1
|
Li Y, Chen J, Xiao L, Guo Z, Huang J, Gao S, Li J, Li B, Liu Z. High-Lethality Precision-Guided Nanomissile for Broad-Spectrum Virucidal and Anti-Inflammatory Therapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:27974-27987. [PMID: 40314777 DOI: 10.1021/acsami.5c03831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Viral infection, especially the past SARS-CoV-2 pandemic, has posed severe threat toward globalized healthcare, whereas vaccine and drug development can hardly keep up with the rate of virus mutation and resistance. In severe COVID-19 patients, the virus triggers a cytokine storm marked by excessive pro-inflammatory cytokine release, resulting in acute respiratory distress syndrome (ARDS). Therefore, a comprehensive strategy for viral neutralization and inflammation suppression is highly demanded. Herein, we designed a high-lethality precision-guided nanomissile for broad-spectrum virucidal and anti-inflammatory therapy. The nanomissile was a nanoscale molecularly imprinted polymer (nanoMIP) harboring hypervalent mannose-binding cavities and loaded with a magnetocaloric core and photothermal dye ICG. It demonstrated an ultrafast heating rate, increasing from 25.2 to 55.9 °C within 60 s under alternating magnetic field (AMF) and near-infrared (NIR) laser irradiation. In addition, the nanomissile exhibited a unique double-punch mechanism, being capable of targeting not only the conserved high-mannose glycans of SARS-CoV-2, HIV-1, LASV, and PDCoV with Kd values reaching 10-10 M but also heat-inactivating the virions right away. Beyond this, it also exhibited significant anti-inflammatory and immunomodulatory properties. In the mouse model, the nanomissile exerted outstanding therapeutic and prophylactic effects while inhibiting virus replication and protecting lung injury. Thus, this potently broad-spectrum virucidal strategy opens a new access to eradicating viral infectivity and inflammatory storm suspension.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jingran Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Li Xiao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhanchen Guo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jin Huang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Song Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Li W, Liu Z. Advances in glycan-specific biomimetic molecular recognition and its biomedical applications. Chem Commun (Camb) 2025; 61:6739-6754. [PMID: 40243224 DOI: 10.1039/d5cc01003a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Glycan-mediated recognition is critically involved in a variety of pathophysiological events, so strategies targeting unique glycosylation could offer opportunities for novel disease diagnostics and therapeutics. Herein, we survey the current progress in glycan-binding entities and their biomedical applications. Particularly focusing on biologically promising artificial receptors, including boronate affinity-based molecularly imprinted polymers (MIPs) and anti-glycan aptamers, we summarize significant efforts in the recognition of glycans by MIPs and aptamers with high affinity and exquisite specificity. Furthermore, we highlight successful examples in biomedical fields of antiviral treatment, cancer diagnostics and targeted therapeutics. Finally, we briefly sketch the remaining challenges and future perspectives. Collectively, this review provides significant insights for further exploration of glycan-specific biomimetic materials in the broad biomedical area.
Collapse
Affiliation(s)
- Wei Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
3
|
Zhang J, Wang D, Kwok C, Xu L, Famulok M. Aptamer-engaged nanotherapeutics against SARS-CoV-2. DISCOVER NANO 2025; 20:71. [PMID: 40289185 PMCID: PMC12034613 DOI: 10.1186/s11671-025-04245-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/26/2025] [Indexed: 04/30/2025]
Abstract
The COVID-19 pandemic, caused by the virus SARS-CoV-2 infection, has underscored the critical importance of rapid and accurate therapeutics. The neutralization of SARS-CoV-2 is paramount in controlling the spread and impact of COVID-19. In this context, the integration of aptamers and aptamer-related nanotherapeutics presents a valuable and scientifically significant approach. Despite the potential, current reviews in this area are often not comprehensive and specific enough to encapsulate the full scope of therapeutic principles, strategies, advancements, and challenges. This review aims to fill that gap by providing an in-depth examination of the role of aptamers and their related molecular medicine in COVID-19 therapeutics. We first introduce the unique properties, selection, and recognition mechanism of aptamers to bind with high affinity to various targets. Next, we delve into the therapeutic potential of aptamers, focusing on their ability to inhibit viral entry and replication, as well as modulate the host immune response. The integration of aptamers with nucleic acid nanomedicine is explored. Finally, we address the challenges and future perspectives of aptamer and nucleic acid nanomedicine in COVID-19 therapeutics, including issues of stability, delivery, and manufacturing scalability. We conclude by underscoring the importance of continued research and development in this field to meet the ongoing challenges posed by COVID-19 and potential future pandemics. Our review will be a valuable resource for researchers and clinicians interested in the latest developments at the intersection of molecular biology, nanotechnology, and infectious disease management.
Collapse
Affiliation(s)
- Jing Zhang
- Life Science and Chemistry College, Hunan University of Technology, Zhuzhou, 412007, China
| | - Dan Wang
- Life & Medical Sciences Institute (LIMES), Pharmaceutical Institute, Universität Bonn, 53121, Bonn, Germany.
| | - Chiu Kwok
- Life & Medical Sciences Institute (LIMES), Pharmaceutical Institute, Universität Bonn, 53121, Bonn, Germany
| | - Liujun Xu
- Department of Respiratory and Critical Care, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, 324000, China.
| | - Michalina Famulok
- Life & Medical Sciences Institute (LIMES), Pharmaceutical Institute, Universität Bonn, 53121, Bonn, Germany
| |
Collapse
|
4
|
Song W, Li C, Dong Y, Leung SSY, Liu Q, Liu H, Li F. DNA Aptamers with Chemically Locked Ends for Virus Infection Inhibition. ACS APPLIED MATERIALS & INTERFACES 2025; 17:19459-19470. [PMID: 40117505 DOI: 10.1021/acsami.5c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Nucleic acid aptamers, known as chemical antibodies, demonstrate remarkable affinity and specificity for targets. Therefore, aptamers are proposed as an alternative to an antibody in extensive applications. However, nucleic acid aptamers exhibit poor tolerance to degradation by nucleases, which severely hampers their biological applications. Herein, we developed a biological regulation pattern for aptamers by utilizing small-molecule-mediated terminal manipulation, which could prevent the interaction of DNA aptamers with exonucleases and help aptamers persist in the desired conformation with high stability. Diagonal T-T bases were designed in the ends of aptamers and could be chemically cross-linked with trioxsalen via photocatalyzed cycloaddition. Aptamers with different patterns of terminal T-T cross-linking sites were synthesized. Experimental investigation and molecular dynamics simulations combinedly revealed that the cross-linking efficiency of ends depended on multiple factors: (i) the number of T-T cross-linking sites in the terminal sequences, (ii) the spatial conformation of aptamers, and (iii) the competitive binding ability of the T-T sites with trioxsalen compared to other base sites. The aptamers with locked ends exhibited superior exonuclease resistance, especially with both 3'- and 5'-cross-linked ends, thus demonstrating a great target binding capability. Notably, in the application exploration, the terminal locked aptamers, which bound to receptor-binding domains on SARS-CoV-2, showed superior performance in virus infection inhibition. This work puts forward a paradigm to develop a biological regulation pattern for aptamers based on chemical terminal manipulation of DNA, potentially promoting the clinical applications of nucleic acid drugs.
Collapse
Affiliation(s)
- Wenzhe Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chuanxi Li
- Petrochemical Research Institute, PetroChina, Beijing, 102206, China
- Centre of Process Integration, Department of Chemical Engineering, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Yuhang Dong
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | | | - Qiaoling Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Huiyu Liu
- State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Feng Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
5
|
Fornt‐Suñé M, Puertas MC, Martinez‐Picado J, García‐Pardo J, Ventura S. Protein Nanoparticles for Targeted SARS-CoV-2 Trapping and Neutralization. Adv Healthc Mater 2025; 14:e2402744. [PMID: 39400473 PMCID: PMC11874693 DOI: 10.1002/adhm.202402744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/27/2024] [Indexed: 10/15/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continues to challenge global health despite widespread vaccination efforts, underscoring the need for innovative strategies to combat emerging infectious diseases effectively. Herein, LCB1-NPs and LCB3-NPs are engineered as a novel class of protein-only nanoparticles formed through coiled coil-driven self-assembly and tailored to interact specifically with the SARS-CoV-2 spike protein. The multivalency of LCB1-NPs and LCB3-NPs offers a strategy for efficiently targeting and neutralizing SARS-CoV-2 both in solution and when immobilized on surfaces. It is demonstrated that LCB1-NPs and LCB3-NPs bind to the SARS-CoV-2 spike protein's receptor-binding domain (RBD) with high affinity, effectively blocking the entry of SARS-CoV-2 virus-like particles into angiotensin-converting enzyme 2 (ACE2)-coated human cells. The cost-effectiveness, scalability, and straightforward production process of these protein nanoparticles make them suitable for developing novel anti-viral materials. Accordingly, it is shown how these nanostructures can be packed into columns to build up economic and highly potent trapping devices for SARS-CoV-2 adsorption.
Collapse
Affiliation(s)
- Marc Fornt‐Suñé
- Institut de Biotecnologia i de Biomedicina (IBB)Universitat Autònoma de BarcelonaBellaterra08193Spain
- Departament de Bioquímica i Biologia MolecularUniversitat Autònoma de BarcelonaBellaterra08193Spain
| | - Maria C. Puertas
- IrsiCaixaBadalona08916Spain
- Germans Trias i Pujol Research Institute (IGTP)Badalona08916Spain
- Biomedical Research Networking Center on Infectious Diseases (CIBERINFEC)Madrid28029Spain
| | - Javier Martinez‐Picado
- IrsiCaixaBadalona08916Spain
- Germans Trias i Pujol Research Institute (IGTP)Badalona08916Spain
- Biomedical Research Networking Center on Infectious Diseases (CIBERINFEC)Madrid28029Spain
- Infectious Diseases and Immunity DepartmentUniversity of Vic‐Central University of CataloniaVic (UVic‐UCC)Vic08500Spain
- Catalan Institution for Research and Advanced Studies (ICREA)Barcelona08010Spain
| | - Javier García‐Pardo
- Institut de Biotecnologia i de Biomedicina (IBB)Universitat Autònoma de BarcelonaBellaterra08193Spain
- Departament de Bioquímica i Biologia MolecularUniversitat Autònoma de BarcelonaBellaterra08193Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina (IBB)Universitat Autònoma de BarcelonaBellaterra08193Spain
- Departament de Bioquímica i Biologia MolecularUniversitat Autònoma de BarcelonaBellaterra08193Spain
- Catalan Institution for Research and Advanced Studies (ICREA)Barcelona08010Spain
- Institut d'Investigació i Innovació Parc Taulí (I3PT CERCA)Universitat Autònoma de BarcelonaSabadell08208Spain
| |
Collapse
|
6
|
Yang L, Wang X, Jing X, Bai B, Bo T, Zhang J, Yu L, Qian H, Gu Y, Yang Y. A HOF-101@AgNPs-based dual-signal mode aptasensor for electrochemiluminescence and fluorescence detection of E. coli O157:H7. Food Chem 2025; 464:141591. [PMID: 39396474 DOI: 10.1016/j.foodchem.2024.141591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
Escherichia coli O157:H7 (E. coli O157:H7) emerges as a foodborne pathogen, emphasizing the imperative for creating precise detection tools. An ultrasensitive electrochemiluminescence/fluorescence (ECL/FL) dual-signal mode aptasensor was constructed for the detection of E. coli O157:H7. Ultrafine silver nanoparticles were loaded on the surface of hydrogen-bonded organic skeleton materials by in-situ photoreduction method, and then combined with aptamers that can identify specific targets to prepare HOF-101@AgNPs@Apt, greatly simplifying the ECL/FL dual-signal mode probe fabrication process and improving sensing reliability. HOF-101@AgNPs@Apt had both strong ECL luminescence and fluorescence, resulting in a high detection sensitivity. The low limit of detection (LOD) for ECL and FL were 0.48 CFU mL-1 and 2.39 CFU mL-1, respectively. Moreover, the proposed dual-signal mode aptasensor has been successfully applied to determine E. coli O157:H7 levels in tap water and milk with superior accuracy and high antiinterference capability, providing a promising method for food safety monitoring.
