1
|
Li C, Liu K, Wang Y, Lou C, Li N, Feng J, Cheng H, Feng Q, Jiang D, Hao J, Ma X, Wen T, He L, Yu X, Yue B, Wang Y. Sequential Charge Transfer and Magnetic Ordering in Quasi-One-Dimensional Antiferromagnet CrSbS 3. J Am Chem Soc 2025. [PMID: 40008950 DOI: 10.1021/jacs.4c17892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Charge transfer and magnetic ordering are two profound condensed matter phenomena that impart distinct structures and properties to materials. However, such two effects rarely occur successively within a single material. Here, we present a unique case of temperature-induced sequential charge transfer and magnetic ordering in antiferromagnetic CrSbS3 with quasi-one-dimensional structure. Intriguingly, the contrasting effects of charge transfer between Cr and [Sb2S6] units and antiferromagnetic transition on lattice expansion result in diverse thermal expansion behaviors of lattice parameters, which ultimately leads to an anti-Invar effect on the lattice volume. Neutron powder diffraction further unravels a C-type antiferromagnetic order. Moreover, pressure regulation can also induce similar volume collapse, implying potential valence and spin-state transitions. The multiple electronic transitions observed in CrSbS3 offer a valuable platform for deciphering the interweaving among charge, spin, and lattice degrees of freedom, and shed a new light for exploring novel quantum phenomena in more low-dimensional van der Waals materials.
Collapse
Affiliation(s)
- Chen Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100193, China
| | - Ke Liu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100193, China
| | - Yiming Wang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100193, China
| | - Chenjie Lou
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100193, China
| | - Nana Li
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100193, China
| | - Jiajia Feng
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100193, China
| | - Haoming Cheng
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100193, China
| | - Qi Feng
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100193, China
| | - Dequan Jiang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Jiazheng Hao
- Spallation Neutron Source Science Center, Dongguan 523803, China
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoli Ma
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ting Wen
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100193, China
| | - Lunhua He
- Spallation Neutron Source Science Center, Dongguan 523803, China
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Xiaohui Yu
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Binbin Yue
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100193, China
| | - Yonggang Wang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100193, China
| |
Collapse
|
2
|
Tu X, Xu H, Pan Y, Lv Z, Wang L, Zhu B, Lin T, Bi H, Fang Y, Huang F. Ultralong K 0.5Mn 0.75PS 3 Nanowires Tailored by K-Ion Scissors for Extraordinary Sodium-Ion Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408963. [PMID: 39194384 DOI: 10.1002/adma.202408963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/09/2024] [Indexed: 08/29/2024]
Abstract
1D layered nanowires (NWs) are expected to be excellent electrode materials due to their efficient electron/ion transport and strain/stress relaxation. However, it is a great challenge to synthesize layered NWs by a top-down synthetic route. Herein, ultralong 1D layered K0.5Mn0.75PS3 NWs (length: >100 µm; diameter: ≈300 nm) are synthesized for the first time using "K-ion chemical scissors", whose excellent sodium storage performance originates from the bifunctional structural unit, ingeniously combining the alloying energy storage functional unit (P-P dimer) with the quasi-intercalated functional unit ([MnS3]4- framework). Stress-driven K-ion scissors achieve the rapid transformation of MnPS3 bulk to K0.5Mn0.75PS3 NWs with directed tailoring. Compared to MnPS3, the NWs exhibit enlarged interlayer spacing (9.32 Å), enhanced electronic conductivity (8.17 × 10-5 S m-1 vs 4.47 × 10-10 S m-1), and high ionic conductivity (2.14 mS cm-1). As expected, the NWs demonstrate high capacity (709 mAh g-1 at 0.5 A g-1) and excellent cycling performance (≈100% capacity retention after 2500 cycles at 10 A g-1), ranking among metal thiophosphates. A quasi-topological intercalation mechanism of the NWs is revealed through further characterizations. This work expands the top-down synthesis approach and offers innovative insights for the cost-effective and large-scale fabrication of NWs with outstanding electrochemical performance.
