1
|
Liu X, Li X, Zhu Z, Yao F, Kang XF. Polyaniline-based hybrid membrane for single-molecule protein nanopore analysis under high voltage. Biosens Bioelectron 2025; 283:117520. [PMID: 40315542 DOI: 10.1016/j.bios.2025.117520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/13/2025] [Accepted: 04/26/2025] [Indexed: 05/04/2025]
Abstract
In vitro reconstituted lipid bilayers are the key to the birth of bio-nanopore technology, although they are fragile and inadequately stable for long-term monitoring applications. Amphiphilic copolymers with high robustness have been developed to circumvent this issue. However, it remains a major challenge to achieve the required fluidity for protein insertion. Here we engineered a polyaniline-based hybrid membrane (PANIM) that exhibits the stability needed for fabricating high-throughput biosensors. This enhanced durability enables prolonged operation without compromising the functional properties of embedded α-hemolysin (α-HL) nanopores. Based on this, we demonstrate high voltage analysis for G-triplex conformations through α-HL in PANIM, which facilitates in-depth study of molecular conformations and provides a novel platform that has great potential for nanopore sensing.
Collapse
Affiliation(s)
- Xingtong Liu
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Xinyue Li
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Zhenxu Zhu
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Fujun Yao
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Xiao-Feng Kang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, PR China.
| |
Collapse
|
2
|
Wang L, Zhou S, Wang Y, Wang Y, Li J, Chen X, Zhou D, Liang L, Yin B, Zhang Y, Wang L. Molecular sandwich-based DNAzyme catalytic reaction towards transducing efficient nanopore electrical detection of antigen proteins. Faraday Discuss 2025; 257:60-72. [PMID: 39431431 DOI: 10.1039/d4fd00146j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Despite significant advances in nanopore nucleic acid sequencing and sensing, protein detection remains challenging due to the inherent complexity of protein molecular properties (i.e., net charges, polarity, molecular conformation & dimension) and sophisticated environmental parameters (i.e., biofluids), resulting in unsatisfactory electrical signal resolution for protein detection such as poor accessibility, selectivity and sensitivity. The selection of an appropriate electroanalytical approach is strongly desired which should be capable of offering easily detectable and readable signals regarding proteins particularly depending on the practical application. Herein, a molecular sandwich-based cooperative DNAzyme catalytic reaction nanopore detecting approach was designed. Specifically, this approach uses Mg2+ catalyzed DNAzyme (10-23) toward nucleic acids digestion for efficient antigen protein examination. The proposed strategy operates by initial formation of a molecular sandwich containing capture antibody-antigen-detection antibody for efficient entrapment of target proteins (herein taking the HIV p24 antigen for example) and immobilization on magnetic beads surfaces. After that, the DNAzyme was linked to the detection antibody via a biotin-streptavidin interaction. In the presence of Mg2+, the DNAzyme catalytic reaction was triggered to digest nucleic acid substrates and release unique cleavage fragments as reporters capable of transducing more easily detectable nucleic acids as a substitute for the complicated and hard to yield protein signals, in a nanopore. Notably, experimental validation confirms the detecting stability and sensitivity for the target antigen referenced with other antigen proteins, meanwhile it demonstrates a detection efficacy in a human serum environment at very low concentration (LoD ∼1.24 pM). This cooperative DNAzyme nanopore electroanalytical approach denotes an advance in protein examination, and may benefit in vitro testing of proteinic biomarkers for disease diagnosis and prognosis assessment.
Collapse
Affiliation(s)
- Lebing Wang
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, The University of Chinese Academy of Sciences, Chongqing, 400714, China.
| | - Shuo Zhou
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - Yunjiao Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, The University of Chinese Academy of Sciences, Chongqing, 400714, China.
| | - Yan Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, The University of Chinese Academy of Sciences, Chongqing, 400714, China.
| | - Jing Li
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, The University of Chinese Academy of Sciences, Chongqing, 400714, China.
| | - Xiaohan Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, The University of Chinese Academy of Sciences, Chongqing, 400714, China.
| | - Daming Zhou
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, The University of Chinese Academy of Sciences, Chongqing, 400714, China.
| | - Liyuan Liang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, The University of Chinese Academy of Sciences, Chongqing, 400714, China.
| | - Bohua Yin
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, The University of Chinese Academy of Sciences, Chongqing, 400714, China.
| | - Youwen Zhang
- Department of Chemistry & Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA.
| | - Liang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, The University of Chinese Academy of Sciences, Chongqing, 400714, China.