Collapse
Affiliation(s)
- Lanqing Yang
- School of Life Science, Xinghuacun College (Shanxi Institute of Brewing Technology and Industry), Shanxi University, Taiyuan 030006, China
| | - Xiaomin Wang
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Yuci 030619, China.
| | - Xu Jing
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Baoqing Bai
- School of Life Science, Xinghuacun College (Shanxi Institute of Brewing Technology and Industry), Shanxi University, Taiyuan 030006, China
| | - Tao Bo
- School of Life Science, Xinghuacun College (Shanxi Institute of Brewing Technology and Industry), Shanxi University, Taiyuan 030006, China
| | - Jinhua Zhang
- School of Life Science, Xinghuacun College (Shanxi Institute of Brewing Technology and Industry), Shanxi University, Taiyuan 030006, China
| | - Ligang Yu
- School of Life Science, Xinghuacun College (Shanxi Institute of Brewing Technology and Industry), Shanxi University, Taiyuan 030006, China
| | - Hailong Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China..
| | - Yukun Yang
- School of Life Science, Xinghuacun College (Shanxi Institute of Brewing Technology and Industry), Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
7
|
Osman EA, Karimi K, Chen Y, Hirka S, Charles RW, McKeague M. Design of Label-Free DNA Light-Up Aptaswitches for Multiplexed Biosensing. ACS Sens 2025; 10:246-253. [PMID: 39705714 DOI: 10.1021/acssensors.4c02331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
We present a straightforward design approach to develop DNA-based light-up aptasensors. We performed the first systematic comparison of DNA fluorescent light-up aptamers (FLAPs), revealing key differences in affinity and specificity for their target dyes. Based on our analysis, two light-up aptamers emerged with remarkable specificity, fluorescence enhancement, and functionality in diverse environments. We then established generalizable design rules to couple the DNA FLAPs to small molecule-binding aptamers, creating 13 novel aptaswitches with reliable turn-on or turn-off aptaswitching in a dose-response manner. We developed new aptaswitches for ochratoxin A and ATP biosensing with up to a seven-fold response and low background. Finally, we demonstrated the orthogonal activity of our aptaswitch platforms. As a result, we introduce fluorescent light-up aptaswitches for one-pot detection of different targets in diverse sample matrices.
Collapse
Affiliation(s)
- Eiman A Osman
- Department of Chemistry, Faculty of Science, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Kimiya Karimi
- Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Yuhao Chen
- Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Serhii Hirka
- Department of Chemistry, Faculty of Science, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Roberto W Charles
- Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Maureen McKeague
- Department of Chemistry, Faculty of Science, McGill University, Montreal, Quebec H3A 0B8, Canada
- Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
8
|
Khongwichit S, Swangphon P, Nualla-ong A, Prompat N, Amatatongchai M, Lieberzeit PA, Chunta S. Reduced Uptake of Oxidized Low-Density Lipoprotein by Macrophages Using Multiple Aptamer Combinations. ACS APPLIED BIO MATERIALS 2025; 8:457-474. [PMID: 39762152 PMCID: PMC11752521 DOI: 10.1021/acsabm.4c01432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/21/2025]
Abstract
The accumulation of oxidized low-density lipoprotein (oxLDL) in macrophages leads to the formation of foam cells and atherosclerosis development. Reducing the uptake of oxLDL in macrophages decreases the incidence and progression of atherosclerosis. Four distinct single-strand DNA sequences, namely, AP07, AP11, AP25, and AP29, were selected that demonstrated specific binding to distinct regions of oxidized apolipoprotein B100 (apoB100; the protein component of oxLDL) with low HDOCK scores. These four DNA sequences were combined to generate aptamers that selectively bound to labeled Dil-oxLDL, and were subsequently added to murine RAW 264.7 macrophages to test their inhibitory effects using fluorescence spectrometry. The four combined aptamers at 10 μM reduced oxLDL uptake by 79 ± 4% compared to that of the untreated aptamer group. Flow cytometry data demonstrated that macrophages treated with aptamers reached only 32.6% of the Dil-oxLDL signal, a 50% reduction in fluorescence emission relative to that of the untreated group (64.4% Dil-oxLDL signal). Binding the four combined aptamers to the oxLDL surface disrupted the interaction between oxLDL and CD36 via cyclic voltammetry, effectively decreasing the level of uptake of oxLDL by macrophages. Results suggested that these aptamers could be used as alternative compounds to prevent the formation of foam cells, hence providing antiatherosclerosis activity.
Collapse
Affiliation(s)
- Soemwit Khongwichit
- Faculty
of Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand
- Division
of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Piyawut Swangphon
- Faculty
of Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand
| | - Aekkaraj Nualla-ong
- Division
of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
- Center
for Genomics and Bioinformatic Research, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
- Medical
of Technology Service Center, Faculty of
Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand
| | - Napat Prompat
- Faculty
of Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand
- Medical
of Technology Service Center, Faculty of
Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand
| | - Maliwan Amatatongchai
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Peter A. Lieberzeit
- Department
of Physical Chemistry, Faculty for Chemistry, University of Vienna, Vienna 1090, Austria
| | - Suticha Chunta
- Faculty
of Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
9
|
Wang Q, Li J, Zhang Z, Amini R, Derdall A, Gu J, Xia J, Salena BJ, Yamamura D, Soleymani L, Li Y. Fighting Mutations with Mutations: Evolutionarily Adapting a DNA Aptamer for High-Affinity Recognition of Mutated Spike Proteins of SARS-CoV-2. Angew Chem Int Ed Engl 2025; 64:e202415226. [PMID: 39256966 DOI: 10.1002/anie.202415226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/12/2024]
Abstract
An on-going challenge with COVID-19, which has huge implications for future pandemics, is the rapid emergence of viral variants that makes diagnostic tools less accurate, calling for rapid identification of recognition elements for detecting new variants caused by mutations. We hypothesize that we can fight mutations of the viruses with mutations of existing recognition elements. We demonstrate this concept via rapidly evolving an existing DNA aptamer originally selected for the spike protein (S-protein) of wildtype SARS-CoV-2 to enhance the interaction with the same protein of the Omicron variants. The new aptamer, MBA5SA1, has acquired 22 mutations within its 40-nucleotide core sequence and improved its binding affinity for the S-proteins of diverse Omicron subvariants by >100-fold compared to its parental aptamer (improved from nanomolar to picomolar affinity). Deep sequencing analysis reveals dynamic competitions among several MBA5SA1 variants in response to increasing selection pressure imposed during in vitro selection, with MBA5SA1 being the final winner of the competition. Additionally, MBA5SA1 was implemented into an enzyme-linked aptamer binding assay (ELABA), which was applied for detecting Omicron variants in the saliva of infected patients. The assay produced a sensitivity of 86.5 % and a specificity of 100 %, which were established with 83 clinical samples.
Collapse
Affiliation(s)
- Qing Wang
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Jiuxing Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Zijie Zhang
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Ryan Amini
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Abigail Derdall
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Jimmy Gu
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Jianrun Xia
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Bruno J Salena
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Deborah Yamamura
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
- Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Leyla Soleymani
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
- Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
- Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
10
|
Mohammadifar E, Gasbarri M, Dimde M, Nie C, Wang H, Povolotsky TL, Kerkhoff Y, Desmecht D, Prevost S, Zemb T, Ludwig K, Stellacci F, Haag R. Supramolecular Architectures of Dendritic Polymers Provide Irreversible Inhibitor to Block Viral Infection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2408294. [PMID: 39344918 DOI: 10.1002/adma.202408294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/20/2024] [Indexed: 10/01/2024]
Abstract
In Nature, most known objects can perform their functions only when in supramolecular self-assembled from, e.g. protein complexes and cell membranes. Here, a dendritic polymer is presented that inhibits severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with an irreversible (virucidal) mechanism only when self-assembled into a Two-dimmensional supramolecular polymer (2D-SupraPol). Monomeric analogs of the dendritic polymer can only inhibit SARS-CoV-2 reversibly, thus allowing for the virus to regain infectivity after dilution. Upon assembly, 2D-SupraPol shows a remarkable half-inhibitory concentration (IC50 30 nM) in vitro and in vivo in a Syrian Hamster model has a good efficacy. Using cryo-TEM, it is shown that the 2D-SupraPol has a controllable lateral size that can be tuned by adjusting the pH and use small angle X-ray and neutron scattering to unveil the architecture of the supramolecular assembly. This functional 2D-SupraPol, and its supramolecular architecture are proposed, as a prophylaxis nasal spray to inhibit the virus interaction with the respiratory tract.
Collapse
Affiliation(s)
- Ehsan Mohammadifar
- Institut für Chemie und Biochemie Freie Universität Berlin, Takustr 3, 14195, Berlin, Germany
| | - Matteo Gasbarri
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Mathias Dimde
- Forschungszentrum für Elektronenmikroskopie und Gerätezentrum BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Chuanxiong Nie
- Institut für Chemie und Biochemie Freie Universität Berlin, Takustr 3, 14195, Berlin, Germany
| | - Heyun Wang
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Tatyana L Povolotsky
- Institut für Chemie und Biochemie Freie Universität Berlin, Takustr 3, 14195, Berlin, Germany
| | - Yannic Kerkhoff
- Forschungszentrum für Elektronenmikroskopie und Gerätezentrum BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Daniel Desmecht
- Animal Pathology, FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, Sart-Tilman B43, Liège, 4000, Belgium
| | - Sylvain Prevost
- Institut Laue-Langevin - The European Neutron Source, 71 avenue des Martyrs - CS 20156 38042, Grenoble, cedex 9, France
| | - Thomas Zemb
- ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Bagnols-sur-Ceze, 30207, France
| | - Kai Ludwig
- Forschungszentrum für Elektronenmikroskopie und Gerätezentrum BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Francesco Stellacci
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Rainer Haag
- Institut für Chemie und Biochemie Freie Universität Berlin, Takustr 3, 14195, Berlin, Germany
| |
Collapse
|
11
|
Dong Y, Wang J, Chen L, Chen H, Dang S, Li F. Aptamer-based assembly systems for SARS-CoV-2 detection and therapeutics. Chem Soc Rev 2024; 53:6830-6859. [PMID: 38829187 DOI: 10.1039/d3cs00774j] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Nucleic acid aptamers are oligonucleotide chains with molecular recognition properties. Compared with antibodies, aptamers show advantages given that they are readily produced via chemical synthesis and elicit minimal immunogenicity in biomedicine applications. Notably, aptamer-encoded nucleic acid assemblies further improve the binding affinity of aptamers with the targets due to their multivalent synergistic interactions. Specially, aptamers can be engineered with special topological arrangements in nucleic acid assemblies, which demonstrate spatial and valence matching towards antigens on viruses, thus showing potential in the detection and therapeutic applications of viruses. This review presents the recent progress on the aptamers explored for SARS-CoV-2 detection and infection treatment, wherein applications of aptamer-based assembly systems are introduced in detail. Screening methods and chemical modification strategies for aptamers are comprehensively summarized, and the types of aptamers employed against different target domains of SARS-CoV-2 are illustrated. The evolution of aptamer-based assembly systems for the detection and neutralization of SARS-CoV-2, as well as the construction principle and characteristics of aptamer-based DNA assemblies are demonstrated. The typically representative works are presented to demonstrate how to assemble aptamers rationally and elaborately for specific applications in SARS-CoV-2 diagnosis and neutralization. Finally, we provide deep insights into the current challenges and future perspectives towards aptamer-based nucleic acid assemblies for virus detection and neutralization in nanomedicine.
Collapse
Affiliation(s)
- Yuhang Dong
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Jingping Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Ling Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Haonan Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Shuangbo Dang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Feng Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| |
Collapse
|
12
|
Song K, Xue W, Li X, Chang Y, Liu M. Self-Assembly of Single-Virus SERS Hotspots for Highly Sensitive In Situ Detection of SARS-CoV-2 on Solid Surfaces. Anal Chem 2024; 96:8830-8836. [PMID: 38693713 DOI: 10.1021/acs.analchem.4c01607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Microbial surface transmission has aroused great attention since the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Developing a simple in situ detection method for viruses on solid surfaces is of great significance for timely public health surveillance. Taking advantage of the natural structure of SARS-CoV-2, we reported the assembly of Au@AgNPs on the surface of a single virus by the specific aptamer-spike protein interaction. Multiple hotspots can be created between the neighboring Au@AgNPs for the highly sensitive surface-enhanced Raman scattering (SERS) detection of SARS-CoV-2. Using two different aptamers labeled with Cy3 and Au@AgNPs, in situ SERS detection of pseudotyped SARS-CoV-2 (PSV) on packaging surfaces was achieved within 20 min, with a detection limit of 5.26 TCID50/mL. For the blind testing of 20 PSV-contaminated packaging samples, this SERS aptasensor had a sensitivity of 100% and an accuracy of 100%. This assay has been successfully applied to in situ detection of PSV on the surfaces of different packaging materials, suggesting its potential applicability.
