1
|
He W, Li B, Li Y, Liu X, Cui D. Reduction Polymerization of CO 2 with Phenylene Silanes Catalyzed by Single Component B(C 6F 5) 3. Angew Chem Int Ed Engl 2025; 64:e202415626. [PMID: 39262295 DOI: 10.1002/anie.202415626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
CO2 is an abundant C1 resource but a green-house gas and chemically inert. Thus, its utilization has been a promising but challenging project. Herein, we report the unprecedented polymerization of CO2 and C6H4(SiMe2H)2 using B(C6F5)3 alone under mild conditions to give poly(silphenylene siloxane) accompanied by releasing CH4. The copolymerization can be extended to comonomers of phenylene silanes bearing functional groups. Moreover, it combines with Piers-Rubinsztajn reaction to establish a tandem polymerization system to achieve super thermal resistant poly(siloxane-co-silphenylene siloxane)s. Density functional theory reveals that B(C6F5)3 is activated by silanes to form free HB(C6F5)2, which is the true active species for CO2 reducing to borylformate, the rate controlling step of the polymerization procedure. The subsequent multiple reductions of borylformate to CH4 and the step-growth to poly(silphenylene siloxane)s can be fulfilled by both B(C6F5)3 and HB(C6F5)2, and the former shows a slightly higher activity. This work opens a new avenue of utilizing CO2 to fabricate polysiloxanes that is unable to access using current manners.
Collapse
Affiliation(s)
- Wenhao He
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, China
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Bingwen Li
- Shandong Key Laboratory of Biophysics Institute of Biophysics, Dezhou University, Dezhou, 253023, China
| | - Yuxuan Li
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, China
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xinli Liu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, China
| | - Dongmei Cui
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, China
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
2
|
Niu Y, Liu Q, Ou X, Zhou Y, Sun Z, Yan F. CO 2-Sourced Polymer Dyes for Dual Information Encryption. SMALL METHODS 2024; 8:e2400470. [PMID: 38818740 DOI: 10.1002/smtd.202400470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Large amounts of small molecule dyes leak into the ecosystems annually in harmful and unsustainable ways. Polymer dyes have attracted much attention because of their high migration resistance, excellent stability, and minimized leakage. However, the complex synthesis process, high cost, and poor degradability hinder their widespread application. Herein, green and sustainable polymer dyes are prepared using natural dye quercetin (Qc) and CO2 through a one-step process. The CO2-sourced polymer dyes show strong migration resistance, high stability, and can be degraded on demand. Additionally, the CO2-sourced polymer dyes showed unique responses to Zn2+, leading to significantly enhanced fluorescence, highlighting their potential for information encryption/decryption. The CO2-sourced polymer dyes can solve the environmental hazards caused by small molecule dye leakage and promote the carbon cycle process. Meanwhile, the one-step synthesis process is expected to achieve sustainable and widespread utilization of CO2-sourced polymer dyes.
Collapse
Affiliation(s)
- Yajuan Niu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Qinbo Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xu Ou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yingjie Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zhe Sun
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Feng Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
3
|
Zhang J, Jiang L, Liu S, Shen J, Braunstein P, Shen Y, Kang X, Li Z. Bifunctional and recyclable polyesters by chemoselective ring-opening polymerization of a δ-lactone derived from CO 2 and butadiene. Nat Commun 2024; 15:8698. [PMID: 39379349 PMCID: PMC11461917 DOI: 10.1038/s41467-024-52090-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 08/27/2024] [Indexed: 10/10/2024] Open
Abstract
When aiming at the direct use of CO2 for the preparation of advanced/value-added materials, the synthesis of CO2/olefin copolymers is very appealing but challenging. The δ-lactone 3-ethylidene-6-vinyltetrahydro-2H-pyran-2-one (EVP), synthesized by telomerization of CO2 with 1,3-butadiene, is a promising monomer. However, its chemoselective ring-opening polymerization (ROP) is hampered by unfavorable thermodynamics and the competitive polymerization of highly reactive C=C double bonds under usual conditions. Herein, we report the chemoselective ROP of EVP using a phosphazene/urea binary catalyst, affording exclusively a linear unsaturated polyester poly(EVP)ROP, with a molar mass (Mn) up to 16.1 kg·mol-1 and a narrow distribution (Ð < 1.6), which can be fully recycled back to the pristine monomer, thus establishing a monomer-polymer-monomer closed-loop life cycle. In these polyesters, the CO2 content reaches 33 mol% (29 wt%). The reasons for the unexpected chemoselectivity were investigated by Density-functional theory (DFT) calculations. The poly(EVP)ROP features two pendent C=C double bonds per repeating unit, which show distinct reactivity and thus can be properly engaged in sequential functionalizations towards the synthesis of bifunctional polyesters. We disclose here a methodology providing a facile access to bifunctional and recyclable polyesters from readily available feedstocks.