| |
Collapse
|
3
|
Wang Z, Cui R, Liu L, Li L, Li Z, Liu X, Guo Y. Nanopore-Based Single-Molecule Investigation of Cation Effect on the i-Motif Structure. J Phys Chem B 2024; 128:6830-6837. [PMID: 38959208 DOI: 10.1021/acs.jpcb.4c02021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The i-motif, a secondary structure of a four-helix formed by cytosine-rich DNA (i-DNA) through C-C+ base pairing, is prevalent in human telomeres and promoters. This structure creates steric hindrance, thereby inhibiting both gene expression and protein coding. The conformation of i-DNA is intricately linked to the intracellular ionic environment. Hence, investigating its conformation under various ion conditions holds significant importance. In this study, we explored the impact of cations on the i-motif structure at the single-molecule level using the α-hemolysin (α-HL) nanochannel. Our findings reveal that the ability of i-DNA to fold into the i-motif structure follows the order Cs+ > Na+ > K+ > Li+ for monovalent cations. Furthermore, we observed the interconversion of single-stranded DNA (ss-DNA) and the i-motif structure at high and low concentrations of Mg2+ and Ba2+ electrolyte solutions. This study not only has the potential to extend the application of i-motif-based sensors in complex solution environments but also provides a new idea for the detection of metal ions.
Collapse
Affiliation(s)
- Zhenzhao Wang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Rikun Cui
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Lili Liu
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Linna Li
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Zhen Li
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Xingtong Liu
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Yanli Guo
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
4
|
Bošković F, Maffeo C, Patiño-Guillén G, Tivony R, Aksimentiev A, Keyser UF. Nanopore Translocation Reveals Electrophoretic Force on Noncanonical RNA:DNA Double Helix. ACS NANO 2024; 18:15013-15024. [PMID: 38822455 PMCID: PMC11171748 DOI: 10.1021/acsnano.4c01466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
Electrophoretic transport plays a pivotal role in advancing sensing technologies. So far, systematic studies have focused on the translocation of canonical B-form or A-form nucleic acids, while direct RNA analysis is emerging as the new frontier for nanopore sensing and sequencing. Here, we compare the less-explored dynamics of noncanonical RNA:DNA hybrids in electrophoretic transport to the well-researched transport of B-form DNA. Using DNA/RNA nanotechnology and solid-state nanopores, the translocation of RNA:DNA (RD) and DNA:DNA (DD) duplexes was examined. Notably, RD duplexes were found to translocate through nanopores faster than DD duplexes, despite containing the same number of base pairs. Our experiments reveal that RD duplexes present a noncanonical helix, with distinct transport properties from B-form DD molecules. We find that RD and DD molecules, with the same contour length, move with comparable velocity through nanopores. We examined the physical characteristics of both duplex forms using atomic force microscopy, atomistic molecular dynamics simulations, agarose gel electrophoresis, and dynamic light scattering measurements. With the help of coarse-grained and molecular dynamics simulations, we find the effective force per unit length applied by the electric field to a fragment of RD or DD duplex in nanopores with various geometries or shapes to be approximately the same. Our results shed light on the significance of helical form in nucleic acid translocation, with implications for RNA sensing, sequencing, and the molecular understanding of electrophoretic transport.
Collapse
Affiliation(s)
- Filip Bošković
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Christopher Maffeo
- Department
of Physics, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | | | - Ran Tivony
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Aleksei Aksimentiev
- Department
of Physics, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Ulrich F. Keyser
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| |
Collapse
|
5
|
Xie Z, Chen Z, Li A, Huang B, Guo C, Zhai Y. Specific Small-Molecule Detection Using Designed Nucleic Acid Nanostructure Carriers and Nanopores. Anal Chem 2024; 96:8528-8533. [PMID: 38728651 DOI: 10.1021/acs.analchem.4c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
In the realm of nanopore sensor technology, an enduring challenge lies in achieving the discerning detection of small biomolecules with a sufficiently high signal-to-noise ratio. This study introduces a method for reliably quantifying the concentration of target small molecules, utilizing tetrahedral DNA nanostructures as surrogates for the captured molecules through a magnetic-bead-based competition substitution mechanism. Magnetic Fe3O4-DNA tetrahedron nanoparticles (MNPs) are incorporated into a nanopore electrochemical system for small-molecule sensing. In the presence of the target, the DNA tetrahedron, featuring an aptamer tail acting as a molecular carrier, detaches from the MNPs due to aptamer deformation. Following removal of the MNPs, the DNA tetrahedron bound to the target traversed the nanopore by applying a positive potential. This approach exhibits various advantages, including heightened sensitivity, selectivity, an improved signal-to-noise ratio (SNR), and robust anti-interference capabilities. Our findings demonstrate that this innovative methodology has the potential to significantly enhance the sensing of various small-molecule targets by nanopores, thereby advancing the sensitivity and dynamic range. This progress holds promise for the development of precise clinical diagnostic tools.
