1
|
Guo J, Shi J, Miao P. Nano-Impact Electrochemistry of 3D DNA Nanostructure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408739. [PMID: 40255191 DOI: 10.1002/smll.202408739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/27/2024] [Indexed: 04/22/2025]
Abstract
Nano-impact electrochemistry (NIE) has made significant advances in the fields of electrochemistry and analytical chemistry. Nevertheless, the choice of entities used for NIE is usually confined to inorganic nanoparticles. The interest in DNA nanotechnology prompts the exploration of DNA materials as signal sources for NIE. In this study, tetrahedral DNA nanostructure (TDNA) is designed as an example. Various sizes and base compositions of TDNAs are assembled. Corresponding NIE signals are successfully detected at the interface of gold ultramicroelectrode. The results indicate that 3D DNA nanostructures can proficiently replicate the roles of inorganic nanoparticles in NIE without requiring additional modifications. Furthermore, it is demonstrated that TDNA not only adheres to the electrode surface, acting as a diffusion barrier but also exhibits NIE effects through base redox reactions and charge conduction. The findings supplement new types of materials with NIE effects and may inspire novel bioanalytical applications.
Collapse
Affiliation(s)
- Jiarong Guo
- School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Jiayue Shi
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Peng Miao
- School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| |
Collapse
|
2
|
Sun Z, Chen C, Wei M, Wang H, Chen J, Ma W. Understanding the Position Effects of Monoatom Doping in Silver Nanoclusters on Oxygen Reduction by Single Entity Electrochemistry. Angew Chem Int Ed Engl 2025:e202506627. [PMID: 40305588 DOI: 10.1002/anie.202506627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/02/2025]
Abstract
Alloying nanoclusters (NCs) with monoatom doping represents an effective strategy to enhance catalytic performances due to the synergistic interactions between the dopant and host atoms. However, in-depth understanding the position effects of monoatom doping within alloying NCs, particularly at the atomic level, remains elusive. Here, we employed single entity collision electrochemistry method to investigate the electrocatalytic behaviors of individual monoatom-doped bimetallic M1Ag24 (M = Ag, Au, Pt, and Cu) NCs toward oxygen reduction reaction (ORR). By relying on high-resolution and high-throughput electrochemical measurements, we successfully discriminated the effects of monoatom variation in M1Ag24 NCs on ORR activity at the single atom resolution and identified different M1Ag24 NCs across characteristic populations. Our experimental findings and theoretical calculations reveal the electrocatalytic reaction dynamics associated with intracluster migration of Au monoatom during the dynamic alloying process of Au1Ag24 NCs. This work demonstrates a novel approach for in situ identifying the position effects of foreign doping atoms on the electrocatalytic activity of alloy NCs at the single atom level.
Collapse
Affiliation(s)
- Zehui Sun
- School of Chemistry and Molecular Engineering, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Cheng Chen
- School of Chemistry and Molecular Engineering, State Key Laboratory for Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Mengdan Wei
- School of Chemistry and Molecular Engineering, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Haifeng Wang
- School of Chemistry and Molecular Engineering, State Key Laboratory for Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Jianfu Chen
- School of Chemistry and Molecular Engineering, State Key Laboratory for Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Wei Ma
- School of Chemistry and Molecular Engineering, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| |
Collapse
|
3
|
Weiß LJK, Nikić M, Simmel FC, Wolfrum B. Stochastic Impact Electrochemistry of Alkanethiolate-Functionalized Silver Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410306. [PMID: 40079073 PMCID: PMC12019921 DOI: 10.1002/smll.202410306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/28/2025] [Indexed: 03/14/2025]
Abstract
This study uses single-impact experiments to explore how the nanoparticles' surface chemistry influences their redox activity. 20 and 40 nm-sized silver nanoparticles are functionalized with alkanethiol ligands of various chain lengths (n = 3, 6, 8, and 11) and moieties (carboxyl ─COOH / hydroxyl ─OH), and the critical role of the particle shell is systematically examined. Short COOH-terminated ligands enable efficient charge transfer, resulting in higher impact rates and fast, high-amplitude transients. Even elevated potentials fail to overcome tunneling barriers for ligand lengths of n ≥ 6 and risk oxidizing the electrode, forming an insulating layer. Electrostatic interactions play a key role in governing reaction dynamics. In general, particles with a COOH-group exhibit higher impact rates and current amplitudes in KCl than those with an OH-group. This effect is more pronounced for 40 nm-sized particles; although, they rarely oxidize completely. The influence of electrolyte composition-concentration, pH, and a biologically relevant electrolyte-reveals that its impact on the redox activity can be as critical as that of the particle shell, with both determining particle adsorption and electron tunneling. These findings provide insights into the complex interdependencies at the electrode-particle-electrolyte interface, aiding the design of custom redox-active (silver) nanoparticles for ultrasensitive electrochemical sensing.