Collapse
Affiliation(s)
- Kaiyun Song
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian POCT laboratory, Dalian University of Technology, Dalian 116024, China
| | - Wei Xue
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian POCT laboratory, Dalian University of Technology, Dalian 116024, China
| | - Xiaona Li
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian POCT laboratory, Dalian University of Technology, Dalian 116024, China
| | - Yangyang Chang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian POCT laboratory, Dalian University of Technology, Dalian 116024, China
| | - Meng Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian POCT laboratory, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
13
|
Duan Q, Jia H, Chen W, Qin C, Zhang K, Jia F, Fu T, Wei Y, Fan M, Wu Q, Tan W. Multivalent Aptamer-Based Lysosome-Targeting Chimeras (LYTACs) Platform for Mono- or Dual-Targeted Proteins Degradation on Cell Surface. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308924. [PMID: 38425146 PMCID: PMC11077639 DOI: 10.1002/advs.202308924] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/16/2024] [Indexed: 03/02/2024]
Abstract
Selective protein degradation platforms have opened novel avenues in therapeutic development and biological inquiry. Antibody-based lysosome-targeting chimeras (LYTACs) have emerged as a promising technology that extends the scope of targeted protein degradation to extracellular targets. Aptamers offer an advantageous alternative owing to their potential for modification and manipulation toward a multivalent state. In this study, a chemically engineered platform of multivalent aptamer-based LYTACs (AptLYTACs) is established for the targeted degradation of either single or dual protein targets. Leveraging the biotin-streptavidin system as a molecular scaffold, this investigation reveals that trivalently mono-targeted AptLYTACs demonstrate optimum efficiency in degrading membrane proteins. The development of this multivalent AptLYTACs platform provides a principle of concept for mono-/dual-targets degradation, expanding the possibilities of targeted protein degradation.
Collapse
Affiliation(s)
- Qiao Duan
- Institute of Molecular Medicine (IMM)Renji HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong UniversityShanghai200120China
| | - Hao‐Ran Jia
- Institute of Molecular Medicine (IMM)Renji HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong UniversityShanghai200120China
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Weichang Chen
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Chunhong Qin
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Kejing Zhang
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- Department of General SurgeryXiangya HospitalCentral South UniversityChangshaHunan410006China
| | - Fei Jia
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Ting Fu
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Yong Wei
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Mengyang Fan
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Qin Wu
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Weihong Tan
- Institute of Molecular Medicine (IMM)Renji HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong UniversityShanghai200120China
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| |
Collapse
|
14
|
Guo Y, Song W, Dong Y, Wang X, Nie G, Li F. A Poly Aptamer Encoded DNA Nanocatcher Informs Efficient Virus Trapping. NANO LETTERS 2024; 24:3614-3623. [PMID: 38497742 DOI: 10.1021/acs.nanolett.3c04510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Broad-spectrum antiviral platforms are always desired but still lack the ability to cope with the threats to global public health. Herein, we develop a poly aptamer encoded DNA nanocatcher platform that can trap entire virus particles to inhibit infection with a broad antiviral spectrum. Ultralong single-stranded DNA (ssDNA) containing repeated aptamers was synthesized as the scaffold of a nanocatcher via a biocatalytic process, wherein mineralization of magnesium pyrophosphate on the ssDNA could occur and consequently lead to the formation of nanocatcher with interfacial nanocaves decorated with virus-binding aptamers. Once the viruses were recognized by the apatmers, they would be captured and trapped in the nanocaves via multisite synergistic interactions. Meanwhile, the size of nanocatchers was optimized to prevent their cellular uptake, which further guaranteed inhibition of virus infection. By taking SARS-CoV-2 variants as a model target, we demonstrated the broad virus-trapping capability of a DNA nanocatcher in engulfing the variants and blocking the infection to host cells.
Collapse
Affiliation(s)
- Yunhua Guo
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenzhe Song
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuhang Dong
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xuejun Wang
- Bioinformatics Center of AMMS, Taiping Rd, Haidian District, Beijing, 100850, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Feng Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
15
|
Gao R, Xu X, Kumar P, Liu Y, Zhang H, Guo X, Sun M, Colombari FM, de Moura AF, Hao C, Ma J, Turali Emre ES, Cha M, Xu L, Kuang H, Kotov NA, Xu C. Tapered chiral nanoparticles as broad-spectrum thermally stable antivirals for SARS-CoV-2 variants. Proc Natl Acad Sci U S A 2024; 121:e2310469121. [PMID: 38502692 PMCID: PMC10990083 DOI: 10.1073/pnas.2310469121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/19/2024] [Indexed: 03/21/2024] Open
Abstract
The incessant mutations of viruses, variable immune responses, and likely emergence of new viral threats necessitate multiple approaches to novel antiviral therapeutics. Furthermore, the new antiviral agents should have broad-spectrum activity and be environmentally stable. Here, we show that biocompatible tapered CuS nanoparticles (NPs) efficiently agglutinate coronaviruses with binding affinity dependent on the chirality of surface ligands and particle shape. L-penicillamine-stabilized NPs with left-handed curved apexes display half-maximal inhibitory concentrations (IC50) as low as 0.66 pM (1.4 ng/mL) and 0.57 pM (1.2 ng/mL) for pseudo-type SARS-CoV-2 viruses and wild-type Wuhan-1 SARS-CoV-2 viruses, respectively, which are about 1,100 times lower than those for antibodies (0.73 nM). Benefiting from strong NPs-protein interactions, the same particles are also effective against other strains of coronaviruses, such as HCoV-HKU1, HCoV-OC43, HCoV-NL63, and SARS-CoV-2 Omicron variants with IC50 values below 10 pM (21.8 ng/mL). Considering rapid response to outbreaks, exposure to elevated temperatures causes no change in the antiviral activity of NPs while antibodies are completely deactivated. Testing in mice indicates that the chirality-optimized NPs can serve as thermally stable analogs of antiviral biologics complementing the current spectrum of treatments.
Collapse
Affiliation(s)
- Rui Gao
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
| | - Xinxin Xu
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
| | - Prashant Kumar
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI48109
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI48109
| | - Ye Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan650000, People’s Republic of China
| | - Hongyu Zhang
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
| | - Xiao Guo
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
| | - Felippe Mariano Colombari
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo13083-100, Brazil
| | - André F. de Moura
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo13565-905, Brazil
| | - Changlong Hao
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
| | - Jessica Ma
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI48109
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI48109
- NSF Center for Complex Particles and Particle Systems (COMPASS), University of Michigan, Ann Arbor, MI48109
| | - Emine Sumeyra Turali Emre
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI48109
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI48109
- NSF Center for Complex Particles and Particle Systems (COMPASS), University of Michigan, Ann Arbor, MI48109
| | - Minjeong Cha
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI48109
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI48109
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
| | - Nicholas A. Kotov
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI48109
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI48109
- NSF Center for Complex Particles and Particle Systems (COMPASS), University of Michigan, Ann Arbor, MI48109
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu214122, People’s Republic of China
| |
Collapse
|
16
|
Song T, Cooper L, Galván Achi J, Wang X, Dwivedy A, Rong L, Wang X. Polyvalent Nanobody Structure Designed for Boosting SARS-CoV-2 Inhibition. J Am Chem Soc 2024; 146:5894-5900. [PMID: 38408177 PMCID: PMC10965196 DOI: 10.1021/jacs.3c11760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Coronavirus transmission and mutations have brought intensive challenges on pandemic control and disease treatment. Developing robust and versatile antiviral drugs for viral neutralization is highly desired. Here, we created a new polyvalent nanobody (Nb) structure that shows the effective inhibition of SARS-CoV-2 infections. Our polyvalent Nb structure, called "PNS", is achieved by first conjugating single-stranded DNA (ssDNA) and the receptor-binding domain (RBD)-targeting Nb with retained binding ability to SARS-CoV-2 spike protein and then coalescing the ssDNA-Nb conjugates around a gold nanoparticle (AuNP) via DNA hybridization with a desired Nb density that offers spatial pattern-matching with that of the Nb binding sites on the trimeric spike. The surface plasmon resonance (SPR) assays show that the PNS binds the SARS-CoV-2 trimeric spike proteins with a ∼1000-fold improvement in affinity than that of monomeric Nbs. Furthermore, our viral entry inhibition assays using the PNS against SARS-CoV-2 WA/2020 and two recent variants of interest (BQ1.1 and XBB) show an over 400-fold enhancement in viral inhibition compared to free Nbs. Our PNS strategy built on a new DNA-protein conjugation chemistry provides a facile approach to developing robust virus inhibitors by using a corresponding virus-targeting Nb with a desired Nb density.
Collapse
Affiliation(s)
- Tingjie Song
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Laura Cooper
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Jazmin Galván Achi
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Xiaojing Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Abhisek Dwivedy
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Xing Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
17
|
Sun R, Zhou Y, Fang Y, Qin Y, Zheng Y, Jiang L. DNA aptamer-linked sandwich structure enhanced SPRi sensor for rapid, sensitive, and quantitative detection of SARS-CoV-2 spike protein. Anal Bioanal Chem 2024; 416:1667-1677. [PMID: 38342787 DOI: 10.1007/s00216-024-05172-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/13/2024]
Abstract
The harm and impact of the COVID-19 pandemic have highlighted the importance of fast, sensitive, and cost-effective virus detection methods. In this study, we developed a DNA aptamer sensor using nanoparticle-enhanced surface plasmon resonance imaging (SPRi) technology to achieve efficient labeling-free detection of SARS-CoV-2 S protein. We used the same DNA aptamer to modify the surface of the SPRi sensor chip and gold nanoparticles (AuNPs), respectively, for capturing target analytes and amplifying signals, achieving ideal results while greatly reducing costs and simplifying the preparation process. The SPRi sensing method exhibits a good linear relationship (R2 = 0.9926) in the concentration range of 1-20 nM before adding AuNPs to amplify the signal, with a limit of detection (LOD) of 0.32 nM. After amplifying the signal, there is a good linear relationship (R2 = 0.9829) between the concentration range of 25-1000 pM, with a LOD of 5.99 pM. The simulation results also verified the effectiveness of AuNPs in improving SPRi signal response. The SPRi sensor has the advantage of short detection time and can complete the detection within 10 min. In addition, the specificity and repeatability of this method can achieve excellent results. This is the first study to simultaneously capture a viral marker protein and amplify the signal using polyadenylic acid (polyA)-modified DNA aptamers on the SPR platform. This scheme can be used as a fast and inexpensive detection method for diagnosis at the point of care (POC) to combat current and future epidemics caused by the virus.
Collapse
Affiliation(s)
- Rengang Sun
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Yadong Zhou
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China.
| | - Yunzhu Fang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Yirui Qin
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Yekai Zheng
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Li Jiang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
18
|
Chen Z, Sun Q, Yang Y, Nie X, Xiang W, Ren Y, Le T. Aptamer-based diagnostic and therapeutic approaches for animal viruses: A review. Int J Biol Macromol 2024; 257:128677. [PMID: 38072350 DOI: 10.1016/j.ijbiomac.2023.128677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024]
Abstract
Animal diseases often have significant consequences due to the unclear and time-consuming diagnosis process. Furthermore, the emergence of new viral infections and drug-resistant pathogens has further complicated the diagnosis and treatment of viral diseases. Aptamers, which are obtained through systematic evolution of ligands by exponential enrichment (SELEX) technology, provide a promising solution as they enable specific identification and binding to targets, facilitating pathogen detection and the development of novel therapeutics. This review presented an overview of aptasensors for animal virus detection, discussed the antiviral activity and mechanisms of aptamers, and highlighted advancements in aptamer-based antiviral research following the COVID-19 pandemic. Additionally, the challenges and prospects of aptamer-based virus diagnosis and treatment research were explored. Although this review was not exhaustive, it offered valuable insights into the progress of aptamer-based antiviral drug research, target mechanisms, as well as the development of novel antiviral drugs and biosensors.