Collapse
Affiliation(s)
- Jinbo Zhang
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Lihang Jiang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Shaofeng Liu
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Junhao Shen
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Pierre Braunstein
- Institut de Chimie (UMR 7177 CNRS), Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, F-67081, Strasbourg Cedex, France.
| | - Yong Shen
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiaohui Kang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China.
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
4
|
Tang S, Lin BL, Tonks I, Eagan JM, Ni X, Nozaki K. Sustainable Copolymer Synthesis from Carbon Dioxide and Butadiene. Chem Rev 2024; 124:3590-3607. [PMID: 38478849 DOI: 10.1021/acs.chemrev.3c00847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Carbon dioxide (CO2) has long been recognized as an ideal C1 feedstock comonomer for producing sustainable materials because it is renewable, abundant, and cost-effective. However, activating CO2 presents a significant challenge because it is highly oxidized and stable. A CO2/butadiene-derived δ-valerolactone (EVP), generated via palladium-catalyzed telomerization between CO2 and butadiene, has emerged as an attractive intermediate for producing sustainable copolymers from CO2 and butadiene. Owing to the presence of two active carbon-carbon double bonds and a lactone unit, EVP serves as a versatile intermediate for creating sustainable copolymers with a CO2 content of up to 29 wt % (33 mol %). In this Review, advances in the synthesis of copolymers from CO2 and butadiene with divergent structures through various polymerization protocols have been summarized. Achievements made in homo- and copolymerization of EVP or its derivatives are comprehensively reviewed, while the postmodification of the obtained copolymers to access new polymers are also discussed. Meanwhile, potential applications of the obtained copolymers are also discussed. The literature references were sorted into sections based on polymerization strategies and mechanisms, facilitating readers in gaining a comprehensive view of the present chemistry landscape and inspiring innovative approaches to synthesizing novel CO2-derived copolymers.
Collapse
Affiliation(s)
- Shan Tang
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo-Lin Lin
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Ian Tonks
- Department of Chemistry, University of Minnesota-Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - James M Eagan
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United State
| | - Xufeng Ni
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
5
|
Zhao Y, Zhang X, Li Z, Li Z, Tang S. Functional and Degradable Polyester- co-polyethers from CO 2, Butadiene, and Epoxides. ACS Macro Lett 2024; 13:315-321. [PMID: 38382063 DOI: 10.1021/acsmacrolett.4c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Carbon dioxide (CO2), as a renewable and nontoxic C1 feedstock, has been recognized as an ideal comonomer to prepare sustainable materials. In this regard, substantial focus has been dedicated to the ring-opening copolymerization of CO2 and epoxides, which results in the creation of aliphatic polycarbonates in most cases. Here, we report an unprecedented strategy to synthesize functional and degradable polyester-co-polyethers from CO2, butadiene, and epoxides via a CO2/butadiene-derived δ-valerolactone intermediate (EVP). Utilizing a chromium salen complex as the catalyst, the copolymerization of EVP and epoxides was successfully achieved to produce CO2/butadiene/epoxide terpolymers. The obtained polyester-co-polyethers with varied 39-93 mol % EVP content (equal to 18-28 wt % CO2 incorporation) show high thermal stability, tunable glass-transition temperatures, on-demand functionality, and good chemical degradability. This method extends the potential to access functional CO2-based polymers.