Collapse
Affiliation(s)
- Lennart J. K. Weiß
- Physics of Synthetic Biological Systems (E14)Department of BioscienceSchool of Natural SciencesTechnical University of Munich80333MünchenGermany
- NeuroelectronicsMunich Institute of Biomedical EngineeringSchool of ComputationInformation and TechnologyTechnical University of Munich80333MünchenGermany
| | - Marta Nikić
- NeuroelectronicsMunich Institute of Biomedical EngineeringSchool of ComputationInformation and TechnologyTechnical University of Munich80333MünchenGermany
| | - Friedrich C. Simmel
- Physics of Synthetic Biological Systems (E14)Department of BioscienceSchool of Natural SciencesTechnical University of Munich80333MünchenGermany
| | - Bernhard Wolfrum
- NeuroelectronicsMunich Institute of Biomedical EngineeringSchool of ComputationInformation and TechnologyTechnical University of Munich80333MünchenGermany
| |
Collapse
|
4
|
Freko S, Nikić M, Mayer D, Weiß LJK, Simmel FC, Wolfrum B. Digital CRISPR-Powered Biosensor Concept without Target Amplification Using Single-Impact Electrochemistry. ACS Sens 2024; 9:6197-6206. [PMID: 39435883 PMCID: PMC11590096 DOI: 10.1021/acssensors.4c02060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024]
Abstract
The rapid and reliable detection and quantification of nucleic acids is crucial for various applications, including infectious disease and cancer diagnostics. While conventional methods, such as the quantitative polymerase chain reaction are widely used, they are limited to the laboratory environment due to their complexity and the requirement for sophisticated equipment. In this study, we present a novel amplification-free digital sensing strategy by combining the collateral cleavage activity of the Cas12a enzyme with single-impact electrochemistry. In doing so, we modified silver nanoparticles using a straightforward temperature-assisted cofunctionalization process to subsequently detect the collision events of particles released by the activated Cas12a as distinct current spikes on a microelectrode array. The functionalization resulted in stable DNA-AgNP conjugates, making them suitable for numerous biosensor applications. Thus, our study demonstrates the potential of clustered regularly interspaced short palindromic repeats-based diagnostics combined with impact-based digital sensing for a rapid and amplification-free quantification of nucleic acids.
Collapse
Affiliation(s)
- Sebastian Freko
- Neuroelectronics,
Munich Institute of Biomedical Engineering, Department of Electrical
Engineering, School of Computation, Information and Technology, Technical University of Munich, 85748 Garching, Germany
| | - Marta Nikić
- Neuroelectronics,
Munich Institute of Biomedical Engineering, Department of Electrical
Engineering, School of Computation, Information and Technology, Technical University of Munich, 85748 Garching, Germany
| | - Dirk Mayer
- Institute
of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Lennart J. K. Weiß
- Department
of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Friedrich C. Simmel
- Department
of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Bernhard Wolfrum
- Neuroelectronics,
Munich Institute of Biomedical Engineering, Department of Electrical
Engineering, School of Computation, Information and Technology, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
5
|
Kim KJ, Han Y, Kwon SJ. Exploring single-entity electrochemistry beyond conventional potential windows: mechanistic insights into hydrazine/hydrazinium ion oxidation. NANOSCALE 2024; 16:18488-18493. [PMID: 39264321 DOI: 10.1039/d4nr02942a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Single-entity electrochemistry (SEE) enables research into the electrochemical properties of nanoparticles (NPs) at the individual NP level. Recent studies on active particle-active electrode systems have expanded the scope of SEE measurements, moving beyond the limitations of inert electrode-based methods that rely on distinct NP-electrode catalytic differences, thereby enhancing mechanistic understanding of catalytic reactions. In this study, we investigated SEE signals from Pt NPs colliding with Au ultramicroelectrodes (UME) at elevated potentials where both Pt and Au UME exhibit electrocatalytic activity. Under conditions where Au UME is activated for hydrazine oxidation, distinctive combined spike and staircase current responses were observed. SEE signals exhibited varied shapes depending on pH and hydrazine concentration. Analyzing these variations provided insights into changes in reaction mechanisms according to pH and hydrazine concentration.
Collapse
Affiliation(s)
- Ki Jun Kim
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Korea.
| | - Yujin Han
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Korea.
| | - Seong Jung Kwon
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Korea.
| |
Collapse
|
6
|
Lu SM, Wang HW, Chen M, Xie BK, Long YT. Unlocking Single Particle Anisotropy in Real-Time for Photoelectrochemistry Processes at the Nanoscale. Angew Chem Int Ed Engl 2024; 63:e202404170. [PMID: 38781086 DOI: 10.1002/anie.202404170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/03/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
The key to rationally and rapidly designing high-performance materials is the monitoring and comprehension of dynamic processes within individual particles in real-time, particularly to gain insight into the anisotropy of nanoparticles. The intrinsic property of nanoparticles typically varies from one crystal facet to the next under realistic working conditions. Here, we introduce the operando collision electrochemistry to resolve the single silver nanoprisms (Ag NPs) anisotropy in photoelectrochemistry. We directly identify the effect of anisotropy on the plasmonic-assisted electrochemistry at the single NP/electrolyte interface. The statistical collision frequency shows that heterogeneous diffusion coefficients among crystal facets facilitate Ag NPs to undergo direction-dependent mass transfer toward the gold ultramicroelectrode. Subsequently, the current amplitudes of transient events indicate that the anisotropy enables variations in dynamic interfacial electron transfer behaviors during photothermal processes. The results presented here demonstrate that the measurement precision of collision electrochemistry can be extended to the sub-nanoparticle level, highlighting the potential for high-throughput material screening with comprehensive kinetics information at the nanoscale.
Collapse
Affiliation(s)
- Si-Min Lu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R.China
| | - Hao-Wei Wang
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R.China
| | - Mengjie Chen
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R.China
| | - Bao-Kang Xie
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R.China
| | - Yi-Tao Long
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R.China
| |
Collapse
|
7
|
Sun Z, Wang J, Su L, Gu Z, Wu XP, Chen W, Ma W. Dynamic Evolution and Reversibility of a Single Au 25 Nanocluster for the Oxygen Reduction Reaction. J Am Chem Soc 2024; 146:20059-20068. [PMID: 38994646 DOI: 10.1021/jacs.4c03939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Ultrasmall metallic nanoclusters (NCs) protected by surface ligands represent the most promising catalytic materials; yet understanding the structure and catalytic activity of these NCs remains a challenge due to dynamic evolution of their active sites under reaction conditions. Herein, we employed a single-nanoparticle collision electrochemistry method for real-time monitoring of the dynamic electrocatalytic activity of a single fully ligand-protected Au25(PPh3)10(SC2H4Ph)5Cl22+ nanocluster (Au252+ NC) at a cavity carbon nanoelectrode toward the oxygen reduction reaction (ORR). Our experimental results and computational simulations indicated that the reversible depassivation and passivation of ligands on the surface of the Au252+ NC, combined with the dynamic conformation evolution of the Au259+ core, led to a characteristic current signal that involves "ON-OFF" switches and "ON" fluctuations during the ORR process of a single Au252+ NC. Our findings reinvent the new perception and comprehension of the structure-activity correlation of NCs at the atomic level.