Collapse
Affiliation(s)
- Zhuoer Chen
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Qi Sun
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Ying Yang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Xunqing Nie
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Wenyu Xiang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Yueyang Ren
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Tao Le
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China.
| |
Collapse
|
19
|
Wang M, Hao MC, Huangfu Y, Yang KZ, Zhang XQ, Zhang Y, Chen J, Zhang ZL. A Universal Aptamer for Influenza A Viruses: Selection, Recognition, and Infection Inhibition. ACS Pharmacol Transl Sci 2024; 7:249-258. [PMID: 38230279 PMCID: PMC10789145 DOI: 10.1021/acsptsci.3c00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 01/18/2024]
Abstract
It is crucial to develop universal inhibitors for viral inhibition due to the rapid mutation of viruses. Herein, a universal aptamer inhibitor was developed that enabled a single DNA molecule to recognize several hemeagglutinin (HA) protein subtypes, inducing broad neutralization against influenza A viruses (IAVs). Through a multi-channel enrichment (MCE) strategy, a high-affinity aptamer named UHA-2 was obtained, with its dissociation constants (Kd) for three different HA proteins being 1.5 ± 0.2 nM (H5N1), 3.7 ± 0.4 nM (H7N9), and 10.1 ± 1.1 nM (H9N2). The UHA-2 aptamer had a universal inhibition effect, by which it could broadly neutralize influenza A H5N1, H7N9, H9N2, H1N1, and H3N2 viruses. Universal aptamer inhibitors have the advantages of acquisition in vitro, stability, simple structure, small size, etc. This study not only develops a novel universal aptamer to achieve a broad inhibition effect on various IAVs, but also opens up an efficient strategy for the development of universal inhibitors against viruses.
Collapse
Affiliation(s)
- Meng Wang
- College
of Chemistry and Molecular Sciences, Wuhan
University, Wuhan, Hubei 430072, China
| | - Meng-Chan Hao
- Key
Laboratory of Special Pathogens and Biosafety, Wuhan Institute of
Virology, Center for Biosafety Mega-Science,
Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yueyue Huangfu
- College
of Chemistry and Molecular Sciences, Wuhan
University, Wuhan, Hubei 430072, China
| | - Ke-Zhu Yang
- College
of Chemistry and Molecular Sciences, Wuhan
University, Wuhan, Hubei 430072, China
| | - Xiao-Qing Zhang
- Key
Laboratory of Special Pathogens and Biosafety, Wuhan Institute of
Virology, Center for Biosafety Mega-Science,
Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Zhang
- Key
Laboratory of Special Pathogens and Biosafety, Wuhan Institute of
Virology, Center for Biosafety Mega-Science,
Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianjun Chen
- Key
Laboratory of Special Pathogens and Biosafety, Wuhan Institute of
Virology, Center for Biosafety Mega-Science,
Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Ling Zhang
- College
of Chemistry and Molecular Sciences, Wuhan
University, Wuhan, Hubei 430072, China
| |
Collapse
|
20
|
Wu Q, Wei X, Chen F, Huang M, Zhang S, Zhu L, Zhou L, Yang C, Song Y. Aptamer-Assisted Blockade of the Immune Suppressor Sialic Acid-Binding Immunoglobulin-Like Lectin-15 for Cancer Immunotherapy. Angew Chem Int Ed Engl 2023; 62:e202312609. [PMID: 37955317 DOI: 10.1002/anie.202312609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/14/2023]
Abstract
The percentage of low response and adaptive resistance to current antibody-based immune checkpoint blockade (ICB) therapy requires the development of novel immunotherapy strategies. Here, we developed an aptamer-assisted immune checkpoint blockade (Ap-ICB) against sialic acid-binding immunoglobulin-like lectin-15 (Siglec-15), a novel immune suppressor broadly upregulated on cancer cells and tumor infiltrating myeloid cells, which is mutually exclusive of programmed cell death ligand 1 (PD-L1). Using protein aptamer selection, we identified WXY3 aptamer with high affinity against Siglec-15 protein/Siglec-15 positive cells. We demonstrated that WXY3 aptamer rescued antigen-specific T cell responses in vitro and in vivo. Importantly, the WXY3 Ap-ICB against Siglec-15 amplified anti-tumor immunity in the tumor microenvironment and inhibited tumor growth/metastasis in syngeneic mouse model, which may result from enhanced macrophage and T cell functionality. In addition, by using aptamer-based spherical nucleic acids, we developed a synergetic ICB strategy of multivalent binding and steric hindrance, which further improves the in vivo anti-tumor effect. Taken together, our results support Ap-ICB targeted Siglec-15 as a potential strategy for normalization cancer immunotherapy.
Collapse
Affiliation(s)
- Qiuyue Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, Fujian, China
| | - Xinyu Wei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, Fujian, China
| | - Fude Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, Fujian, China
| | - Mengjiao Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, Fujian, China
| | - Suhui Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, Fujian, China
| | - Lin Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, Fujian, China
| | - Leiji Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, Fujian, China
| | - Chaoyong Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, Fujian, China
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Yanling Song
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, Fujian, China
| |
Collapse
|
21
|
Ji C, Wei J, Zhang L, Hou X, Tan J, Yuan Q, Tan W. Aptamer-Protein Interactions: From Regulation to Biomolecular Detection. Chem Rev 2023; 123:12471-12506. [PMID: 37931070 DOI: 10.1021/acs.chemrev.3c00377] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Serving as the basis of cell life, interactions between nucleic acids and proteins play essential roles in fundamental cellular processes. Aptamers are unique single-stranded oligonucleotides generated by in vitro evolution methods, possessing the ability to interact with proteins specifically. Altering the structure of aptamers will largely modulate their interactions with proteins and further affect related cellular behaviors. Recently, with the in-depth research of aptamer-protein interactions, the analytical assays based on their interactions have been widely developed and become a powerful tool for biomolecular detection. There are some insightful reviews on aptamers applied in protein detection, while few systematic discussions are from the perspective of regulating aptamer-protein interactions. Herein, we comprehensively introduce the methods for regulating aptamer-protein interactions and elaborate on the detection techniques for analyzing aptamer-protein interactions. Additionally, this review provides a broad summary of analytical assays based on the regulation of aptamer-protein interactions for detecting biomolecules. Finally, we present our perspectives regarding the opportunities and challenges of analytical assays for biological analysis, aiming to provide guidance for disease mechanism research and drug discovery.
Collapse
Affiliation(s)
- Cailing Ji
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Junyuan Wei
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lei Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xinru Hou
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
22
|
Huang Y, Wu Q, Zhang J, Zhang Y, Cen S, Yang C, Song Y. Microfluidic Enrichment of Intact SARS-CoV-2 Viral Particles by Stoichiometric Balanced DNA Computation. ACS NANO 2023; 17:21973-21983. [PMID: 37901936 DOI: 10.1021/acsnano.3c08400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Health diagnostic tools for community safety and environmental monitoring require selective and quantitatively accurate active viral load assessment. Herein, we report a microfluidic enrichment strategy to separate intact SARS-CoV-2 particles by AND logic gate with inputs of cholesterol oligonucleotides for the envelope and aptamers for the spike viral proteins. Considering the unequal quantity of endogenous spikes and lipid membranes on SARS-CoV-2, a dual-domain binding strategy, with two aptamers targeting different spike domains, was applied to balance the spike-envelope stoichiometric ratio. By balancing the stoichiometric with DNA computation and promoting microscale mass transfer of the herringbone chip, the developed strategy enabled high sensitivity detection of pseudotyped SARS-CoV-2 with a limit of detection as low as 37 active virions/μL while distinguishing it from inactive counterparts, other nontarget viruses, and free spike protein. Moreover, the captured viral particles can be released through DNase I treatment with up to 90% efficiency, which is fully compatible with virus culture and sequencing. Overall, the developed strategy not only identified SARS-CoV-2-infected patients (n = 14) with 100% identification from healthy donors (n = 8) but also provided a fresh perspective on the regulation of stoichiometric ratio to achieve a more biologically relevant DNA computation.
Collapse
Affiliation(s)
- Yihao Huang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Qiuyue Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Jialu Zhang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yuqian Zhang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Shiyun Cen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
23
|
Razi N, Li W, Ignacio MA, Loube JM, Agostino EL, Zhu X, Scull MA, DeStefano JJ. Inhibition of SARS-CoV-2 infection in human airway epithelium with a xeno-nucleic acid aptamer. Respir Res 2023; 24:272. [PMID: 37932762 PMCID: PMC10629106 DOI: 10.1186/s12931-023-02590-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND SARS-CoV-2, the agent responsible for the COVID-19 pandemic, enters cells through viral spike glycoprotein binding to the cellular receptor, angiotensin-converting enzyme 2 (ACE2). Given the lack of effective antivirals targeting SARS-CoV-2, we previously utilized systematic evolution of ligands by exponential enrichment (SELEX) and selected fluoro-arabino nucleic acid (FANA) aptamer R8-9 that was able to block the interaction between the viral receptor-binding domain and ACE2. METHODS Here, we further assessed FANA-R8-9 as an entry inhibitor in contexts that recapitulate infection in vivo. RESULTS We demonstrate that FANA-R8-9 inhibits spike-bearing pseudovirus particle uptake in cell lines. Then, using an in-vitro model of human airway epithelium (HAE) and SARS-CoV-2 virus, we show that FANA-R8-9 significantly reduces viral infection when added either at the time of inoculation, or several hours later. These results were specific to the R8-9 sequence, not the xeno-nucleic acid utilized to make the aptamer. Importantly, we also show that FANA-R8-9 is stable in HAE culture secretions and has no overt cytotoxic effects. CONCLUSIONS Together, these results suggest that FANA-R8-9 effectively prevents infection by specific SARS-CoV-2 variants and indicate that aptamer technology could be utilized to target other clinically-relevant viruses in the respiratory mucosa.
Collapse
Affiliation(s)
- Niayesh Razi
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute (MPRI), University of Maryland, College Park, MD, 20742, USA
| | - Weizhong Li
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Maxinne A Ignacio
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute (MPRI), University of Maryland, College Park, MD, 20742, USA
| | - Jeffrey M Loube
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute (MPRI), University of Maryland, College Park, MD, 20742, USA
| | - Eva L Agostino
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute (MPRI), University of Maryland, College Park, MD, 20742, USA
| | - Xiaoping Zhu
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Margaret A Scull
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute (MPRI), University of Maryland, College Park, MD, 20742, USA.
| | - Jeffrey J DeStefano
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute (MPRI), University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
24
|
Razi N, Li W, Ignacio MA, Loube JM, Agostino EL, Zhu X, Scull MA, DeStefano JJ. Inhibition of SARS-CoV-2 Infection in Human Airway Epithelium with a Xeno-Nucleic Acid Aptamer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559799. [PMID: 37808754 PMCID: PMC10557761 DOI: 10.1101/2023.09.27.559799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Background SARS-CoV-2, the agent responsible for the COVID-19 pandemic, enters cells through viral spike glycoprotein binding to the cellular receptor, angiotensin-converting enzyme 2 (ACE2). Given the lack of effective antivirals targeting SARS-CoV-2, we previously utilized systematic evolution of ligands by exponential enrichment (SELEX) and selected fluoro-arabino nucleic acid (FANA) aptamer R8-9 that was able to block the interaction between the viral receptor-binding domain and ACE2. Methods Here, we further assessed FANA-R8-9 as an entry inhibitor in contexts that recapitulate infection in vivo. Results We demonstrate that FANA-R8-9 inhibits spike-bearing pseudovirus particle uptake in cell lines. Then, using an in-vitro model of human airway epithelium (HAE) and SARS-CoV-2 virus, we show that FANA-R8-9 significantly reduces viral infection when added either at the time of inoculation, or several hours later. These results were specific to the R8-9 sequence, not the xeno-nucleic acid utilized to make the aptamer. Importantly, we also show that FANA-R8-9 is stable in HAE culture secretions and has no overt cytotoxic effects. Conclusions Together, these results suggest that FANA-R8-9 effectively prevents infection by specific SARS-CoV-2 variants and indicate that aptamer technology could be utilized to target other clinically-relevant viruses in the respiratory mucosa.