Collapse
Affiliation(s)
- Yajun Zhao
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaohui Zhang
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhuang Li
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhaokun Li
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shan Tang
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Schwab S, Baur M, Nelson TF, Mecking S. Synthesis and Deconstruction of Polyethylene-type Materials. Chem Rev 2024; 124:2327-2351. [PMID: 38408312 PMCID: PMC10941192 DOI: 10.1021/acs.chemrev.3c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/16/2024] [Accepted: 02/07/2024] [Indexed: 02/28/2024]
Abstract
Polyethylene deconstruction to reusable smaller molecules is hindered by the chemical inertness of its hydrocarbon chains. Pyrolysis and related approaches commonly require high temperatures, are energy-intensive, and yield mixtures of multiple classes of compounds. Selective cleavage reactions under mild conditions (
Collapse
Affiliation(s)
- Simon
T. Schwab
- Chair of Chemical Materials Science,
Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Maximilian Baur
- Chair of Chemical Materials Science,
Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Taylor F. Nelson
- Chair of Chemical Materials Science,
Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Stefan Mecking
- Chair of Chemical Materials Science,
Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| |
Collapse
|
7
|
Dodge HM, Natinsky BS, Jolly BJ, Zhang H, Mu Y, Chapp SM, Tran TV, Diaconescu PL, Do LH, Wang D, Liu C, Miller AJM. Polyketones from Carbon Dioxide and Ethylene by Integrating Electrochemical and Organometallic Catalysis. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Henry M. Dodge
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Benjamin S. Natinsky
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Brandon J. Jolly
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Haochuan Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Yu Mu
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Scott M. Chapp
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Thi V. Tran
- Department of Chemistry, University of Houston, 4800 Calhoun Road, Houston, Texas 77004, United States
| | - Paula L. Diaconescu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Loi H. Do
- Department of Chemistry, University of Houston, 4800 Calhoun Road, Houston, Texas 77004, United States
| | - Dunwei Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Chong Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Alexander J. M. Miller
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
8
|
Liu Y, Lu XB. Current Challenges and Perspectives in CO 2-Based Polymers. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Affiliation(s)
- Ye Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
9
|
Zong Y, Wang C, Zhang Y, Jian Z. Polar-Functionalized Polyethylenes Enabled by Palladium-Catalyzed Copolymerization of Ethylene and Butadiene/Bio-Based Alcohol-Derived Monomers. Polymers (Basel) 2023; 15:1044. [PMID: 36850326 PMCID: PMC9967981 DOI: 10.3390/polym15041044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/22/2023] Open
Abstract
Polar-functionalized polyolefins are high-value materials with improved properties. However, their feedstocks generally come from non-renewable fossil products; thus, it requires the development of renewable bio-based monomers to produce functionalized polyolefins. In this contribution, via the Pd-catalyzed telomerization of 1,3-butadiene and three types of bio-based alcohols (furfuryl alcohol, tetrahydrofurfuryl alcohol, and solketal), 2,7-octadienyl ether monomers including OC8-FUR, OC8-THF, and OC8-SOL were synthesized and characterized, respectively. The copolymerization of these monomers with ethylene catalyzed by phosphine-sulfonate palladium catalysts was further investigated. Microstructures of the resultant copolymers were analyzed by NMR and ATR-IR spectroscopy, revealing linear structures with incorporations of difunctionalized side chains bearing both allyl ether units and polar cyclic groups. Mechanical property studies exhibited better strain-at-break of these copolymers compared to the non-polar polyethylene, among which the copolymer E-FUR with the incorporation of 0.3 mol% displayed the highest strain-at-break and stress-at-break values of 940% and 35.9 MPa, respectively.