Collapse
Affiliation(s)
- Zehui Sun
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Jia Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Lei Su
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Zhihao Gu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Xin-Ping Wu
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Wei Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Wei Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| |
Collapse
|
8
|
Wang Y, Wei M, Ding Q, Li H, Ma W. Identification of Intersite Distance Effects in Au-Ag Single-Atom Alloy Catalysts Using Single Nanoparticle Collision Electrochemistry. NANO LETTERS 2024. [PMID: 38620010 DOI: 10.1021/acs.nanolett.3c04006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Regulating the atomic density of single-atom alloys (SAAs) promotes the potential to significantly enhance the electrocatalytic activity. However, conventional methods for study on the electrocatalytic performance of SAAs versus the intersite distance demand exhaustive experiments and characterization. Herein, we present a combinatorial synthesis and analysis method to investigate the intersite distance effect of SAA electrocatalysts. We employ single-nanoparticle collision electrochemistry to realize in situ electrodeposition of a precisely tunable Au atomic density onto individual parent Ag nanoparticles, followed by instantaneous electrocatalytic measurement of the newborn Au-Ag SAAs. In this work, the utility of our method is confirmed by the identification of intersite distance effects of Au-Ag SAAs toward the oxygen reduction reaction. When the site distance between two neighboring Au atoms is 1.9 nm, Au-Ag SAAs exhibit optimal activity. This work provides a simple and efficient method for screening other SAA electrocatalysts with ideal intersite distance at the single-nanoparticle level.
Collapse
Affiliation(s)
- Yixiao Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Mengdan Wei
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Qingdan Ding
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Huimin Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Wei Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| |
Collapse
|
9
|
Guo J, Zhu Y, Miao P. Nano-Impact Electrochemical Biosensing Based on a CRISPR-Responsive DNA Hydrogel. NANO LETTERS 2023; 23:11099-11104. [PMID: 37966867 DOI: 10.1021/acs.nanolett.3c03448] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Nano-impact electrochemistry (NIE) enables simple, rapid, and high-throughput biocoupling and biomolecular recognition. However, the low effective collision frequency limits the sensitivity. In this study, we propose a novel NIE sensing strategy amplified by the CRISPR-responsive DNA hydrogel and cascade DNA assembly. By controlling the phase transition of DNA hydrogel and the self-electrolysis of silver nanoparticles, we can obtain significant electrochemical responses. The whole process includes target miRNA-induced strand displacement amplification, catalytic hairpin assembly, and CRISPR/Cas trans-cutting. Thus, ultrahigh sensitivity is promised. This NIE biosensing strategy achieves a limit of detection as low as 4.21 aM for miR-141 and demonstrates a high specificity for practical applications. It may have wide applicability in nucleic acid sensing and shows great potential in disease diagnosis.
Collapse
Affiliation(s)
- Jiarong Guo
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yulin Zhu
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Peng Miao
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| |
Collapse
|
10
|
Lu SM, Vannoy KJ, Dick JE, Long YT. Multiphase Chemistry under Nanoconfinement: An Electrochemical Perspective. J Am Chem Soc 2023; 145:25043-25055. [PMID: 37934860 DOI: 10.1021/jacs.3c07374] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Most relevant systems of interest to modern chemists rarely consist of a single phase. Real-world problems that require a rigorous understanding of chemical reactivity in multiple phases include the development of wearable and implantable biosensors, efficient fuel cells, single cell metabolic characterization techniques, and solar energy conversion devices. Within all of these systems, confinement effects at the nanoscale influence the chemical reaction coordinate. Thus, a fundamental understanding of the nanoconfinement effects of chemistry in multiphase environments is paramount. Electrochemistry is inherently a multiphase measurement tool reporting on a charged species traversing a phase boundary. Over the past 50 years, electrochemistry has witnessed astounding growth. Subpicoampere current measurements are routine, as is the study of single molecules and nanoparticles. This Perspective focuses on three nanoelectrochemical techniques to study multiphase chemistry under nanoconfinement: stochastic collision electrochemistry, single nanodroplet electrochemistry, and nanopore electrochemistry.
Collapse
Affiliation(s)
- Si-Min Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Kathryn J Vannoy
- Department of Chemistry, Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
11
|
Kong N, He J, Yang W. Formation of Molecular Junctions by Single-Entity Collision Electrochemistry. J Phys Chem Lett 2023; 14:8513-8524. [PMID: 37722010 DOI: 10.1021/acs.jpclett.3c01955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Controlling and understanding the chemistry of molecular junctions is one of the major themes in various fields ranging from chemistry and nanotechnology to biotechnology and biology. Stochastic single-entity collision electrochemistry (SECE) provides powerful tools to study a single entity, such as single cells, single particles, and even single molecules, in a nanoconfined space. Molecular junctions formed by SECE collision show various potential applications in monitoring molecular dynamics with high spatial resolution and high temporal resolution and in feasible combination with hybrid techniques. This Perspective highlights the new breakthroughs, seminal studies, and trends in the area that have been most recently reported. In addition, future challenges for the study of molecular junction dynamics with SECE are discussed.