Collapse
Affiliation(s)
- Xueyang Tu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hengyue Xu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Youtan Pan
- School of Mechanical and Electrical Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Zhuoran Lv
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Linlin Wang
- Institute of Strategic Emerging Materials, Yixing, 214203, China
| | - Bingyi Zhu
- Institute of Strategic Emerging Materials, Yixing, 214203, China
| | - Tianquan Lin
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hui Bi
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Yuqiang Fang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fuqiang Huang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
Roy K, Datta R, Maitra S, Kumar P. Dimensionality-Tailored Ferromagnetism in Quasi-Two-Dimensional MnSe 2 for the Magnetoelectrochemical Hydrogen Evolution Reaction in Alkaline Media. ACS NANO 2024; 18:24569-24580. [PMID: 39166894 DOI: 10.1021/acsnano.4c09540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The application of an external magnetic field to the cathode shows great promise in facilitating the hydrogen evolution reaction (HER) via water electrolysis. However, the criteria for designing such cathodes are still under investigation. Among various aspects, understanding the effect of different magnetic states of the cathode material is crucial, especially for the HER in alkaline conditions, which possesses different reaction steps compared to that in acidic conditions. Herein, we present MnSe2 as a cathode material for the magneto-electrocatalytic HER in alkaline media, utilizing its dimension-dependent magnetic phase transition. By tailoring its dimensionality, we have achieved room-temperature ferromagnetism in its quasi-two-dimensional (2D) form, whereas its bulk counterpart exhibits paramagnetism. Upon being subjected to a low external magnetic field of 0.4 T at -182 mV (vs RHE) overpotential, quasi-2D MnSe2 exhibited a 120% improvement in current density compared to itself at zero magnetic field, while negligible changes were observed in the bulk material. This performance enhancement under a magnetic field could originate from the higher spin polarization of the ferromagnetic catalyst. This work signifies a conceptual advancement of the catalyst's spin state in magnetically enhanced electrocatalytic reaction kinetics.
Collapse
Affiliation(s)
- Krishnendu Roy
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata700032, India
| | - Raktim Datta
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata700032, India
| | - Soumyajit Maitra
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata700032, India
| | - Praveen Kumar
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata700032, India
| |
Collapse
|
4
|
Yang M, Schoop LM. Friends not Foes: Exfoliation of Non-van der Waals Materials. Acc Chem Res 2024; 57:2490-2499. [PMID: 39150546 DOI: 10.1021/acs.accounts.4c00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
ConspectusTwo-dimensional materials have been a focus of study for decades, resulting in the development of a library of nanosheets made by a variety of methods. However, many of these atomically thin materials are exfoliated from van der Waals (vdW) compounds, which inherently have weaker bonding between layers in the bulk crystal. Even though there are diverse properties and structures within this class of compounds, it would behoove the community to look beyond these compounds toward the exfoliation of non-vdW compounds as well. A particular class of non-vdW compounds that may be amenable to exfoliation are the ionically bonded layered materials, which are structurally similar to vdW compounds but have alkali ions intercalated between the layers. Although initially they may have been more difficult to exfoliate due to a lack of methodology beyond mechanical exfoliation, many synthesis techniques have been developed that have been used successfully in exfoliating non-vdW materials. In fact, as we will show, in some cases it has even proven to be advantageous to start the exfoliation from a non-vdW compound.The method we will highlight here is chemical exfoliation, which has developed significantly and is better understood mechanistically compared to when it was first conceived. Encompassing many methods, such as acid/base reactions, solvent reactions, and oxidative extractions, chemical exfoliation can be tailored to the delamination of non-vdW materials, which opens up many more possibilities of compounds to study. In addition, beginning with intercalated analogues of vdW materials can even lead to more consistent and higher quality results, overcoming some challenges associated with chemical exfoliation in general. To exemplify this, we will discuss our group's work on the synthesis of a 1T'-WS2 monolayer ink. By starting with K0.5WS2, the exfoliated 1T'-WS2 nanosheets obtained were larger and more uniform in thickness than those from previous syntheses beginning with vdW materials. The crystallinity of the nanosheets was high enough that films made from this ink were superconducting. We will also show how soft chemical methods can be used to make new phases from existing compounds, such as HxCrS2 from NaCrS2. This material was found to have alternating amorphous and crystalline layers. Its biphasic structure improved the material's performance as a battery electrode, enabling reversible Cr redox and faster Na-ion diffusion. From these and other examples, we will see how chemical exfoliation of non-vdW materials compares to other methods, as well as how this technique can be further extended to known compounds that can be deintercalated electrochemically and to quasi-one-dimensional crystals.
