pierre Timbaud, Espace des Vouillands 2, Fontaine 38600, France
| | - Arnaud Viola
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP* (*Institute of Engineering and Management Univ. Grenoble Alpes), LEPMI, Grenoble 38000, France
| | - Rémi Bacabe
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier 34095 Cedex 5, France
| | - Sara Cavaliere
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier 34095 Cedex 5, France
- Institut Universitaire de France (IUF), Paris 75231 Cedex 5, France
| | | | - Laetitia Dubau
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP* (*Institute of Engineering and Management Univ. Grenoble Alpes), LEPMI, Grenoble 38000, France
| | - Frédéric Maillard
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP* (*Institute of Engineering and Management Univ. Grenoble Alpes), LEPMI, Grenoble 38000, France
| | - Jakub Drnec
- ESRF, the European Synchrotron, 71 Avenue des Martyrs, CS40220, Grenoble 38043 Cedex 9, France
| |
Collapse
|
11
|
Huang YH, Lin JS, Zhang FL, Zhang YJ, Lin XM, Jin SZ, Li JF. Exploring interfacial electrocatalytic reactions by shell-isolated nanoparticle-enhanced Raman spectroscopy. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Hornberger E, Merzdorf T, Schmies H, Hübner J, Klingenhof M, Gernert U, Kroschel M, Anke B, Lerch M, Schmidt J, Thomas A, Chattot R, Martens I, Drnec J, Strasser P. Impact of Carbon N-Doping and Pyridinic-N Content on the Fuel Cell Performance and Durability of Carbon-Supported Pt Nanoparticle Catalysts. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18420-18430. [PMID: 35417125 DOI: 10.1021/acsami.2c00762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cathode catalyst layers of proton exchange membrane fuel cells (PEMFCs) typically consist of carbon-supported platinum catalysts with varying weight ratios of proton-conducting ionomers. N-Doping of carbon support materials is proposed to enhance the performance and durability of the cathode layer under operating conditions in a PEMFC. However, a detailed understanding of the contributing N-moieties is missing. Here, we report the successful synthesis and fuel cell implementation of Pt electrocatalysts supported on N-doped carbons, with a focus on the analysis of the N-induced effect on catalyst performance and durability. A customized fluidized bed reduction reactor was used to synthesize highly monodisperse Pt nanoparticles deposited on N-doped carbons (N-C), the catalytic oxygen reduction reaction activity and stability of which matched those of state-of-the-art PEMFC catalysts. Operando high-energy X-ray diffraction experiments were conducted using a fourth generation storage ring; the light of extreme brilliance and coherence allows investigating the impact of N-doping on the degradation behavior of the Pt/N-C catalysts. Tests in liquid electrolytes were compared with tests in membrane electrode assemblies in single-cell PEMFCs. Our analysis refines earlier views on the subject of N-doped carbon catalyst supports: it provides evidence that heteroatom doping and thus the incorporation of defects into the carbon backbone do not mitigate the carbon corrosion during high-potential cycling (1-1.5 V) and, however, can promote the cell performance under usual PEMFC operating conditions (0.6-0.9 V).
Collapse
Affiliation(s)
| | - Thomas Merzdorf
- Department of Chemistry, Technische Universität Berlin, Berlin 10623, Germany
| | - Henrike Schmies
- Department of Chemistry, Technische Universität Berlin, Berlin 10623, Germany
| | - Jessica Hübner
- Department of Chemistry, Technische Universität Berlin, Berlin 10623, Germany
| | - Malte Klingenhof
- Department of Chemistry, Technische Universität Berlin, Berlin 10623, Germany
| | - Ulrich Gernert
- Department of Chemistry, Technische Universität Berlin, Berlin 10623, Germany
| | - Matthias Kroschel
- Department of Chemistry, Technische Universität Berlin, Berlin 10623, Germany
| | - Björn Anke
- Department of Chemistry, Technische Universität Berlin, Berlin 10623, Germany
| | - Martin Lerch
- Department of Chemistry, Technische Universität Berlin, Berlin 10623, Germany
| | - Johannes Schmidt
- Department of Chemistry, Technische Universität Berlin, Berlin 10623, Germany
| | - Arne Thomas
- Department of Chemistry, Technische Universität Berlin, Berlin 10623, Germany
| | - Raphaël Chattot
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, CS40220, Grenoble 38043 Cedex 9, France
| | - Isaac Martens
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, CS40220, Grenoble 38043 Cedex 9, France
| | - Jakub Drnec
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, CS40220, Grenoble 38043 Cedex 9, France
| | - Peter Strasser
- Department of Chemistry, Technische Universität Berlin, Berlin 10623, Germany
| |
Collapse
|
13
|
Sun YL, A YL, Yue MF, Chen HQ, Ze H, Wang YH, Dong JC, Tian ZQ, Fang PP, Li JF. Exploring the Effect of Pd on the Oxygen Reduction Performance of Pt by In Situ Raman Spectroscopy. Anal Chem 2022; 94:4779-4786. [PMID: 35271253 DOI: 10.1021/acs.analchem.1c05566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Directly monitoring the oxygen reduction reaction (ORR) process in situ is very important to deeply understand the reaction mechanism and is a critical guideline for the design of high-efficiency catalysts, but there is still lack of definite in situ evidence to clarify the effect between adsorbed intermediates and the strain/electronic effect for enhanced ORR performance. Herein, in situ surface-enhanced Raman spectroscopy (SERS) was employed to detect the intermediates during the ORR process on the Au@Pd@Pt core/shell heterogeneous nanoparticles (NPs). Direct spectroscopic evidence of the *OOH intermediate was obtained, and an obvious red shift of the *OOH frequency was identified with the controllable shell thickness of Pd. Detailed experimental characterizations and density functional theory (DFT) calculations demonstrated that such improved ORR activity after inducing Pd into Au@Pt NPs can be attributed to the optimized adsorbate-substrate interaction due to the strain and electronic effect, leading to a higher Pt-O binding energy and a lower O-O binding energy, which was conducive to O-O dissociation and promoted the subsequent reaction. Notably, this work illustrates a relationship between the performance and strain/electronic effect via the intermediate detected by SERS and paves the way for the construction of ORR electrocatalysts with high performance.
Collapse
Affiliation(s)
- Yu-Lin Sun
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, the Key Laboratory of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.,State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Yao-Lin A
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Mu-Fei Yue
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Heng-Quan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Huajie Ze
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Yao-Hui Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Jin-Chao Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China.,Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China.,Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Ping-Ping Fang
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, the Key Laboratory of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China.,Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|