Collapse
Affiliation(s)
- Yanlin Zong
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chaoqun Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yixin Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
| | - Zhongbao Jian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
10
|
Xu JX, Yuan Y, Wu XF. Ethylene as a synthon in carbonylative synthesis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Eagan JM. The Divergent Reactivity of Lactones Derived from Butadiene and Carbon Dioxide in Macromolecular Synthesis. Macromol Rapid Commun 2023; 44:e2200348. [PMID: 35856259 DOI: 10.1002/marc.202200348] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/06/2022] [Indexed: 01/11/2023]
Abstract
The catalytic conversion of carbon dioxide and 1,3-butadiene into unsaturated lactone monomers provides an efficient route for converting sustainable carbon feedstocks into novel macromolecules. The chemical reactivity of this monomer is reviewed in order to highlight the many viable mechanistic pathways. Polymerization strategies, monomer alterations, and post-polymerization modifications are covered. The polymerization methods include radical, coordination, conjugate addition, ring-opening, olefin metathesis, and thiol-ene chemistries. Materials derived from these processes possess a wide range of function including responsiveness, degradability, adhesion, recyclability, and self-assembly. These aspects along with the advances in polymer chemistry that make them possible are discussed, along with a perspective on the future directions of the field.
Collapse
Affiliation(s)
- James M Eagan
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| |
Collapse
|
12
|
Saini S, Chakraborty D, Erakulan ES, Thapa R, Bal R, Bhaumik A, Jain SL. Visible Light-Driven Metal-Organic Framework-Mediated Activation and Utilization of CO 2 for the Thiocarboxylation of Olefins. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50913-50922. [PMID: 36326441 DOI: 10.1021/acsami.2c14462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Visible light-mediated photoredox catalysis has emerged to be a fascinating approach for the activation of CO2 and its subsequent fixation into valuable chemicals utilizing renewable and inexhaustible solar energy. Although great progress has been made in CO2 photoreduction, visible light-assisted organic synthesis using CO2 as a reactive substrate is rarely explored. Herein, we report an efficient, facile, and economically viable photoredox-mediated approach for the synthesis of important β-thioacids via carboxylation of olefins with CO2 and thiols over a porous functionalized metal-organic framework (MOF), Fe-MIL-101-NH2, as a photocatalyst under ambient conditions. This multicomponent reaction offers wide substrate scope, mild reaction conditions, easy work-up, cost-effective and reusable photocatalysts, and higher product selectivity. Computational studies suggested that CO2 interacts with the thiophenol-styrene adduct to facilitate the synthesis of β-thioacids in almost quantitative yields.
Collapse
Affiliation(s)
- Sandhya Saini
- Chemical & Material Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Mohkampur, Dehradun 248005, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India
| | - Debabrata Chakraborty
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - E S Erakulan
- Department of Physics, SRM University-AP, Amaravati 522240, Andhra Pradesh, India
| | - Ranjit Thapa
- Department of Physics, SRM University-AP, Amaravati 522240, Andhra Pradesh, India
| | - Rajaram Bal
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India
- Light Stock Process Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Mohkampur, Dehradun 248005, India
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Suman L Jain
- Chemical & Material Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Mohkampur, Dehradun 248005, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India
| |
Collapse
|
13
|
Rapagnani RM, Tonks IA. 3-Ethyl-6-vinyltetrahydro-2 H-pyran-2-one (EVP): a versatile CO 2-derived lactone platform for polymer synthesis. Chem Commun (Camb) 2022; 58:9586-9593. [PMID: 35972017 DOI: 10.1039/d2cc03516b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
3-Ethyl-6-vinyltetrahydro-2H-pyran-2-one (EVP) is a CO2-derived lactone synthesized via Pd-catalyzed telomerization of butadiene. As EVP is 28.9% by weight CO2, it has received significant recent attention as an intermediary for the synthesis of high CO2-content polymers. This article provides an overview of strategies for the polymerization of EVP to a wide variety of polymer structures, ranging from radical polymerizations to ring-opening polymerizations, that each take unique advantage of the highly functionalized lactone.