Collapse
Affiliation(s)
- Na Kong
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, Victoria 3216, Australia
| | - Jin He
- Physics Department, Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Wenrong Yang
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, Victoria 3216, Australia
| |
Collapse
|
12
|
Qiu X, Dai Q, Tang H, Li Y. Multiplex Assays of MicroRNAs by Using Single Particle Electrochemical Collision in a Single Run. Anal Chem 2023; 95:13376-13384. [PMID: 37603691 DOI: 10.1021/acs.analchem.3c02892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
It is important to quantify multiple biomarkers in a single run due to the advantages of precious samples and diagnostic accuracy. Based on the distinguishability of two types of current signals from single particle electrochemical collision (SPEC), step-type current transients produced by Pt nanoparticles (PtNPs) catalyzed hydrazine oxidation and peak-type current transients produced by Ag nanoparticles (AgNPs) oxidation, a kind of multiplex immunoassay of target microRNAs (miRNA-21 and Let-7a) have been established during SPEC in a single run. When the single-stranded DNA (ssDNA1) that was perfectly complementary to miRNA-21 was coupled to the surface of PtNPs, the SPEC of PtNPs electrocatalysis was inhibited and the step-type current transients disappeared, while the single-stranded DNA (ssDNA2) that was perfectly complementary to Let-7a was coupled to the surface of AgNPs, the SPEC of AgNPs oxidation was inhibited, and the peak-type current transients disappeared, thus the signals were in the "off" state at this time. After that, miRNA-21 and Let-7a were added into solution, complementary base pairing disrupted the weak DNA-NP interaction and restored the electrocatalysis of PtNPs and the electrooxidation of AgNPs, and the step-type current signals and peak-type current signals were in the "on" state. Moreover, the frequencies from two different recovered signals (PtNPs catalysis and AgNPs oxidation) corresponded to the amount of added miRNA-21 and Let-7a, thus a multiplex immunoassay method for dual quantification of miRNA-21 and Let-7a in a single run was established.
Collapse
Affiliation(s)
- Xia Qiu
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, People's Republic of China
| | - Qingshan Dai
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, People's Republic of China
| | - Haoran Tang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, People's Republic of China
| | - Yongxin Li
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, People's Republic of China
| |
Collapse
|
13
|
Liu X, Chen X, Zhang L, Twum KJ, Wang X, Xu Y, Zeng X. Crystalline silica particle functionalized by PEG for its collision-enhanced detection at ultramicroelectrode. Anal Chim Acta 2023; 1260:341178. [PMID: 37121651 DOI: 10.1016/j.aca.2023.341178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 05/02/2023]
Abstract
Detecting individual particulate matter is highly significant in many areas, such as mine safety, environment, and human health. The analytical method based on single entity electrochemistry (SEE) has shown great potential in detecting, counting, and measuring individual particles, especially conductive metals or carbon particles, based on their unique charge transfer reactions at an ultramicroelectrode (UME). In this study, we report an innovative SEE method for improving the sensitivity of the detection of electrochemical inert crystalline silica particles by functionalizing silica particles with polyethylene glycol (PEG) molecules. The PEG surface functionalization of the silica was characterized by Fourier-transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) techniques. The morphology of silica particles was characterized by a scanning electron microscope (SEM), and a transmission electron microscope (TEM) was employed to calibrate size distribution and determine the elemental composition of silica particles. The surface charges of silica particles were measured by dynamic light scattering techniques. The collision behaviors of crystalline silica particles with UME were investigated by cyclic voltammetric experiments, which are rarely reported in the literature. The crystalline silica particles were detected based on electrochemically blocking the flux of the redox mediator at the surface of UME, which showed significant signal amplification in the proposed method. Our method was demonstrated for detecting crystalline silica functionalized with or without PEG, acquiring the limit of quantification (LOQ) values of 0.391 μM (23.45 μg/L) and 0.824 μM (49.45 μg/L), respectively, which confirmed that a more than two times improvement in LOQ could be achieved over the PEG functionalized silica particles. We further presented a theoretical model using finite element simulations with COMSOL Multiphysics. We deduced a quantitative relation between the distribution of the current step size and the size distribution of silica particles. Therefore, the reported method here provides a paradigm for SEE-based detection of electrochemically inert crystalline silica particles, which extends the previous report substantially concerning particle detection.
Collapse
Affiliation(s)
- Xiaojun Liu
- Department of Chemistry, Oakland University, Rochester Hills, MI, 48309, USA
| | - Xiaoyu Chen
- College of Engineering, Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI, 48202, USA
| | - Lei Zhang
- Department of Mechanical Engineering, Oakland University, Rochester Hills, MI, 48309, USA
| | - Kwaku Junior Twum
- Department of Chemistry, Oakland University, Rochester Hills, MI, 48309, USA
| | - Xia Wang
- Department of Mechanical Engineering, Oakland University, Rochester Hills, MI, 48309, USA
| | - Yong Xu
- College of Engineering, Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI, 48202, USA
| | - Xiangqun Zeng
- Department of Chemistry, Oakland University, Rochester Hills, MI, 48309, USA.
| |
Collapse
|
14
|
Liu J, Jiang Y, Wen W, Zhang X, Wu Z, Wang S. Enhanced Single-Particle Collision Electrochemistry at Polysulfide-Functionalized Microelectrodes for SARS-CoV-2 Detection. ACS Sens 2023; 8:2011-2020. [PMID: 37083364 PMCID: PMC10157629 DOI: 10.1021/acssensors.3c00181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/11/2023] [Indexed: 04/22/2023]
Abstract
Single-particle collision electrochemistry (SPCE) has shown great promise in biosensing applications due to its high sensitivity, high flux, and fast response. However, a low effective collision frequency and a large number of interfering substances in complex matrices limit its broad application in clinical samples. Herein, a novel and universal SPCE biosensor was proposed to realize sensitive detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) based on the collision and oxidation of single silver nanoparticles (Ag NPs) on polysulfide-functionalized gold ultramicroelectrodes (Ps-Au UMEs). Taking advantage of the strong interaction of the Ag-S bond, collision and oxidation of Ag NPs on the Ps-Au UME surface could be greatly promoted to generate enhanced Faraday currents. Compared with bare Au UMEs, the collision frequency of Ps-Au UMEs was increased by 15-fold, which vastly improved the detection sensitivity and practicability of SPCE in biosensing. By combining magnetic separation, liposome encapsulation release, and DNAzyme-assisted signal amplification, the SPCE biosensor provided a dynamic range of 5 orders of magnitude for spike proteins with a detection limit of 6.78 fg/mL and a detection limit of 21 TCID50/mL for SARS-CoV-2. Furthermore, SARS-CoV-2 detection in nasopharyngeal swab samples of infected patients was successfully conducted, indicating the potential of the SPCE biosensor for use in clinically relevant diagnosis.