Collapse
Affiliation(s)
- Niayesh Razi
- Department of Cell Biology and Molecular Genetics, and Maryland Pathogen Research Institute (MPRI), University of Maryland, College Park, MD, 20742
| | - Weizhong Li
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742
| | - Maxinne A. Ignacio
- Department of Cell Biology and Molecular Genetics, and Maryland Pathogen Research Institute (MPRI), University of Maryland, College Park, MD, 20742
| | - Jeffrey M. Loube
- Department of Cell Biology and Molecular Genetics, and Maryland Pathogen Research Institute (MPRI), University of Maryland, College Park, MD, 20742
| | - Eva L. Agostino
- Department of Cell Biology and Molecular Genetics, and Maryland Pathogen Research Institute (MPRI), University of Maryland, College Park, MD, 20742
| | - Xiaoping Zhu
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742
| | - Margaret A. Scull
- Department of Cell Biology and Molecular Genetics, and Maryland Pathogen Research Institute (MPRI), University of Maryland, College Park, MD, 20742
| | - Jeffrey J. DeStefano
- Department of Cell Biology and Molecular Genetics, and Maryland Pathogen Research Institute (MPRI), University of Maryland, College Park, MD, 20742
| |
Collapse
|
25
|
Chauhan N, Xiong Y, Ren S, Dwivedy A, Magazine N, Zhou L, Jin X, Zhang T, Cunningham BT, Yao S, Huang W, Wang X. Net-Shaped DNA Nanostructures Designed for Rapid/Sensitive Detection and Potential Inhibition of the SARS-CoV-2 Virus. J Am Chem Soc 2023; 145:20214-20228. [PMID: 35881910 PMCID: PMC9344894 DOI: 10.1021/jacs.2c04835] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 02/07/2023]
Abstract
We present a net-shaped DNA nanostructure (called "DNA Net" herein) design strategy for selective recognition and high-affinity capture of intact SARS-CoV-2 virions through spatial pattern-matching and multivalent interactions between the aptamers (targeting wild-type spike-RBD) positioned on the DNA Net and the trimeric spike glycoproteins displayed on the viral outer surface. Carrying a designer nanoswitch, the DNA Net-aptamers release fluorescence signals upon virus binding that are easily read with a handheld fluorimeter for a rapid (in 10 min), simple (mix-and-read), sensitive (PCR equivalent), room temperature compatible, and inexpensive (∼$1.26/test) COVID-19 test assay. The DNA Net-aptamers also impede authentic wild-type SARS-CoV-2 infection in cell culture with a near 1 × 103-fold enhancement of the monomeric aptamer. Furthermore, our DNA Net design principle and strategy can be customized to tackle other life-threatening and economically influential viruses like influenza and HIV, whose surfaces carry class-I viral envelope glycoproteins like the SARS-CoV-2 spikes in trimeric forms.
Collapse
Affiliation(s)
- Neha Chauhan
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yanyu Xiong
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shaokang Ren
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Abhisek Dwivedy
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nicholas Magazine
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Lifeng Zhou
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Tianyi Zhang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Brian T. Cunningham
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Xing Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
26
|
Mahmoudi A, Alavizadeh SH, Hosseini SA, Meidany P, Doagooyan M, Abolhasani Y, Saadat Z, Amani F, Kesharwani P, Gheybi F, Sahebkar A. Harnessing aptamers against COVID-19: A therapeutic strategy. Drug Discov Today 2023; 28:103663. [PMID: 37315763 PMCID: PMC10266562 DOI: 10.1016/j.drudis.2023.103663] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
The novel coronavirus crisis caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) was a global pandemic. Although various therapeutic approaches were developed over the past 2 years, novel strategies with more efficient applicability are required to target new variants. Aptamers are single-stranded (ss)RNA or DNA oligonucleotides capable of folding into unique 3D structures with robust binding affinity to a wide variety of targets following structural recognition. Aptamer-based theranostics have proven excellent capability for diagnosing and treating various viral infections. Herein, we review the current status and future perspective of the potential of aptamers as COVID-19 therapies.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Atefeh Hosseini
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Pouria Meidany
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maham Doagooyan
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Yasaman Abolhasani
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Zakieh Saadat
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Fatemeh Amani
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India
| | - Fatemeh Gheybi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
27
|
Zhang J, Zhu A, Mei M, Qu J, Huang Y, Shi Y, Xue M, Zhang J, Zhang R, Zhou B, Tan X, Zhao J, Wang Y. Repurposing CRISPR/Cas to Discover SARS-CoV-2 Detecting and Neutralizing Aptamers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300656. [PMID: 37204115 PMCID: PMC10401102 DOI: 10.1002/advs.202300656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/07/2023] [Indexed: 05/20/2023]
Abstract
RNA aptamers provide useful biological probes and therapeutic agents. New methodologies to screen RNA aptamers will be valuable by complementing the traditional Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Meanwhile, repurposing clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated systems (Cas) has expanded their utility far beyond their native nuclease function. Here, CRISmers, a CRISPR/Cas-based novel screening system for RNA aptamers based on binding to a chosen protein of interest in a cellular context, is presented. Using CRISmers, aptamers are identified specifically targeting the receptor binding domain (RBD) of the spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Two aptamer leads enable sensitive detection and potent neutralization of SARS-CoV-2 Delta and Omicron variants in vitro. Intranasal administration of one aptamer, further modified with 2'-fluoro pyrimidines (2'-F), 2'-O-methyl purines (2'-O), and conjugation with both cholesterol and polyethylene glycol of 40 kDa (PEG40K), achieves effective prophylactic and therapeutic antiviral activity against live Omicron BA.2 variants in vivo. The study concludes by demonstrating the robustness, consistency, and potential broad utility of CRISmers using two newly identified aptamers but switching CRISPR, selection marker, and host species.
Collapse
Affiliation(s)
- Ju Zhang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100005China
- College of Life Sciences and OceanographyShenzhen UniversityShenzhen518060China
| | - Airu Zhu
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510120China
| | - Miao Mei
- Tsinghua‐Peking Center for Life SciencesBeijing Advanced Innovation Center for Structural BiologyBeijing Frontier Research Center for Biological StructureMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologySchool of Pharmaceutical SciencesCenter for infectious Disease ResearchSchool of MedicineTsinghua UniversityBeijing100084China
| | - Jing Qu
- Institute of Pathogenic OrganismsShenzhen Center for Disease Control and PreventionShenzhen518055China
| | - Yalan Huang
- Institute of Pathogenic OrganismsShenzhen Center for Disease Control and PreventionShenzhen518055China
| | - Yongshi Shi
- College of Life Sciences and OceanographyShenzhen UniversityShenzhen518060China
| | - Meiying Xue
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100005China
| | - Jingfang Zhang
- College of Life Sciences and OceanographyShenzhen UniversityShenzhen518060China
- School of Life SciencesBeijing University of Chinese MedicineBeijing100105China
| | - Renli Zhang
- Institute of Pathogenic OrganismsShenzhen Center for Disease Control and PreventionShenzhen518055China
| | - Bing Zhou
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100005China
| | - Xu Tan
- Tsinghua‐Peking Center for Life SciencesBeijing Advanced Innovation Center for Structural BiologyBeijing Frontier Research Center for Biological StructureMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologySchool of Pharmaceutical SciencesCenter for infectious Disease ResearchSchool of MedicineTsinghua UniversityBeijing100084China
| | - Jincun Zhao
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510120China
| | - Yu Wang
- College of Life Sciences and OceanographyShenzhen UniversityShenzhen518060China
| |
Collapse
|
28
|
Zhang L. Biomedical equipments, vaccine and drug in the prevention, diagnosis and treatment of COVID-19. Heliyon 2023; 9:e18089. [PMID: 37483808 PMCID: PMC10362228 DOI: 10.1016/j.heliyon.2023.e18089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023] Open
Abstract
SARS-CoV-2 virus caused an infectious disease, named COVID-19. Biomedical equipments, vaccine and drug have played a crucial role in the prevention, diagnosis and treatment. Nevertheless, up to now, there still has been no literature summarizing the diagnosis, prevention and treatment of this infectious disease from the perspective of biomedical equipments. Thus, this review wants to give an overview on the biomedical equipments, vaccine and drug in the prevention, diagnosis and treatment of this disease, and avoids the overlap with previous research, more emphasis on biomedical equipments, and less emphasis on biomaterials. The existing problems in the current research and application were summarized, and the future research direction was proposed, so as to provide reference to deal with similar viral infections in the future.
Collapse
|
29
|
Giroux E, Oake A, Lewis T, Martic S. Aptamer-, heparin- or cocktail-based inhibition of S1-ACE2 protein complexes. Anal Biochem 2023:115223. [PMID: 37385465 PMCID: PMC10299842 DOI: 10.1016/j.ab.2023.115223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
The Spike protein (S1) from the Severe acute respiratory syndrome 2 virus binds to angiotensin converting enzyme 2 (ACE2) receptor to initiate infection. Hence, antiviral therapeutic targeting the S1-ACE2 interface is of interest. Herein, we compare the inhibition efficacy of an aptamer to heparin or their cocktail, against wild-type (WT), Omicron, Delta, and Lambda S1-ACE2 complexes. The aptamer-protein complexes had the dissociation constant KD values in the 2-13 nM range. The aptamer half-maximal inhibitory concentration against WT S1-ACE was 17 nM, with the % inhibition in the 12-35% range. Several aptamer-S1 protein complexes were also stable at low pH with 60% inhibition. Despite the similarity in S1 sequences, the extent of inhibition (2-27%) with heparin was highly dependent on the type of S1 protein. More importantly, heparin did not inhibit the WT S1-ACE2 complex but was effective with mutants. The aptamer-heparin cocktail was less effective compared to aptamer or heparin, individually. Modelling data show that either a direct or proximal binding to RBD sites by aptamer or heparin prevents the ACE2 binding. Overall, heparin was as an effective inhibitor as aptamer against certain variants, and represents the more cost-effective neutralizing agent against emerging coronaviruses.
Collapse
Affiliation(s)
- E Giroux
- Department of Forensic Science, Trent University, Peterborough, Canada
| | - A Oake
- Flemming College, Peterborough, Canada
| | - T Lewis
- Environmental and Life Science Program, Trent University, Peterborough, Canada
| | - S Martic
- Department of Forensic Science, Trent University, Peterborough, Canada; Environmental and Life Science Program, Trent University, Peterborough, Canada.
| |
Collapse
|
30
|
Luo Y, Jiang X, Zhang R, Shen C, Li M, Zhao Z, Lv M, Sun S, Sun X, Ying B. MXene-Based Aptameric Fluorosensor for Sensitive and Rapid Detection of COVID-19. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301146. [PMID: 36879476 DOI: 10.1002/smll.202301146] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/16/2023] [Indexed: 06/08/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-caused COVID-19 pandemic has rapidly escalated into the largest global health emergency, which pushes to develop detection kits for the detection of COVID-19 with high sensitivity, specificity, and fast analysis. Here, aptamer-functionalized MXene nanosheet is demonstrated as a novel bionanosensor that detects COVID-19. Upon binding to the spike receptor binding domain of SARS-CoV-2, the aptamer probe is released from MXene surface restoring the quenched fluorescence. The performances of the fluorosensor are evaluated using antigen protein, cultured virus, and swab specimens from COVID-19 patients. It is evidenced that this sensor can detect SARS-CoV-2 spike protein at final concentration of 38.9 fg mL-1 and SARS-CoV-2 pseudovirus (limit of detection: 7.2 copies) within 30 min. Its application for clinical samples analysis is also demonstrated successfully. This work offers an effective sensing platform for sensitive and rapid detection of COVID-19 with high specificity.
Collapse
Affiliation(s)
- Yao Luo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Xin Jiang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Rong Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, 999077, P. R. China
| | - Chen Shen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Mei Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Zhenzhen Zhao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Mengyuan Lv
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, P. R. China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, P. R. China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
31
|
Le TT, Benton DJ, Wrobel AG, Gamblin SJ. Development of high affinity broadly reactive aptamers for spike protein of multiple SARS-CoV-2 variants. RSC Adv 2023; 13:15322-15326. [PMID: 37213341 PMCID: PMC10197177 DOI: 10.1039/d3ra01382k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023] Open
Abstract
We have developed broadly reactive aptamers against multiple variants by alternating the target between spike proteins from different SARS-CoV-2 variants during the selection process. In this process we have developed aptamers which can recognise all variants, from the original wild-type 'Wuhan' strain to Omicron, with high affinity (Kd values in the pM range).