Collapse
Affiliation(s)
- Zhipeng Xie
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Zihao Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Aijia Li
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Bing Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Cunlan Guo
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Yueming Zhai
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, Hubei, P. R. China
| |
Collapse
|
6
|
Bošković F, Maffeo C, Patiño-Guillén G, Tivony R, Aksimentiev A, Keyser UF. Nanopore translocation reveals electrophoretic force on non-canonical RNA:DNA double helix. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.12.557357. [PMID: 37745457 PMCID: PMC10515835 DOI: 10.1101/2023.09.12.557357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Electrophoretic transport plays a pivotal role in advancing sensing technologies. So far, systematic studies have focused on translocation of canonical B-form or A-form nucleic acids, while direct RNA analysis is emerging as the new frontier for nanopore sensing and sequencing. Here, we compare the less-explored dynamics of non-canonical RNA:DNA hybrids in electrophoretic transport with the well-researched transport of B-form DNA. Using DNA/RNA nanotechnology and solid-state nanopores, the translocation of RNA:DNA (RD) and DNA:DNA (DD) duplexes was examined. Notably, RD duplexes were found to translocate through nanopores faster than DD duplexes, despite containing the same number of base pairs. Our experiments reveal that RD duplexes present a non-canonical helix with distinct transport properties from B-form DD molecules. We find RD and DD molecules with the same contour length move with comparable velocity through nanopores. We examined the physical characteristics of both duplex forms using atomic force microscopy, atomistic molecular dynamics simulations, agarose gel electrophoresis, and dynamic light scattering measurements. With the help of coarse-grained and molecular dynamics simulations, we find the effective force per unit length applied by the electric field to a fragment of RD or DD duplex in nanopores with various geometries or shapes to be approximately the same within experimental errors. Our results shed light on the significance of helical form in nucleic acid translocation, with implications for RNA sensing, sequencing, and molecular understanding of electrophoretic transport.
Collapse
|
7
|
Bo Z, Lim ZH, Duarte F, Bayley H, Qing Y. Mobile Molecules: Reactivity Profiling Guides Faster Movement on a Cysteine Track. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202300890. [PMID: 38529338 PMCID: PMC10962685 DOI: 10.1002/ange.202300890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Indexed: 03/19/2023]
Abstract
We previously reported a molecular hopper, which makes sub-nanometer steps by thiol-disulfide interchange along a track with cysteine footholds within a protein nanopore. Here we optimize the hopping rate (ca. 0.1 s-1 in the previous work) with a view towards rapid enzymeless biopolymer characterization during translocation within nanopores. We first took a single-molecule approach to obtain the reactivity profiles of individual footholds. The pK a values of cysteine thiols within a pore ranged from 9.17 to 9.85, and the pH-independent rate constants of the thiolates with a small-molecule disulfide varied by up to 20-fold. Through site-specific mutagenesis and a pH increase from 8.5 to 9.5, the overall hopping rate of a DNA cargo along a five-cysteine track was accelerated 4-fold, and the rate-limiting step 21-fold.
Collapse
Affiliation(s)
- Zonghua Bo
- Department of ChemistryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - Zhong Hui Lim
- Department of ChemistryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - Fernanda Duarte
- Department of ChemistryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - Hagan Bayley
- Department of ChemistryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - Yujia Qing
- Department of ChemistryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
8
|
Bo Z, Lim ZH, Duarte F, Bayley H, Qing Y. Mobile Molecules: Reactivity Profiling Guides Faster Movement on a Cysteine Track. Angew Chem Int Ed Engl 2023; 62:e202300890. [PMID: 36930533 PMCID: PMC10962549 DOI: 10.1002/anie.202300890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/03/2023] [Accepted: 03/17/2023] [Indexed: 03/18/2023]
Abstract
We previously reported a molecular hopper, which makes sub-nanometer steps by thiol-disulfide interchange along a track with cysteine footholds within a protein nanopore. Here we optimize the hopping rate (ca. 0.1 s-1 in the previous work) with a view towards rapid enzymeless biopolymer characterization during translocation within nanopores. We first took a single-molecule approach to obtain the reactivity profiles of individual footholds. The pKa values of cysteine thiols within a pore ranged from 9.17 to 9.85, and the pH-independent rate constants of the thiolates with a small-molecule disulfide varied by up to 20-fold. Through site-specific mutagenesis and a pH increase from 8.5 to 9.5, the overall hopping rate of a DNA cargo along a five-cysteine track was accelerated 4-fold, and the rate-limiting step 21-fold.