Collapse
Affiliation(s)
- Rachel M Rapagnani
- University of Minnesota - Twin Cities, 207 Pleasant St SE, Minneapolis, MN, 55455, USA.
| | - Ian A Tonks
- University of Minnesota - Twin Cities, 207 Pleasant St SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
14
|
Yang Z, Shen C, Dong K. Hydroxyl group‐enabled highly efficient ligand for Pd‐catalyzed telomerization of 1,3‐butadiene with
CO
2
. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhengyi Yang
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Chaoren Shen
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Kaiwu Dong
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| |
Collapse
|
15
|
Tunable and recyclable polyesters from CO 2 and butadiene. Nat Chem 2022; 14:877-883. [PMID: 35760958 DOI: 10.1038/s41557-022-00969-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/09/2022] [Indexed: 11/08/2022]
Abstract
Carbon dioxide is inexpensive and abundant, and its prevalence as waste makes it attractive as a sustainable chemical feedstock. Although there are examples of copolymerizations of CO2 with high-energy monomers, the direct copolymerization of CO2 with olefins has not been reported. Here an alternative route to functionalizable, recyclable polyesters derived from CO2, butadiene and hydrogen via an intermediary lactone, 3-ethyl-6-vinyltetrahydro-2H-pyran-2-one, is described. Catalytic ring-opening polymerization of the lactone by 1,5,7-triazabicyclo[4.4.0]dec-5-ene yields polyesters with molar masses up to 13.6 kg mol-1 and pendent vinyl side chains that can undergo post-polymerization functionalization. The polymer has a low ceiling temperature of 138 °C, allowing for facile chemical recycling, and is inherently biodegradable under aerobic aqueous conditions (OECD-301B protocol). These results show that a well-defined polyester can be derived from CO2, olefins and hydrogen, expanding access to new polymer feedstocks that were once considered unfeasible.
Collapse
|
16
|
Tang S, Nozaki K. Advances in the Synthesis of Copolymers from Carbon Dioxide, Dienes, and Olefins. Acc Chem Res 2022; 55:1524-1532. [PMID: 35612595 DOI: 10.1021/acs.accounts.2c00162] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
ConspectusCarbon dioxide (CO2) has long been considered a sustainable comonomer for polymer synthesis due to its abundance, easy availability, and low toxicity. Polymer synthesis from CO2 is highly attractive and has received continuous interest from synthetic chemists. In this regard, alternating copolymerization of CO2 and epoxides is one of the most well-established methods to synthesize aliphatic polycarbonates. Moreover, binucleophiles including diols, diamines, amino alcohols, and diynes have been reported to copolymerize with CO2 to give polycarbonates, polyureas, polyurethanes, and polyesters, respectively. Nevertheless, little success has been made for incorporating CO2 into the most widely used polyolefin materials.Although extensive studies have been focused on the copolymerization of olefins and CO2, most of the attempted reactions resulted in olefin homopolymerization owing to the endothermic property and high energy barriers of CO2 insertion during the chain propagation process. In this Account, we show how this challenge is addressed by taking advantage of a metastable lactone intermediate, 3-ethylidene-6-vinyltetrahydro-2H-pyran-2-one (EVP), which is produced from CO2 and butadiene via palladium catalysis. Homopolymerization of EVP furnishes CO2/butadiene copolymers with up to 29 wt % of CO2 content. This reaction strategy represents a breakthrough for the long-standing challenge of inherent kinetic and thermodynamically unfavorable CO2/olefin copolymerization. A new class of polymeric materials bearing repeating bicyclic lactone and unsaturated lactone units can be obtained. Importantly, one-pot copolymerization of CO2/butadiene or terpolymerization of CO2/butadiene/diene can be achieved to afford copolymers through a two-step reaction protocol. Interestingly, the bicyclic lactone units in the polymer chain can undergo ring-opening through hydrolysis and aminolysis, while reversible ring-closing of the hydrolyzed or aminolyzed units was also achieved simply by heating.Over the past few years, more and more studies have utilized EVP as an intermediate to synthesize copolymers from olefins, butadiene, and CO2. Recently, we successfully incorporated CO2 into the most widely used polyethylene materials via the direct copolymerization of EVP and ethylene. Taking advantage of the bifunctional reactivity of EVP, we were able to access two types of main-chain-functionalized polyethylenes through palladium-catalyzed coordination/insertion copolymerization and radical copolymerization. Besides polyethylenes, CO2 was also incorporated into poly(methyl methacrylate), poly(methyl acrylate), polystyrene, polymethyl acrylate, polyvinylchloroacetate, and poly(vinyl acetate) materials via radical copolymerization of EVP and olefin monomers. The EVP/olefin copolymerization strategy provides a novel avenue for the synthesis of highly versatile copolymers from an olefin, CO2, and butadiene.