Collapse
Affiliation(s)
- Thao T Le
- Department of Chemistry, Imperial College London UK
| | - Donald J Benton
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute UK
| | - Antoni G Wrobel
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute UK
| | - Steven J Gamblin
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute UK
| |
Collapse
|
32
|
Tang H, Qin H, He S, Li Q, Xu H, Sun M, Li J, Lu S, Luo S, Mao P, Han P, Song L, Tong Y, Fan H, Jiang X. Anti-Coronaviral Nanocluster Restrain Infections of SARS-CoV-2 and Associated Mutants through Virucidal Inhibition and 3CL Protease Inactivation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207098. [PMID: 36843252 PMCID: PMC10161070 DOI: 10.1002/advs.202207098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Indexed: 05/06/2023]
Abstract
Antivirals that can combat coronaviruses, including SARS-CoV-2 and associated mutants, are urgently needed but lacking. Simultaneously targeting the viral physical structure and replication cycle can endow antivirals with sustainable and broad-spectrum anti-coronavirus efficacy, which is difficult to achieve using a single small-molecule antiviral. Thus, a library of nanomaterials on GX_P2V, a SARS-CoV-2-like coronavirus of pangolin origin, is screened and a surface-functionalized gold nanocluster (TMA-GNC) is identified as the top hit. TMA-GNC inhibits transcription- and replication-competent SARS-CoV-2 virus-like particles and all tested pseudoviruses of SARS-CoV-2 variants. TMA-GNC prevents viral dissemination through destroying membrane integrity physically to enable a virucidal effect, interfering with viral replication by inactivating 3CL protease and priming the innate immune system against coronavirus infection. TMA-GNC exhibits biocompatibility and significantly reduces viral titers, inflammation, and pathological injury in lungs and tracheas of GX_P2V-infected hamsters. TMA-GNC may have a role in controlling the COVID-19 pandemic and inhibiting future emerging coronaviruses or variants.
Collapse
Affiliation(s)
- Hao Tang
- Shenzhen Key Laboratory of Smart Healthcare EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsDepartment of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| | - Hongbo Qin
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Shiting He
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Qizhen Li
- Shenzhen Key Laboratory of Smart Healthcare EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsDepartment of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| | - Huan Xu
- Institute of Chemical BiologyShenzhen Bay LaboratoryShenzhenGuangdong518055P. R. China
| | - Mengsi Sun
- Institute of Chemical BiologyShenzhen Bay LaboratoryShenzhenGuangdong518055P. R. China
| | - Jiaan Li
- Shenzhen Key Laboratory of Smart Healthcare EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsDepartment of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| | - Shanshan Lu
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Shengdong Luo
- The Fifth Medical CenterChinese People's Liberation Army General HospitalBeijing100039P. R. China
| | - Panyong Mao
- The Fifth Medical CenterChinese People's Liberation Army General HospitalBeijing100039P. R. China
| | - Pengjun Han
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Lihua Song
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Yigang Tong
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Huahao Fan
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsDepartment of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| |
Collapse
|
33
|
Aptamers targeting SARS-COV-2: a promising tool to fight against COVID-19. Trends Biotechnol 2023; 41:528-544. [PMID: 35995601 PMCID: PMC9340053 DOI: 10.1016/j.tibtech.2022.07.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022]
Abstract
SARS-CoV-2, the causative agent of COVID-19, remains among the main causes of global mortality. Although antigen/antibody-based immunoassays and neutralizing antibodies targeting SARS-CoV-2 have been successfully developed over the past 2 years, they are often inefficient and unreliable for emerging SARS-CoV-2 variants. Novel approaches against SARS-CoV-2 and its variants are therefore urgently needed. Aptamers have been developed for the detection and inhibition of several different viruses such as HIV, influenza viruses, Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV. Aptamers targeting SARS-CoV-2 represent a promising tool in the fight against COVID-19, which is of paramount importance for the current and any future pandemics. This review presents recent advances and future trends in the development of aptamer-based approaches for SARS-CoV-2 diagnosis and treatment.
Collapse
|
34
|
Ouyang Y, Chen Y, Shang J, Sun S, Wang X, Huan S, Xiong B, Zhang XB. Virus-like Plasmonic Nanoprobes for Quick Analysis of Antiviral Efficacy and Mutation-Induced Drug Resistance. Anal Chem 2023; 95:5009-5017. [PMID: 36893130 DOI: 10.1021/acs.analchem.2c05464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
As the pathogenic viruses and the variants of concern greatly threaten human health and global public safety, the development of convenient and robust strategies enabling rapid analysis of antiviral drug efficacy and mutation-induced resistance is quite important to prevent the spread of human epidemics. Herein, we introduce a simple single-particle detection strategy for quick analysis of anti-infective drugs against SARS-CoV-2 and mutation-induced drug resistance, by using the wild-type and mutant spike protein-functionalized AuNPs as virus-like plasmonic nanoprobes. Both the wild-type and mutant virus-like plasmonic nanoprobes can form core-satellite nanoassemblies with the ACE2@AuNPs, providing the opportunity to detect the drug efficacy and mutation-induced resistance by detecting the changes of nanoassemblies upon drug treatment with dark-field microscopy. As a demonstration, we applied the single-particle detection strategy for quantitative determination of antiviral efficacy and mutation-induced resistance of ceftazidime and rhein. The mutations in the receptor-binding domain of Omicron variant could lead to an increase of EC50 values of ceftazidime and rhein, formerly from 49 and 57 μM against wild-type SARS-CoV-2, to 121 and 340 μM, respectively. The mutation-induced remarkable decline in the inhibitory efficacy of drugs was validated with molecule docking analysis and virus-like plasmonic nanoprobe-based cell-incubation assay. Due to the generality and feasibility of the strategy for the preparation of virus-like plasmonic nanoprobes and single-particle detection, we anticipated that this simple and robust method is promising for the discovery and efficacy evaluation of anti-infective drugs against different pathogenic viruses.
Collapse
Affiliation(s)
- Yuzhi Ouyang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yancao Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jinhui Shang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Shijie Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiangbin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Shuangyan Huan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Bin Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
35
|
Liu Z, Han Z, Jin X, An J, Kim J, Chen W, Kim JS, Zheng J, Deng J. Regulating the microenvironment with nanomaterials: Potential strategies to ameliorate COVID-19. Acta Pharm Sin B 2023; 13:S2211-3835(23)00054-0. [PMID: 36846153 PMCID: PMC9941074 DOI: 10.1016/j.apsb.2023.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023] Open
Abstract
COVID-19, caused by SARS-CoV-2, has resulted in serious economic and health burdens. Current treatments remain inadequate to extinguish the epidemic, and efficient therapeutic approaches for COVID-19 are urgently being sought. Interestingly, accumulating evidence suggests that microenvironmental disorder plays an important role in the progression of COVID-19 in patients. In addition, recent advances in nanomaterial technologies provide promising opportunities for alleviating the altered homeostasis induced by a viral infection, providing new insight into COVID-19 treatment. Most literature reviews focus only on certain aspects of microenvironment alterations and fail to provide a comprehensive overview of the changes in homeostasis in COVID-19 patients. To fill this gap, this review systematically discusses alterations of homeostasis in COVID-19 patients and potential mechanisms. Next, advances in nanotechnology-based strategies for promoting homeostasis restoration are summarized. Finally, we discuss the challenges and prospects of using nanomaterials for COVID-19 management. This review provides a new strategy and insights into treating COVID-19 and other diseases associated with microenvironment disorders.
Collapse
Affiliation(s)
- Zhicheng Liu
- Department of Urology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
- Department of Urology, Urological Surgery Research Institute, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhuolei Han
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xin Jin
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jusung An
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Jaewon Kim
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Wenting Chen
- Department of Rheumatology and Clinical Immunology, Army Medical Center, Third Military Medical University (Army Medical University), Chongqing 400042, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Ji Zheng
- Department of Urology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
- Department of Urology, Urological Surgery Research Institute, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
36
|
Chen J, Li Y, Liu Z. Functional nucleic acids as potent therapeutics against SARS-CoV-2 infection. CELL REPORTS. PHYSICAL SCIENCE 2023; 4:101249. [PMID: 36714073 PMCID: PMC9869493 DOI: 10.1016/j.xcrp.2023.101249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The COVID-19 pandemic has posed a severe threat to human life and the global economy. Although conventional treatments, including vaccines, antibodies, and small-molecule inhibitors, have been broadly developed, they usually fall behind the constant mutation of SARS-CoV-2, due to the long screening process and high production cost. Functional nucleic acid (FNA)-based therapeutics are a newly emerging promising means against COVID-19, considering their timely adaption to different mutants and easy design for broad-spectrum virus inhibition. In this review, we survey typical FNA-related therapeutics against SARS-CoV-2 infection, including aptamers, aptamer-integrated DNA frameworks, functional RNA, and CRISPR-Cas technology. We first introduce the pathogenesis, transmission, and evolution of SARS-CoV-2, then analyze the existing therapeutic and prophylactic strategies, including their pros and cons. Subsequently, the FNAs are recommended as potent alternative therapeutics from their screening process and controllable engineering to effective neutralization. Finally, we put forward the remaining challenges of the existing field and sketch out the future development directions.
Collapse
Affiliation(s)
- Jingran Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ying Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
37
|
Wang R, Liu Y, Xiao W, Yi Q, Jiang M, Guo R, Song L, Li M, Li F, Shi D, Zhao L, Huang W, Zuo X, Mao X. Framework Nucleic Acids as Blood-Retinal-Barrier-Penetrable Nanocarrier for Periocular Administration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:541-551. [PMID: 36534594 DOI: 10.1021/acsami.2c18042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Designing an ocular drugs delivery system that can permeate the outer blood-retinal barrier (oBRB) is crucial for the microinvasive or noninvasive treatment of ocular fundus diseases. However, due to the lack of a nanocarrier that can maintain structure and composition at the oBRB, only intravitreal injection at the eyeball can deliver therapeutics directly to the ocular fundus via paracellular and intercellular routes, despite the intraocular operations risks. Here, we demonstrated tetrahedral framework nucleic acids (tFNAs) can penetrate the oBRB and deliver therapeutic nucleic acids to the retina of the rat eye in vivo following subconjunctival injection. We also discovered that tFNAs were transported via a paracellular route across the intercellular tight junctions at the oBRB. The histology analysis for ocular layers indicated that individual and aptamer/doxorubicin-loaded tFNAs penetrated all layers of the posterior segment of the eyeball to reach the innermost retina and persisted for over 3 days with minimal systemic biodistribution. We expect that the programmability and penetrability of tFNAs will provide a promising method for drug delivery across oBRB and long-term sustenance at the target site via periocular administration to various tissues.
Collapse
Affiliation(s)
- Ruobing Wang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yanhan Liu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wenjuan Xiao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qiuxue Yi
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Mengmeng Jiang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ruiyan Guo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Key Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| | - Lu Song
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Min Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Danli Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Lingyi Zhao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Weiyi Huang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
38
|
Juhas M. COVID-19. BRIEF LESSONS IN MICROBIOLOGY 2023:123-133. [DOI: 10.1007/978-3-031-29544-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
39
|
Aptamers Enhance Oncolytic Viruses' Antitumor Efficacy. Pharmaceutics 2022; 15:pharmaceutics15010151. [PMID: 36678780 PMCID: PMC9864469 DOI: 10.3390/pharmaceutics15010151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
Oncolytic viruses are highly promising for cancer treatment because they target and lyse tumor cells. These genetically engineered vectors introduce therapeutic or immunostimulatory genes into the tumor. However, viral therapy is not always safe and effective. Several problems are related to oncolytic viruses' targeted delivery to the tumor and immune system neutralization in the bloodstream. Cryoprotection and preventing viral particles from aggregating during storage are other critical issues. Aptamers, short RNA, or DNA oligonucleotides may help to crawl through this bottleneck. They are not immunogenic, are easily synthesized, can be chemically modified, and are not very demanding in storage conditions. It is possible to select an aptamer that specifically binds to any target cell, oncolytic virus, or molecule using the SELEX technology. This review comprehensively highlights the most important research and methodological approaches related to oncolytic viruses and nucleic acid aptamers. Here, we also analyze possible future research directions for combining these two methodologies to improve the effectiveness of cancer virotherapy.