Collapse
Affiliation(s)
- Jinrong Liu
- Hubei Collaborative Innovation Center for Advanced
Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and
Application of Organic Functional Molecules, College of Chemistry and Chemical
Engineering, Hubei University, Wuhan 430062, PR
China
| | - Yongzhong Jiang
- Hubei Provincial Center for Disease
Control and Prevention, Wuhan 430079, PR China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced
Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and
Application of Organic Functional Molecules, College of Chemistry and Chemical
Engineering, Hubei University, Wuhan 430062, PR
China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced
Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and
Application of Organic Functional Molecules, College of Chemistry and Chemical
Engineering, Hubei University, Wuhan 430062, PR
China
| | - Zhen Wu
- Hubei Collaborative Innovation Center for Advanced
Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and
Application of Organic Functional Molecules, College of Chemistry and Chemical
Engineering, Hubei University, Wuhan 430062, PR
China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced
Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and
Application of Organic Functional Molecules, College of Chemistry and Chemical
Engineering, Hubei University, Wuhan 430062, PR
China
| |
Collapse
|
15
|
Lu SM, Chen JF, Wang HF, Hu P, Long YT. Mass Transport and Electron Transfer at the Electrochemical-Confined Interface. J Phys Chem Lett 2023; 14:1113-1123. [PMID: 36705310 DOI: 10.1021/acs.jpclett.2c03479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Single entity measurements based on the stochastic collision electrochemistry provide a promising and versatile means to study single molecules, single particles, single droplets, etc. Conceptually, mass transport and electron transfer are the two main processes at the electrochemically confined interface that underpin the most transient electrochemical responses resulting from the stochastic and discrete behaviors of single entities at the microscopic scale. This perspective demonstrates how to achieve controllable stochastic collision electrochemistry by effectively altering the two processes. Future challenges and opportunities for stochastic collision electrochemistry are also highlighted.
Collapse
Affiliation(s)
- Si-Min Lu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023P. R. China
| | - Jian-Fu Chen
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
| | - Hai-Feng Wang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
| | - Peijun Hu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
- School of Chemistry and Chemical Engineering, The Queen's University of Belfast, BelfastBT9 5AG, U.K
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023P. R. China
| |
Collapse
|
16
|
Dery L, Dery S, Gross E, Mandler D. Influence of Charged Self-Assembled Monolayers on Single Nanoparticle Collision. Anal Chem 2023; 95:2789-2795. [PMID: 36700557 PMCID: PMC9909668 DOI: 10.1021/acs.analchem.2c04081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Studying nanoparticle (NP)-electrode interactions in single nanoparticle collision events is critical to understanding dynamic processes such as nanoparticle motion, adsorption, oxidation, and catalytic activity, which are abundant on electrode surfaces. Herein, NP-electrode electrostatic interactions are studied by tracking the oxidation of AgNPs at Au microelectrodes functionalized with charged self-assembled monolayers (SAMs). Tuning the charge of short alkanethiol-based monolayers and selecting AgNPs that can be partially or fully oxidized upon impact enabled probing the influence of attractive and repulsive NP-electrode electrostatic interactions on collision frequency, electron transfer, and nanoparticle sizing. We find that repulsive electrostatic interactions lead to a significant decrease in collision frequency and erroneous nanoparticle sizing. In stark difference, attractive electrostatic interactions dramatically increase the collision frequency and extend the sizing capability to larger nanoparticle sizes. Thus, these findings demonstrate how NP-monolayer interactions can be studied and manipulated by combining nanoimpact electrochemistry and functionalized SAMs.
Collapse
Affiliation(s)
- Linoy Dery
- Institute
of Chemistry, The Hebrew University, Jerusalem 91904, Israel,The
Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 9190401, Israel
| | - Shahar Dery
- Institute
of Chemistry, The Hebrew University, Jerusalem 91904, Israel,The
Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 9190401, Israel
| | - Elad Gross
- Institute
of Chemistry, The Hebrew University, Jerusalem 91904, Israel,The
Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 9190401, Israel
| | - Daniel Mandler
- Institute
of Chemistry, The Hebrew University, Jerusalem 91904, Israel,The
Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 9190401, Israel,
| |
Collapse
|
17
|
Jin J, Mao J, Wu W, Jiang Y, Ma W, Yu P, Mao L. Highly Efficient Electrosynthesis of Nitric Oxide for Biomedical Applications. Angew Chem Int Ed Engl 2022; 61:e202210980. [DOI: 10.1002/anie.202210980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Jing Jin
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids Ministry of Education College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 China
| | - Wenjie Wu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ying Jiang
- College of Chemistry Beijing Normal University Xinjiekouwai Street 19 Beijing 100875 China
| | - Wenjie Ma
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 China
- College of Chemistry Beijing Normal University Xinjiekouwai Street 19 Beijing 100875 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
18
|
Jiang B, Gu W, Jiang W, Lv M, Niu B, Wu X, Wang W, Wang H. Directly Imaging Dynamic Electronic Coupling during Electrochemical Oxidation of Single Silver Nanoparticles. Angew Chem Int Ed Engl 2022; 61:e202209964. [DOI: 10.1002/anie.202209964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Bo Jiang
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 China
| | - Wenjie Gu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) Nanjing University of Posts and Telecommunications Nanjing Jiangsu 210023 China