Collapse
Affiliation(s)
- Shan Tang
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
17
|
Hill MR, Tang S, Masada K, Hirooka Y, Nozaki K. Incorporation of CO 2-Derived Bicyclic Lactone into Conventional Vinyl Polymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Megan R. Hill
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1-Hongo,
Bunkyo-ku, Tokyo 113-8656 Japan
| | - Shan Tang
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1-Hongo,
Bunkyo-ku, Tokyo 113-8656 Japan
| | - Koichiro Masada
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1-Hongo,
Bunkyo-ku, Tokyo 113-8656 Japan
| | - Yuko Hirooka
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1-Hongo,
Bunkyo-ku, Tokyo 113-8656 Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1-Hongo,
Bunkyo-ku, Tokyo 113-8656 Japan
| |
Collapse
|
18
|
Song J, Chen K, Feng Y, Ni X, Ling J. One‐pot orthogonal thiol‐ene click polymerization and ring‐opening grafting reaction of CO
2
‐based disubstituted δ‐valerolactone. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Jiawen Song
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Kaihao Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Yuanhao Feng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Xufeng Ni
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| |
Collapse
|
19
|
Lou Y, Xu L, Gan N, Sun Y, Lin B. Chemically Recyclable Polyesters from CO2, H2 and 1,3-Butadiene. Innovation (N Y) 2022; 3:100216. [PMID: 35243470 PMCID: PMC8881707 DOI: 10.1016/j.xinn.2022.100216] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/02/2022] [Indexed: 11/23/2022] Open
Abstract
Chemically recyclable solid polymeric materials with commercializable properties only using CO2 and inexpensive bulk chemicals as chemical feedstock can open a brand-new avenue to economically viable, large-scale fixation of CO2 over a long period of time. Despite previous great advancements, development of such a kind of CO2-based polymers remains a long-term unsolved research challenge of great significance. Herein, we reported the first methodology to polymerize six-membered lactone with two substituents vicinal to the ester group (HL), a compound previously found to be non-polymerizable. The present methodology enables the first synthesis of chemically recyclable solid polyesters (polyHL) with a high CO2 content (28 wt %) and large molecular weights (Mn up to 613.8 kg mol−1). Transparent membranes with promising pressure-sensitive adhesive (PSA) properties comparable with their commercial counterparts can be conveniently fabricated from the polyesters. Mechanistic studies indicate that rigorous removal of water impurity is the key to the successful polymerization of the relatively inert disubstituted six-membered lactone. A complete monomer recovery from polyHL was also successfully achieved under mild catalytic conditions. The synthesis of polyHL only requires CO2 and two inexpensive bulk chemicals, H2 and 1,3-butadiene, as the starting materials, thus providing a new strategy for potential scalable chemical utilization of CO2 with desirable economic values and concomitant mitigation of CO2 emissions. This work should inspire future research to make useful new solid CO2-based polymers that can meaningfully increase the scale of chemical utilization of CO2 and promote the contribution of chemical utilization of CO2 to global mitigation of CO2 emissions. CO2-based recyclable polymers are promising in reducing CO2 emission and pollution Disubstituted δ-lactone, a previously non-polymerizable monomer, was polymerized Complete monomer recovery was successfully achieved via chemical recycling process CO2 constitutes 28% of the weight of newly designed chemically recyclable polymers The polymers show pressure-sensitive adhesive property comparable to commercial tapes
Collapse
|