Collapse
|
40
|
Li J, Zhang Z, Gu J, Amini R, Mansfield AG, Xia J, White D, Stacey HD, Ang JC, Panesar G, Capretta A, Filipe CDM, Mossman K, Salena BJ, Gubbay JB, Balion C, Soleymani L, Miller MS, Yamamura D, Brennan JD, Li Y. Three on Three: Universal and High-Affinity Molecular Recognition of the Symmetric Homotrimeric Spike Protein of SARS-CoV-2 with a Symmetric Homotrimeric Aptamer. J Am Chem Soc 2022; 144:23465-23473. [PMID: 36520671 PMCID: PMC9762500 DOI: 10.1021/jacs.2c09870] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 12/23/2022]
Abstract
Our previously discovered monomeric aptamer for SARS-CoV-2 (MSA52) possesses a universal affinity for COVID-19 spike protein variants but is ultimately limited by its ability to bind only one subunit of the spike protein. The symmetrical shape of the homotrimeric SARS-CoV-2 spike protein presents the opportunity to create a matching homotrimeric molecular recognition element that is perfectly complementary to its structural scaffold, causing enhanced binding affinity. Here, we describe a branched homotrimeric aptamer with three-fold rotational symmetry, named TMSA52, that not only possesses excellent binding affinity but is also capable of binding several SARS-CoV-2 spike protein variants with picomolar affinity, as well as pseudotyped lentiviruses expressing SARS-CoV-2 spike protein variants with femtomolar affinity. Using Pd-Ir nanocubes as nanozymes in an enzyme-linked aptamer binding assay (ELABA), TMSA52 was capable of sensitively detecting diverse pseudotyped lentiviruses in pooled human saliva with a limit of detection as low as 6.3 × 103 copies/mL. The ELABA was also used to test 50 SARS-CoV-2-positive and 60 SARS-CoV-2-negative patient saliva samples, providing sensitivity and specificity values of 84.0 and 98.3%, respectively, thus highlighting the potential of TMSA52 for the development of future rapid tests.
Collapse
Affiliation(s)
- Jiuxing Li
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Zijie Zhang
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Jimmy Gu
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Ryan Amini
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Alexandria G. Mansfield
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Jianrun Xia
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Dawn White
- Biointerfaces
Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4O3, Canada
| | - Hannah D. Stacey
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- Michael
G. DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- McMaster
Immunology Research Centre, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Jann C. Ang
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- Michael
G. DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- McMaster
Immunology Research Centre, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Gurpreet Panesar
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Alfredo Capretta
- Biointerfaces
Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4O3, Canada
- Michael
G. DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Carlos D. M. Filipe
- Department
of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Karen Mossman
- McMaster
Immunology Research Centre, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- Department
of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Bruno J. Salena
- Department
of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | | | - Cynthia Balion
- Department
of Pathology and Molecular Medicine, McMaster
University, 1280 Main
Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Leyla Soleymani
- Michael
G. DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- Department
of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- School
of Biomedical Engineering, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Matthew S. Miller
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- Michael
G. DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- McMaster
Immunology Research Centre, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Deborah Yamamura
- Michael
G. DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- Department
of Pathology and Molecular Medicine, McMaster
University, 1280 Main
Street West, Hamilton, Ontario L8S 4K1, Canada
| | - John D. Brennan
- Biointerfaces
Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4O3, Canada
| | - Yingfu Li
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- Biointerfaces
Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4O3, Canada
- Michael
G. DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- School
of Biomedical Engineering, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
41
|
Guan PC, Zhang H, Li ZY, Xu SS, Sun M, Tian XM, Ma Z, Lin JS, Gu MM, Wen H, Zhang FL, Zhang YJ, Yu GJ, Yang C, Wang ZX, Song Y, Li JF. Rapid Point-of-Care Assay by SERS Detection of SARS-CoV-2 Virus and Its Variants. Anal Chem 2022; 94:17795-17802. [PMID: 36511436 PMCID: PMC9762416 DOI: 10.1021/acs.analchem.2c03437] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022]
Abstract
Addressing the spread of coronavirus disease 2019 (COVID-19) has highlighted the need for rapid, accurate, and low-cost diagnostic methods that detect specific antigens for SARS-CoV-2 infection. Tests for COVID-19 are based on reverse transcription PCR (RT-PCR), which requires laboratory services and is time-consuming. Here, by targeting the SARS-CoV-2 spike protein, we present a point-of-care SERS detection platform that specifically detects SARS-CoV-2 antigen in one step by captureing substrates and detection probes based on aptamer-specific recognition. Using the pseudovirus, without any pretreatment, the SARS-CoV-2 virus and its variants were detected by a handheld Raman spectrometer within 5 min. The limit of detection (LoD) for the pseudovirus was 124 TU μL-1 (18 fM spike protein), with a linear range of 250-10,000 TU μL-1. Moreover, this assay can specifically recognize the SARS-CoV-2 antigen without cross reacting with specific antigens of other coronaviruses or influenza A. Therefore, the platform has great potential for application in rapid point-of-care diagnostic assays for SARS-CoV-2.
Collapse
Affiliation(s)
- Peng-Cheng Guan
- College
of Materials, State Key Laboratory for Physical Chemistry of Solid
Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and
Instrumentation, College of Chemistry and Chemical Engineering, College
of Energy, The First Affiliated Hospital, Xiamen University, Xiamen 361005, China
| | - Hong Zhang
- Shanghai
Children’s Hospital, Shanghai Jiao
Tong University, Shanghai 200062, China
| | - Zhi-Yong Li
- College
of Materials, State Key Laboratory for Physical Chemistry of Solid
Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and
Instrumentation, College of Chemistry and Chemical Engineering, College
of Energy, The First Affiliated Hospital, Xiamen University, Xiamen 361005, China
| | - Shan-Shan Xu
- College
of Materials, State Key Laboratory for Physical Chemistry of Solid
Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and
Instrumentation, College of Chemistry and Chemical Engineering, College
of Energy, The First Affiliated Hospital, Xiamen University, Xiamen 361005, China
| | - Miao Sun
- College
of Materials, State Key Laboratory for Physical Chemistry of Solid
Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and
Instrumentation, College of Chemistry and Chemical Engineering, College
of Energy, The First Affiliated Hospital, Xiamen University, Xiamen 361005, China
| | - Xian-Min Tian
- Shanghai
Children’s Hospital, Shanghai Jiao
Tong University, Shanghai 200062, China
| | - Zhan Ma
- Shanghai
Children’s Hospital, Shanghai Jiao
Tong University, Shanghai 200062, China
| | - Jia-Sheng Lin
- College
of Materials, State Key Laboratory for Physical Chemistry of Solid
Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and
Instrumentation, College of Chemistry and Chemical Engineering, College
of Energy, The First Affiliated Hospital, Xiamen University, Xiamen 361005, China
| | - Man-Man Gu
- Department
of Optics and Electronic Technology, China
Jiliang University, Hangzhou 310018, China
| | - Huan Wen
- College
of Materials, State Key Laboratory for Physical Chemistry of Solid
Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and
Instrumentation, College of Chemistry and Chemical Engineering, College
of Energy, The First Affiliated Hospital, Xiamen University, Xiamen 361005, China
| | - Fan-Li Zhang
- Department
of Optics and Electronic Technology, China
Jiliang University, Hangzhou 310018, China
| | - Yue-Jiao Zhang
- College
of Materials, State Key Laboratory for Physical Chemistry of Solid
Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and
Instrumentation, College of Chemistry and Chemical Engineering, College
of Energy, The First Affiliated Hospital, Xiamen University, Xiamen 361005, China
| | - Guang-Jun Yu
- Shanghai
Children’s Hospital, Shanghai Jiao
Tong University, Shanghai 200062, China
| | - Chaoyong Yang
- College
of Materials, State Key Laboratory for Physical Chemistry of Solid
Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and
Instrumentation, College of Chemistry and Chemical Engineering, College
of Energy, The First Affiliated Hospital, Xiamen University, Xiamen 361005, China
- Innovation
Laboratory for Sciences and Technologies of Energy Materials of Fujian
Province (IKKEM), Xiamen 361005, China
| | - Zhan-Xiang Wang
- College
of Materials, State Key Laboratory for Physical Chemistry of Solid
Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and
Instrumentation, College of Chemistry and Chemical Engineering, College
of Energy, The First Affiliated Hospital, Xiamen University, Xiamen 361005, China
| | - Yanling Song
- College
of Materials, State Key Laboratory for Physical Chemistry of Solid
Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and
Instrumentation, College of Chemistry and Chemical Engineering, College
of Energy, The First Affiliated Hospital, Xiamen University, Xiamen 361005, China
| | - Jian-Feng Li
- College
of Materials, State Key Laboratory for Physical Chemistry of Solid
Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and
Instrumentation, College of Chemistry and Chemical Engineering, College
of Energy, The First Affiliated Hospital, Xiamen University, Xiamen 361005, China
- Innovation
Laboratory for Sciences and Technologies of Energy Materials of Fujian
Province (IKKEM), Xiamen 361005, China
- Department
of Optics and Electronic Technology, China
Jiliang University, Hangzhou 310018, China
| |
Collapse
|
42
|
Sun D, Sun M, Zhang J, Lin X, Zhang Y, Lin F, Zhang P, Yang C, Song J. Computational tools for aptamer identification and optimization. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Lou B, Liu Y, Shi M, Chen J, Li K, Tan Y, Chen L, Wu Y, Wang T, Liu X, Jiang T, Peng D, Liu Z. Aptamer-based biosensors for virus protein detection. Trends Analyt Chem 2022; 157:116738. [PMID: 35874498 PMCID: PMC9293409 DOI: 10.1016/j.trac.2022.116738] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/23/2022] [Accepted: 07/13/2022] [Indexed: 02/07/2023]
Abstract
Virus threatens life health seriously. The accurate early diagnosis of the virus is vital for clinical control and treatment of virus infection. Aptamers are small single-stranded oligonucleotides (DNAs or RNAs). In this review, we summarized aptasensors for virus detection in recent years according to the classification of the viral target protein, and illustrated common detection mechanisms in the aptasensors (colorimetry, fluorescence assay, surface plasmon resonance (SPR), surface-enhanced raman spectroscopy (SERS), electrochemical detection, and field-effect transistor (FET)). Furthermore, aptamers against different target proteins of viruses were summarized. The relationships between the different biomarkers of the viruses and the detection methods, and their performances were revealed. In addition, the challenges and future directions of aptasensors were discussed. This review will provide valuable references for constructing on-site aptasensors for detecting viruses, especially the SARS-CoV-2.
Collapse
Affiliation(s)
- Beibei Lou
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Meilin Shi
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Jun Chen
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Ke Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Yifu Tan
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Liwei Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Yuwei Wu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Ting Wang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Xiaoqin Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Ting Jiang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Dongming Peng
- Department of Medicinal Chemistry, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China.,Molecular Imaging Research Center of Central South University, Changsha, 410008, Hunan, PR China
| |
Collapse
|
44
|
Qu Y, Shen F, Zhang Z, Wang Q, Huang H, Xu Y, Li Q, Zhu X, Sun L. Applications of Functional DNA Materials in Immunomodulatory Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45079-45095. [PMID: 36171537 DOI: 10.1021/acsami.2c13768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In recent years, nanoscale or microscale functional materials derived from DNA have shown great potential for immunotherapy as superior delivery carriers. DNA nanostructures with excellent programmability and addressability enable the precise assembly of molecules or nanoparticles. DNA hydrogels have predictable structures and adjustable mechanical strength, thus being advantageous in controllable release of cargos. In addition, utilizing systematic evolution of ligands by exponential enrichment technology, a variety of DNA aptamers have been screened for specific recognition of ions, molecules, and even cells. Moreover, a wide variety of chemical modifications can further enrich the function of DNA. The unique advantages of functional DNA materials make them extremely attractive in immunomodulation. Recently, functional DNA materials-based immunotherapy has shown great potential in fighting against many diseases like cancer, viral infection, and inflammation. Therefore, in this review, we focus on discussing the progress of the applications of functional DNA materials in immunotherapy; before that, we also summarize the characteristics of the functional DNA materials descried above. Finally, we discuss the challenges and future opportunities of functional DNA materials in immunomodulatory therapy.
Collapse
Affiliation(s)
- Yanfei Qu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Fengyun Shen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ziyi Zhang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qi Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Hao Huang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yufei Xu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoli Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Lele Sun
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
45
|
Wan S, Liu S, Sun M, Zhang J, Wei X, Song T, Li Y, Liu X, Chen H, Yang CJ, Song Y. Spatial- and Valence-Matched Neutralizing DNA Nanostructure Blocks Wild-Type SARS-CoV-2 and Omicron Variant Infection. ACS NANO 2022; 16:15310-15317. [PMID: 36073793 PMCID: PMC9469956 DOI: 10.1021/acsnano.2c06803] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/06/2022] [Indexed: 06/02/2023]
Abstract
Natural ligand-receptor interactions that play pivotal roles in biological events are ideal models for design and assembly of artificial recognition molecules. Herein, aiming at the structural characteristics of the spike trimer and infection mechanism of SARS-CoV-2, we have designed a DNA framework-guided spatial-patterned neutralizing aptamer trimer for SARS-CoV-2 neutralization. The ∼5.8 nm tetrahedral DNA framework affords precise spatial organization and matched valence as four neutralizing aptamers (MATCH-4), which matches with nanometer precision the topmost surface of SARS-CoV-2 spike trimer, enhancing the interaction between MATCH-4 and spike trimer. Moreover, the DNA framework provides a dimensionally complementary nanoscale barrier to prevent the spike trimer-ACE2 interaction and the conformational transition, thereby inhibiting SARS-CoV-2-host cell fusion and infection. As a result, the spatial- and valence-matched MATCH-4 ensures improved binding affinity and neutralizing activity against SARS-CoV-2 and its varied mutant strains, particularly the current Omicron variant, that are evasive of the majority of existing neutralizing antibodies. In addition, because neutralizing aptamers specific to other targets can be evolved and assembled, the present design has the potential to inhibit other wide-range and emerging pathogens.