Collapse
Affiliation(s)
- Zonghua Bo
- Department of ChemistryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - Zhong Hui Lim
- Department of ChemistryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - Fernanda Duarte
- Department of ChemistryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - Hagan Bayley
- Department of ChemistryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - Yujia Qing
- Department of ChemistryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
9
|
Chen X, Zhou S, Wang Y, Zheng L, Guan S, Wang D, Wang L, Guan X. Nanopore Single-molecule Analysis of Biomarkers: Providing Possible Clues to Disease Diagnosis. Trends Analyt Chem 2023; 162:117060. [PMID: 38106545 PMCID: PMC10722900 DOI: 10.1016/j.trac.2023.117060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Biomarker detection has attracted increasing interest in recent years due to the minimally or non-invasive sampling process. Single entity analysis of biomarkers is expected to provide real-time and accurate biological information for early disease diagnosis and prognosis, which is critical to the effective disease treatment and is also important in personalized medicine. As an innovative single entity analysis method, nanopore sensing is a pioneering single-molecule detection technique that is widely used in analytical bioanalytical fields. In this review, we overview the recent progress of nanopore biomarker detection as new approaches to disease diagnosis. In highlighted studies, nanopore was focusing on detecting biomarkers of different categories of communicable and noncommunicable diseases, such as pandemic Covid-19, AIDS, cancers, neurologic diseases, etc. Various sensitive and selective nanopore detecting strategies for different types of biomarkers are summarized. In addition, the challenges, opportunities, and direction for future development of nanopore-based biomarker sensors are also discussed.
Collapse
Affiliation(s)
- Xiaohan Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
| | - Shuo Zhou
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
| | - Yunjiao Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
| | - Ling Zheng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Sarah Guan
- Hinsdale Central High School, Hinsdale, IL 60521, USA
| | - Deqiang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
| | - Liang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
- Chongqing Key Laboratory of Intelligent Medicine Engineering for Hepatopancreatobiliary Diseases, University of Chinese Academy of Sciences, Chongqing 401147, China
| | - Xiyun Guan
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA
| |
Collapse
|
10
|
Wang X, Thomas TM, Ren R, Zhou Y, Zhang P, Li J, Cai S, Liu K, Ivanov AP, Herrmann A, Edel JB. Nanopore Detection Using Supercharged Polypeptide Molecular Carriers. J Am Chem Soc 2023; 145:6371-6382. [PMID: 36897933 PMCID: PMC10037339 DOI: 10.1021/jacs.2c13465] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
The analysis at the single-molecule level of proteins and their interactions can provide critical information for understanding biological processes and diseases, particularly for proteins present in biological samples with low copy numbers. Nanopore sensing is an analytical technique that allows label-free detection of single proteins in solution and is ideally suited to applications, such as studying protein-protein interactions, biomarker screening, drug discovery, and even protein sequencing. However, given the current spatiotemporal limitations in protein nanopore sensing, challenges remain in controlling protein translocation through a nanopore and relating protein structures and functions with nanopore readouts. Here, we demonstrate that supercharged unstructured polypeptides (SUPs) can be genetically fused with proteins of interest and used as molecular carriers to facilitate nanopore detection of proteins. We show that cationic SUPs can substantially slow down the translocation of target proteins due to their electrostatic interactions with the nanopore surface. This approach enables the differentiation of individual proteins with different sizes and shapes via characteristic subpeaks in the nanopore current, thus facilitating a viable route to use polypeptide molecular carriers to control molecular transport and as a potential system to study protein-protein interactions at the single-molecule level.