| | - Wenxuan Jiang
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 China
| | - Mengqi Lv
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 China
| | - Ben Niu
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 China
| | - Xue‐Jun Wu
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 China
| | - Hui Wang
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 China
| |
Collapse
|
19
|
Liu C, Xu J, Gao H, Zhou M, Lu L. Nitrogen-skinned carbon nanocone enables non-dynamic electrochemistry of individual metal particles. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1305-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Yang J, He J, Mi L, Han F, Wen W, Zhang X, Wang S, Wu Z. Magnetic Rolling Circle Amplification-Assisted Single-Particle Collision Immunosensor for Ultrasensitive Detection of Cardiac Troponin I. Anal Chem 2022; 94:12514-12522. [PMID: 36049116 DOI: 10.1021/acs.analchem.2c02774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Owing to its simplicity, high throughput, and ultrasensitivity, single-particle collision electrochemistry (SPCE) has attracted great attention in biosensing, especially labeled SPCE. However, the low signal conversion efficiency and much interference from complex samples limit its wide application. Here, a new and robust SPCE immunosensor was proposed for ultrasensitive cardiac troponin I (cTnI) detection by combining target-driven rolling circle amplification (RCA) with magnetic beads (MBs). Antibody-modified MBs have good stability, dispersity, and magnetic response capacity in complex samples, enabling efficient capture and separation of cTnI with high specificity and anti-interference ability. The presence of cTnI could specifically drive the formation of magnetic immunocomplexes followed by triggering RCA and enzyme digestion reaction. By using Pt nanoparticles (Pt NPs)-modified ssDNA as signal probes, one cTnI molecule could induce the release of 4.5 × 104 Pt NPs for collision experiments, greatly enhancing signal conversion efficiency and detection sensitivity. Based on the integration of MBs with RCA, the SPCE immunosensor realized 0.57 fg/mL cTnI detection with a wide linear range of 1 fg/mL to 50 ng/mL. Furthermore, cTnI detection in serum samples of myocardial infarction patients was successfully performed, demonstrating great application prospect of the SPCE immunosensor in clinical diagnosis.
Collapse
Affiliation(s)
- Jie Yang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Juan He
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Long Mi
- Department of Radiology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Feng Han
- Department of Radiology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Zhen Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
21
|
Jin J, Mao J, Wu W, Jiang Y, Ma W, Yu P, Mao L. Highly efficient electrosynthesis of nitric oxide for biomedical applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jing Jin
- Institute of Chemistry Chinese Academy of Sciences Institute of Chemistry Chinese Academy of Sciences Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical 100190 CHINA
| | - Junjie Mao
- Anhui Normal University College of Chemistry and Materials Science Key Laboratory of Functional Molecular Solids, Ministry of Education, College of 241002 CHINA
| | - Wenjie Wu
- Institute of Chemistry Chinese Academy of Sciences Institute of Chemistry Chinese Academy of Sciences CHINA
| | - Ying Jiang
- Beijing Normal University College of Chemistry Beijing Normal University 100875 Beijing CHINA
| | - Wenjie Ma
- Institute of Chemistry Chinese Academy of Sciences Institute of Chemistry Chinese Academy of Sciences CHINA
| | - Ping Yu
- Institute of Chemistry Chinese Academy of Sciences Institute of Chemistry Chinese Academy of Sciences CHINA
| | - Lanqun Mao
- Beijing Normal University College of Chemistry No.19, Xinjiekouwai St, Haidian District 100875 Beijing CHINA
| |
Collapse
|
22
|
Jiang B, Gu W, Jiang W, Lv M, Niu B, Wu XJ, Wang W, Wang H. Directly Imaging Dynamic Electronic Coupling during Electrochemical Oxidation of Single Silver Nanoparticles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bo Jiang
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Wenjie Gu
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Wenxuan Jiang
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Mengqi Lv
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Ben Niu
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Xue-Jun Wu
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Wei Wang
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Hui Wang
- Nanjing University Nanjing Xianlin road No. 163 CHINA
| |
Collapse
|
23
|
Khan R, Andreescu D, Hassan MH, Ye J, Andreescu S. Nanoelectrochemistry Reveals Selective Interactions of Perfluoroalkyl Substances (PFASs) with Silver Nanoparticles. Angew Chem Int Ed Engl 2022; 61:e202209164. [DOI: 10.1002/anie.202209164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Reem Khan
- Chemistry and Biomolecular Science Clarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
| | - Daniel Andreescu
- Chemistry and Biomolecular Science Clarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
| | - Mohamed H. Hassan
- Chemistry and Biomolecular Science Clarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
| | - Jingyun Ye
- Chemistry and Biomolecular Science Clarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
| | - Silvana Andreescu
- Chemistry and Biomolecular Science Clarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
| |
Collapse
|
24
|
Kostopoulos N, Miranda Vieira M, godeffroy L, Médard J, Combellas C, Lemineur JF, Kanoufi F, Noël JM. Tuning the electrode activity to expose transformational and electrocatalytic characteristics of individual nanoparticles by nanoimpact electrochemistry. ChemElectroChem 2022. [DOI: 10.1002/celc.202200582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Louis godeffroy
- Universite de Paris UFR de Chimie Laboratoire ITODYS, CNRS, UMR7086 75013 Paris FRANCE
| | - Jérôme Médard
- Universite de Paris UFR de Chimie Laboratoire ITODYS, CNRS, UMR7086 FRANCE
| | | | - Jean-Francois Lemineur