Collapse
Affiliation(s)
- Shuang Wan
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Siwen Liu
- State Key Laboratory for Emerging Infectious Diseases and InnoHK Centre for Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Miao Sun
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jialu Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xinyu Wei
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ting Song
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yuhao Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xinyang Liu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Honglin Chen
- State Key Laboratory for Emerging Infectious Diseases and InnoHK Centre for Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chaoyong James Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
46
|
Hung JN, Kha Vo DN, Thanh Ho HP, Tsai MH. PEDOT:PSS in Solution Form Exhibits Strong Potential in Inhibiting SARS-CoV-2 Infection of the Host Cells by Targeting Viruses and Also the Host Cells. Biomacromolecules 2022; 23:3535-3548. [PMID: 35918797 PMCID: PMC9364979 DOI: 10.1021/acs.biomac.2c00271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/18/2022] [Indexed: 11/28/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic with over 5 million fatalities. Vaccines against this virus have been globally administered; however, SARS-CoV-2 variants with spike protein mutations are continuously identified with strong capability to escape vaccine-elicited protection. Due to the high mutation rate and transmission ability, the development of a broad-spectrum SARS-CoV-2 inhibitor is highly in demand. In this study, the effect of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) against SARS-CoV-2 was investigated. The treatment of pseudoviruses carrying the SARS-CoV-2 spike protein with PEDOT:PSS strongly blocked SARS-CoV-2 pseudovirus infection in human ACE2-expressing cells without causing cytotoxicity. Specifically, PEDOT:PSS showed great potential in both inactivating viruses and rendering antiviral activity to the treated cells. The effects of other PEDOT:PSS solutions with different chemical ratios and properties were also validated to find the high inhibition capacity against SARS-CoV-2 pseudovirus infection. The transcriptomic data reveal that PEDOT:PSS-treated cells were endowed with transcriptional alteration, and it could be reverted after the removal of PEDOT:PSS from the culture medium. Importantly, PEDOT:PSS also exhibited broad-spectrum inhibition effects on the pseudovirus carrying the spike protein isolated from different variants. In combination with the advantage of high biocompatibility, PEDOT:PSS could thus be considered a potential therapeutic and prophylactic material against SARS-CoV-2.
Collapse
Affiliation(s)
- Jo-Ning Hung
- Institute of Microbiology and Immunology,
National Yang Ming Chiao Tung University, No. 155, Sec. 2,
Linong Street, Taipei City 11221, Taiwan
| | - Di Ngoc Kha Vo
- Institute of Microbiology and Immunology,
National Yang Ming Chiao Tung University, No. 155, Sec. 2,
Linong Street, Taipei City 11221, Taiwan
| | - Ha Phan Thanh Ho
- Institute of Microbiology and Immunology,
National Yang Ming Chiao Tung University, No. 155, Sec. 2,
Linong Street, Taipei City 11221, Taiwan
| | - Ming-Han Tsai
- Institute of Microbiology and Immunology,
National Yang Ming Chiao Tung University, No. 155, Sec. 2,
Linong Street, Taipei City 11221, Taiwan
| |
Collapse
|
47
|
Amini R, Zhang Z, Li J, Gu J, Brennan JD, Li Y. Aptamers for SARS-CoV-2: Isolation, Characterization, and Diagnostic and Therapeutic Developments. ANALYSIS & SENSING 2022; 2:e202200012. [PMID: 35574520 PMCID: PMC9082509 DOI: 10.1002/anse.202200012] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/19/2022] [Indexed: 12/17/2022]
Abstract
The SARS-CoV-2 virus and COVID-19 pandemic continue to demand effective diagnostic and therapeutic solutions. Finding these solutions requires highly functional molecular recognition elements. Nucleic acid aptamers represent a possible solution. Characterized by their high affinity and specificity, aptamers can be rapidly identified from random-sequence nucleic acid libraries. Over the past two years, many labs around the world have rushed to create diverse aptamers that target two important structural proteins of SARS-CoV-2: the spike (S) protein and nucleocapsid (N) protein. These have led to the identification of many aptamers that show real promise for the development of diagnostic tests and therapeutic agents for SARS-CoV-2. Herein we review all these developments, with a special focus on the development of diverse aptasensors for detecting SARS-CoV-2. These include electrochemical and optical sensors, lateral flow devices, and aptamer-linked immobilized sorbent assays.
Collapse
Affiliation(s)
- Ryan Amini
- Department of Biochemistry and Biomedical SciencesMcMaster University1280 Main Street WestHamiltonOntarioL8S 4K1Canada
| | - Zijie Zhang
- Department of Biochemistry and Biomedical SciencesMcMaster University1280 Main Street WestHamiltonOntarioL8S 4K1Canada
| | - Jiuxing Li
- Department of Biochemistry and Biomedical SciencesMcMaster University1280 Main Street WestHamiltonOntarioL8S 4K1Canada
| | - Jimmy Gu
- Department of Biochemistry and Biomedical SciencesMcMaster University1280 Main Street WestHamiltonOntarioL8S 4K1Canada
| | - John D. Brennan
- Biointerfaces InstituteMcMaster University1280 Main Street WestHamiltonOntarioL8S 4K1Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical SciencesMcMaster University1280 Main Street WestHamiltonOntarioL8S 4K1Canada
- Biointerfaces InstituteMcMaster University1280 Main Street WestHamiltonOntarioL8S 4K1Canada
| |
Collapse
|
48
|
Zhang Y, Pang Y, Xu B, Chen X, Liang S, Hu J, Luo X. Folic acid restricts SARS-CoV-2 invasion by methylating ACE2. Front Microbiol 2022; 13:980903. [PMID: 36060767 PMCID: PMC9432853 DOI: 10.3389/fmicb.2022.980903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/04/2022] [Indexed: 11/23/2022] Open
Abstract
The current COVID-19 pandemic is motivating us to elucidate the molecular mechanism of SARS-CoV-2 invasion and find methods for decreasing its transmissibility. We found that SARS-CoV-2 could increase the protein level of ACE2 in mice. Folic acid and 5-10-methylenetetrahydrofolate reductase (MTHFR) could promote the methylation of the ACE2 promoter and inhibit ACE2 expression. Folic acid treatment decreased the binding ability of Spike protein, pseudovirus and inactivated authentic SARS-CoV-2 to host cells. Thus, folic acid treatment could decrease SARS-CoV-2 invasion and SARS-CoV-2-neutralizing antibody production in mice. These data suggest that increased intake of folic acid may inhibit ACE2 expression and reduce the transmissibility of SARS-CoV-2. Folic acid could play an important role in SARS-CoV-2 infection prevention and control.
Collapse
Affiliation(s)
- Yuanzhou Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yechun Pang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baiyin Xu
- Shanghai Pudong New Area People’s Hosptial, Shanghai, China
| | - Xingshi Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shunshun Liang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingying Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoying Luo
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xiaoying Luo,
| |
Collapse
|
49
|
Zhang J, Xu Y, Huang Y, Sun M, Liu S, Wan S, Chen H, Yang C, Yang Y, Song Y. Spatially Patterned Neutralizing Icosahedral DNA Nanocage for Efficient SARS-CoV-2 Blocking. J Am Chem Soc 2022; 144:13146-13153. [PMID: 35770902 PMCID: PMC9291398 DOI: 10.1021/jacs.2c02764] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 12/13/2022]
Abstract
Broad-spectrum anti-SARS-CoV-2 strategies that can inhibit the infection of wild-type and mutant strains would alleviate their threats to global public health. Here, we propose an icosahedral DNA framework for the assembly of up to 30 spatially arranged neutralizing aptamers (IDNA-30) to inhibit viral infection. Each triangular plane of IDNA-30 is composed of three precisely positioned aptamers topologically matching the SARS-CoV-2 spike trimer, thus forming a multivalent spatially patterned binding. Due to its multiple binding sites and moderate size, multifaced IDNA-30 induces aggregation of viruses. The rigid icosahedron framework afforded by four helixes not only forms a steric barrier to prevent the virus from binding to the host but also limits the conformational transformation of the SARS-CoV-2 spike trimer. Combining multivalent topologically patterned aptamers with structurally well-defined nanoformulations, IDNA-30 exhibits excellent broad-spectrum neutralization against SARS-CoV-2, including almost completely blocking the infection of Omicron pseudovirus. Overall, this multidimensional neutralizing strategy provides a new direction for the assembly of neutralizing reagents to enhance their inhibitory effect against SARS-CoV-2 infection and combat other disease-causing viruses.
Collapse
Affiliation(s)
- Jialu Zhang
- The MOE Key Laboratory of Spectrochemical Analysis and
Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key
Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology,
College of Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, China
- Institute of Molecular Medicine and Shanghai Key
Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes
and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong
University, Shanghai 200127, China
| | - Yunyun Xu
- Institute of Molecular Medicine and Shanghai Key
Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes
and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong
University, Shanghai 200127, China
| | - Yihao Huang
- The MOE Key Laboratory of Spectrochemical Analysis and
Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key
Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology,
College of Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, China
| | - Miao Sun
- The MOE Key Laboratory of Spectrochemical Analysis and
Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key
Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology,
College of Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, China
| | - Siwen Liu
- State Key Laboratory for Emerging Infectious Diseases
and InnoHK Centre for Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty
of Medicine, University of Hong Kong, Hong Kong SAR 999077,
China
| | - Shuang Wan
- The MOE Key Laboratory of Spectrochemical Analysis and
Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key
Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology,
College of Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, China
| | - Honglin Chen
- State Key Laboratory for Emerging Infectious Diseases
and InnoHK Centre for Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty
of Medicine, University of Hong Kong, Hong Kong SAR 999077,
China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis and
Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key
Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology,
College of Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, China
- Institute of Molecular Medicine and Shanghai Key
Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes
and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong
University, Shanghai 200127, China
| | - Yang Yang
- Institute of Molecular Medicine and Shanghai Key
Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes
and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong
University, Shanghai 200127, China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis and
Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key
Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology,
College of Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, China
| |
Collapse
|
50
|
Li J, Zhang Z, Amini R, Li Y. One Solution for All: Searching for Universal Aptamers for Constantly Mutating Spike Proteins of SARS-CoV-2. ChemMedChem 2022; 17:e202200166. [PMID: 35491395 PMCID: PMC9347811 DOI: 10.1002/cmdc.202200166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/28/2022] [Indexed: 11/08/2022]
Abstract
Aptamers that can recognize the spike (S) protein of SARS-CoV-2 with high affinity and specificity are useful molecules towards the development of diagnostics and therapeutics to fight COVID-19. However, this S protein is constantly mutating, producing variants of concern (VoCs) that can significantly weaken the binding by aptamers initially engineered to recognize the S protein of the wildtype virus or a specific VoC. One strategy to overcome this problem is to develop universal aptamers that are insensitive to all or most of the naturally emerging mutations in the protein. We have recently demonstrated this concept by subjecting a pool of S protein-binding DNA aptamers for one-round parallel-SELEX experiments targeting 5 different S protein variants for binding-based sequence enrichment, followed by bioinformatic analysis of the enriched pools. This effort has led to the identification of a universal aptamer that recognizes 8 different variants of the spike protein with equally excellent affinity.
Collapse
Affiliation(s)
- Jiuxing Li
- Department of Biochemistry and Biomedical SciencesMcMaster University1280 Main Street WestHamiltonON, L8S 4K1Canada
| | - Zijie Zhang
- Department of Biochemistry and Biomedical SciencesMcMaster University1280 Main Street WestHamiltonON, L8S 4K1Canada
| | - Ryan Amini
- Department of Biochemistry and Biomedical SciencesMcMaster University1280 Main Street WestHamiltonON, L8S 4K1Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical SciencesMcMaster University1280 Main Street WestHamiltonON, L8S 4K1Canada
| |
Collapse
|