Collapse
Affiliation(s)
- Xiaoyi Wang
- Department of Chemistry, Imperial College London, Molecular Science Research Hub, London W12 0BZ, U.K
| | - Tina-Marie Thomas
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Ren Ren
- Department of Chemistry, Imperial College London, Molecular Science Research Hub, London W12 0BZ, U.K
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, U.K
| | - Yu Zhou
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Peng Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Shenglin Cai
- Department of Chemistry, Imperial College London, Molecular Science Research Hub, London W12 0BZ, U.K
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Aleksandar P Ivanov
- Department of Chemistry, Imperial College London, Molecular Science Research Hub, London W12 0BZ, U.K
| | - Andreas Herrmann
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Joshua B Edel
- Department of Chemistry, Imperial College London, Molecular Science Research Hub, London W12 0BZ, U.K
| |
Collapse
|
11
|
Chen K, Choudhary A, Sandler SE, Maffeo C, Ducati C, Aksimentiev A, Keyser UF. Super-Resolution Detection of DNA Nanostructures Using a Nanopore. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207434. [PMID: 36630969 DOI: 10.1002/adma.202207434] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/28/2022] [Indexed: 06/17/2023]
Abstract
High-resolution analysis of biomolecules has brought unprecedented insights into fundamental biological processes and dramatically advanced biosensing. Notwithstanding the ongoing resolution revolution in electron microscopy and optical imaging, only a few methods are presently available for high-resolution analysis of unlabeled single molecules in their native states. Here, label-free electrical sensing of structured single molecules with a spatial resolution down to single-digit nanometers is demonstrated. Using a narrow solid-state nanopore, the passage of a series of nanostructures attached to a freely translocating DNA molecule is detected, resolving individual nanostructures placed as close as 6 nm apart and with a surface-to-surface gap distance of only 2 nm. Such super-resolution ability is attributed to the nanostructure-induced enhancement of the electric field at the tip of the nanopore. This work demonstrates a general approach to improving the resolution of single-molecule nanopore sensing and presents a critical advance towards label-free, high-resolution DNA sequence mapping, and digital information storage independent of molecular motors.
Collapse
Affiliation(s)
- Kaikai Chen
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Adnan Choudhary
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL, 61801, USA
| | - Sarah E Sandler
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Christopher Maffeo
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL, 61801, USA
| | - Caterina Ducati
- Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Avenue, Urbana, IL 61801, USA
| | - Ulrich F Keyser
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| |
Collapse
|
12
|
Ying YL, Hu ZL, Zhang S, Qing Y, Fragasso A, Maglia G, Meller A, Bayley H, Dekker C, Long YT. Nanopore-based technologies beyond DNA sequencing. NATURE NANOTECHNOLOGY 2022; 17:1136-1146. [PMID: 36163504 DOI: 10.1038/s41565-022-01193-2] [Citation(s) in RCA: 217] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 06/02/2022] [Indexed: 06/16/2023]
Abstract
Inspired by the biological processes of molecular recognition and transportation across membranes, nanopore techniques have evolved in recent decades as ultrasensitive analytical tools for individual molecules. In particular, nanopore-based single-molecule DNA/RNA sequencing has advanced genomic and transcriptomic research due to the portability, lower costs and long reads of these methods. Nanopore applications, however, extend far beyond nucleic acid sequencing. In this Review, we present an overview of the broad applications of nanopores in molecular sensing and sequencing, chemical catalysis and biophysical characterization. We highlight the prospects of applying nanopores for single-protein analysis and sequencing, single-molecule covalent chemistry, clinical sensing applications for single-molecule liquid biopsy, and the use of synthetic biomimetic nanopores as experimental models for natural systems. We suggest that nanopore technologies will continue to be explored to address a number of scientific challenges as control over pore design improves.
Collapse
Affiliation(s)
- Yi-Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, People's Republic of China
| | - Zheng-Li Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, People's Republic of China
| | - Shengli Zhang
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Yujia Qing
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Alessio Fragasso
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Giovanni Maglia
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands.
| | - Amit Meller
- Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel.
| | - Hagan Bayley
- Department of Chemistry, University of Oxford, Oxford, UK.
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands.
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, People's Republic of China.
| |
Collapse
|
13
|
Cairns-Gibson DF, Cockroft SL. Functionalised nanopores: chemical and biological modifications. Chem Sci 2022; 13:1869-1882. [PMID: 35308845 PMCID: PMC8848921 DOI: 10.1039/d1sc05766a] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
Nanopore technology has established itself as a powerful tool for single-molecule studies. By analysing changes in the ion current flowing through a single transmembrane channel, a wealth of molecular information can be elucidated. Early studies utilised nanopore technology for sensing applications, and subsequent developments have diversified its remit. Nanopores can be synthetic, solid-state, or biological in origin, but recent work has seen these boundaries blurred as hybrid functionalised pores emerge. The modification of existing pores and the construction of novel synthetic pores has been an enticing goal for creating systems with tailored properties and functionality. Here, we explore chemically functionalised biological pores and the bio-inspired functionalisation of solid-state pores, highlighting how the convergence of these domains provides enhanced functionality. The convergence of chemistry, biology, and solid-state approaches enables the construction hybrid nanopores with enhanced single-molecule applications.![]()
Collapse
Affiliation(s)
- Dominic F. Cairns-Gibson
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Scott L. Cockroft
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| |
Collapse
|