- Universite de Paris UFR de Chimie Laboratoire ITODYS, CNRS, UMR7086 15 rue jean-Antoine de Baïf 75013 Paris FRANCE
| | - Frédéric Kanoufi
- Universite de Paris UFR de Chimie Laboratoire ITODYS, CNRS, UMR7086 15 rue jean-Antoine de Baïf 75013 Paris FRANCE
| | - Jean-Marc Noël
- Universite de Paris UFR de Chimie Laboratoire ITODYS, CNRS, UMR7086 15 rue jean-Antoine de Baïf 75013 Paris FRANCE
| |
Collapse
|
25
|
Khan R, Andreescu D, Hassan MH, Ye J, Andreescu S. Nanoelectrochemistry Reveals Selective Interactions of Perfluoroalkyl Substances (PFASs) with Silver Nanoparticles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Reem Khan
- Clarkson University Chemistry and Biomolecular Science UNITED STATES
| | - Daniel Andreescu
- Clarkson University Chemistry and Biomolecular Science 8 Clarkson Ave 13699 Potsdam UNITED STATES
| | - Mohamed H. Hassan
- Clarkson University Chemistry and Biomolecular Science UNITED STATES
| | - Jingyun Ye
- Clarkson University Chemistry and Biomolecular Science UNITED STATES
| | - Silvana Andreescu
- Clarkson University Chemistry and Biomolecular Science 8 Clarskon Ave 13699 Potsdam UNITED STATES
| |
Collapse
|
26
|
Electrochemical Detection and Analysis of Various Current Responses of a Single Ag Nanoparticle Collision in an Alkaline Electrolyte Solution. Int J Mol Sci 2022; 23:ijms23137472. [PMID: 35806475 PMCID: PMC9267213 DOI: 10.3390/ijms23137472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 12/10/2022] Open
Abstract
A single silver (Ag) nanoparticle (NP) collision was observed and analyzed in an alkaline solution using the electrocatalytic amplification (EA) method. Previously, the observation of a single Ag NP collision was only possible through limited methods based on a self-oxidation of Ag NPs or a blocking strategy. However, it is difficult to characterize the electrocatalytic activity of Ag NPs at a single NP level using a method based on the self-oxidation of Ag NPs. When using a blocking strategy, size analysis is difficult owing to the edge effect in the current signal. The fast oxidative dissolution of Ag NPs has been a problem for observing the staircase response of a single Ag NP collision signal using the EA method. In alkaline electrolyte conditions, Ag oxides are stable, and the oxidative dissolution of Ag NPs is sluggish. Therefore, in this study, the enhanced magnitude and frequency of the current response for single Ag NP collisions were obtained using the EA method in an alkaline electrolyte solution. The peak height and frequency of single Ag NP collisions were analyzed and compared with the theoretical estimation.
Collapse
|
27
|
Vieira MM, Lemineur JF, Médard J, Combellas C, Kanoufi F, Noël JM. Nanoimpact Electrochemistry to Quantify the Transformation and Electrocatalytic Activity of Ni(OH) 2 Nanoparticles: Toward the Size-Activity Relationship at High Throughput. J Phys Chem Lett 2022; 13:5468-5473. [PMID: 35687372 DOI: 10.1021/acs.jpclett.2c01408] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The fast establishment of structure-reactivity relationships is crucial to identifying the most appropriate nanoparticles (NPs) for a given application. This requires the development of methodologies allowing, simultaneously, the unraveling of the NPs geometry and the screening of their reactivity. Herein, nanoimpact electrochemistry (NIE) allows for quantifying the transformation and measuring the electrocatalytic activity for the oxygen evolution reaction (OER) of >100 Ni(OH)2 NPs of a wide range of size (NP radii from 25 to 100 nm). This is achieved by scanning electrochemical microscopy in a generation/collection-like mode, with one electrode being used to electrogenerate by local precipitation colloidal Ni(OH)2 NPs and the second one being used to collect them by NIE. It allows (i) quantifying the reductive and oxidative conversion of the Ni(OH)2 NPs and (ii) separating the electrochemical conversion and the OER electrocatalysis, leading to the evaluation of a structure-activity relationship.
Collapse
Affiliation(s)
| | | | - Jérôme Médard
- Université Paris Cité, ITODYS, CNRS, F-75013 Paris, France
| | | | | | - Jean-Marc Noël
- Université Paris Cité, ITODYS, CNRS, F-75013 Paris, France
| |
Collapse
|
28
|
Yang YJ, Bai YY, Huangfu YY, Yang XY, Tian YS, Zhang ZL. Single-Nanoparticle Collision Electrochemistry Biosensor Based on an Electrocatalytic Strategy for Highly Sensitive and Specific Detection of H7N9 Avian Influenza Virus. Anal Chem 2022; 94:8392-8398. [DOI: 10.1021/acs.analchem.2c00913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yan-Ju Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yi-Yan Bai
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yue-Yue Huangfu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xiao-Yan Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yi-Shen Tian
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
29
|
Lu SM, Li MY, Long YT. Dynamic Chemistry Interactions: Controlled Single-Entity Electrochemistry. J Phys Chem Lett 2022; 13:4653-4659. [PMID: 35604854 DOI: 10.1021/acs.jpclett.2c00960] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Single-entity electrochemistry (SEE) provides powerful means to measure single cells, single particles, and even single molecules at the nanoscale by diverse well-defined interfaces. The nanoconfined electrode interface has significantly enhanced structural, electrical, and compositional characteristics that have great effects on the assay limitation and selectivity of single-entity measurement. In this Perspective, after introducing the dynamic chemistry interactions of the target and electrode interface, we present a fundamental understanding of how these dynamic interactions control the features of the electrode interface and thus the stochastic and discrete electrochemical responses of single entities under nanoconfinement. Both stochastic single-entity collision electrochemistry and nanopore electrochemistry as examples in this Perspective explore how these interactions alter the transient charge transfer and mass transport. Finally, we discuss the further challenges and opportunities in SEE, from the design of sensing interfaces to hybrid spectro-electrochemical methods, theoretical models, and advanced data processing.
Collapse
Affiliation(s)
- Si-Min Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Meng-Yin Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
30
|
Wang D, Bao L, Li H, Guo X, Liu W, Wang X, Hou X, He B. Polydopamine stabilizes silver nanoparticles as a SERS substrate for efficient detection of myocardial infarction. NANOSCALE 2022; 14:6212-6219. [PMID: 35403650 DOI: 10.1039/d2nr00091a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rapid and accurate detection of myocardial infarction (MI) can boost the patient's chance of survival. Surface enhanced Raman scattering (SERS) is an outstanding diagnostic technique because of its strong light stability, high resolution, and qualitative and quantitative analysis based on the characteristic fingerprint. However, its reliability, stability and specificity remain to be improved, especially in the quantitative analysis of serum samples. In this study, we developed in situ silver nanoparticles (Ag NPs) on the surface of polydopamine (PDA) as a SERS substrate and found that PDA could act as a reducing agent to support the nucleation and growth of Ag NPs and control the distance and aggregation of Ag NPs to stabilize the Raman signal. In a standard phosphate buffered saline (PBS) environment, PDA@Ag could reach a low detection limit of 0.01 ng mL-1 cardiac troponin I (cTn I) with a good linear relationship. At the same time, the PDA@Ag substrate also possessed excellent stability, specificity and biocompatibility for cTn I detection. In addition, we verified the application potentiality of PDA@Ag in real serum samples and found that the performance of SERS was almost the same as that in PBS. This excellent detection performance of PDA@Ag could be attributed to both the enhanced electromagnetic field and the increased Raman cross-section, dominated by the gap distance between Ag NPs, reaction force between the antigen and the antibody and excellent biocompatibility and reducibility of PDA. In conclusion, this work may provide a new perspective for the in situ synthesis and growth of a uniform SERS substrate on the carrier to achieve the stability and specificity of SERS-based biological detection of MI.
Collapse
Affiliation(s)
- Ding Wang
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai, 200093, China
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Liping Bao
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai, 200093, China
| | - Huijun Li
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai, 200093, China
| | - Xiaoyu Guo
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Weizhuo Liu
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Xianying Wang
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai, 200093, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xumin Hou
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Bin He
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
31
|
Weiß LJK, Lubins G, Music E, Rinklin P, Banzet M, Peng H, Terkan K, Mayer D, Wolfrum B. Single-Impact Electrochemistry in Paper-Based Microfluidics. ACS Sens 2022; 7:884-892. [PMID: 35235291 DOI: 10.1021/acssensors.1c02703] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Microfluidic paper-based analytical devices (μPADs) have experienced an unprecedented story of success. In particular, as of today, most people have likely come into contact with one of their two most famous examples─the pregnancy or the SARS-CoV-2 antigen test. However, their sensing performance is constrained by the optical readout of nanoparticle agglomeration, which typically allows only qualitative measurements. In contrast, single-impact electrochemistry offers the possibility to quantify species concentrations beyond the pM range by resolving collisions of individual species on a microelectrode. Within this work, we investigate the integration of stochastic sensing into a μPAD design by combining a wax-patterned microchannel with a microelectrode array to detect silver nanoparticles (AgNPs) by their oxidative dissolution. In doing so, we demonstrate the possibility to resolve individual nanoparticle collisions in a reference-on-chip configuration. To simulate a lateral flow architecture, we flush previously dried AgNPs along a microchannel toward the electrode array, where we are able to record nanoparticle impacts. Consequently, single-impact electrochemistry poses a promising candidate to extend the limits of lateral flow-based sensors beyond current applications toward a fast and reliable detection of very dilute species on site.
Collapse
Affiliation(s)
- Lennart J. K. Weiß
- Neuroelectronics─Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Georg Lubins
- Neuroelectronics─Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Emir Music
- Neuroelectronics─Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Philipp Rinklin
- Neuroelectronics─Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Marko Banzet
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Hu Peng
- Neuroelectronics─Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Korkut Terkan
- Neuroelectronics─Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Dirk Mayer
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Bernhard Wolfrum
- Neuroelectronics─Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| |
Collapse
|
32
|
Liu J, Ma C, Shi S, Liu H, Wen W, Zhang X, Wu Z, Wang S. A general controllable release amplification strategy of liposomes for single-particle collision electrochemical biosensing. Biosens Bioelectron 2022; 207:114182. [PMID: 35305388 PMCID: PMC8925861 DOI: 10.1016/j.bios.2022.114182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 11/22/2022]
Abstract
As an important component of the COVID-19 mRNA vaccines, liposomes play a key role in the efficient protection and delivery of mRNA to cells. Herein, due to the controllable release amplification strategy of liposomes, a reliable and robust single-particle collision electrochemical (SPCE) biosensor was constructed for H9N2 avian influenza virus (H9N2 AIV) detection by combining liposome encapsulation-release strategy with immunomagnetic separation. The liposomes modified with biotin and loaded with platinum nanoparticles (Pt NPs) were used as signal probes for the first time. Biotin facilitated the coupling of biomolecules (DNA or antibodies) through the specific reaction of biotin-streptavidin. Each liposome can encapsulate multiple Pt NPs, which were ruptured under the presence of 1 × PBST (phosphate buffer saline with 0.05% Tween-20) within 2 min, and the encapsulated Pt NPs were released for SPCE experiment. The combination of immunomagnetic separation not only improved the anti-interference capabilities but also avoided the agglomeration of Pt NPs, enabling the SPCE biosensor to realize ultrasensitive detection of 18.1 fg/mL H9N2 AIV. Furthermore, the reliable SPCE biosensor was successfully applied in specific detection of H9N2 AIV in complex samples (chicken serum, chicken liver and chicken lung), which promoted the universality of SPCE biosensor and its application prospect in early diagnosis of diseases.
Collapse
Affiliation(s)
- Jinrong Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Chong Ma
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Siwei Shi
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Heng Liu
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, 571199, China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Zhen Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China.
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China.
| |
Collapse
|
33
|
Shan Y, Deng X, Lu X, Gao C, Li Y, Chen Q. Surface facets dependent oxygen evolution reaction of single Cu2O nanoparticles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|