Collapse
Affiliation(s)
- Mulan Yang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Leslie M Schoop
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
5
|
Yang H, Zhang H, Guo L, Yang W, Wu Y, Wang J, Li X, Du H, Peng B, Liu Q, Wang F, Xue DJ, Xu X. Template Selection Strategy for Synthesis of One-Dimensional CrSbSe 3 Ferromagnetic Semiconductor Nanoribbons. NANO LETTERS 2024; 24:10519-10526. [PMID: 39150339 DOI: 10.1021/acs.nanolett.4c02533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
CrSbSe3─the only experimentally validated one-dimensional (1D) ferromagnetic semiconductor─has recently attracted significant attention. However, all reported synthesis methods for CrSbSe3 nanocrystals are based on top-down methods. Here we report a template selection strategy for the bottom-up synthesis of CrSbSe3 nanoribbons. This strategy relies on comparing the formation energies of potential binary templates to the ternary target product. It enables us to select Sb2Se3 with the highest formation energy, along with its 1D crystal structure, as the template instead of Cr2Se3 with the lowest formation energy, thereby facilitating the transformation from Sb2Se3 to CrSbSe3 by replacing half of the Sb atoms in Sb2Se3 with Cr atoms. The as-prepared CrSbSe3 nanoribbons exhibit a length of approximately 5 μm, a width ranging from 80 to 120 nm, and a thickness of about 5 nm. The single CrSbSe3 nanoribbon presents typical semiconductor behavior and ferromagnetism, confirming the intrinsic ferromagnetism in the 1D CrSbSe3 semiconductor.
Collapse
Affiliation(s)
- Huan Yang
- School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Taiyuan 030032, China
- Research Institute of Materials Science of Shanxi Normal University & Collaborative Innovation Center for Advanced Permanent Magnetic Materials and Technology of Ministry of Education, Taiyuan 030032, China
| | - Huisheng Zhang
- School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Taiyuan 030032, China
- Research Institute of Materials Science of Shanxi Normal University & Collaborative Innovation Center for Advanced Permanent Magnetic Materials and Technology of Ministry of Education, Taiyuan 030032, China
| | - Lihong Guo
- School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Taiyuan 030032, China
- Research Institute of Materials Science of Shanxi Normal University & Collaborative Innovation Center for Advanced Permanent Magnetic Materials and Technology of Ministry of Education, Taiyuan 030032, China
| | - Wenjia Yang
- School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Taiyuan 030032, China
- Research Institute of Materials Science of Shanxi Normal University & Collaborative Innovation Center for Advanced Permanent Magnetic Materials and Technology of Ministry of Education, Taiyuan 030032, China
| | - Yue Wu
- School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Taiyuan 030032, China
- Research Institute of Materials Science of Shanxi Normal University & Collaborative Innovation Center for Advanced Permanent Magnetic Materials and Technology of Ministry of Education, Taiyuan 030032, China
| | - Juanjuan Wang
- School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Taiyuan 030032, China
- Research Institute of Materials Science of Shanxi Normal University & Collaborative Innovation Center for Advanced Permanent Magnetic Materials and Technology of Ministry of Education, Taiyuan 030032, China
| | - Xiaolong Li
- School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Taiyuan 030032, China
- Research Institute of Materials Science of Shanxi Normal University & Collaborative Innovation Center for Advanced Permanent Magnetic Materials and Technology of Ministry of Education, Taiyuan 030032, China
| | - Haifeng Du
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Bo Peng
- National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qingxiang Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Fang Wang
- School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Taiyuan 030032, China
- Research Institute of Materials Science of Shanxi Normal University & Collaborative Innovation Center for Advanced Permanent Magnetic Materials and Technology of Ministry of Education, Taiyuan 030032, China
| | - Ding-Jiang Xue
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaohong Xu
- School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Taiyuan 030032, China
- Research Institute of Materials Science of Shanxi Normal University & Collaborative Innovation Center for Advanced Permanent Magnetic Materials and Technology of Ministry of Education, Taiyuan 030032, China
| |
Collapse
|
6
|
Lopez D, Zhou Y, Cordova DLM, Milligan GM, Ogura KS, Wu R, Arguilla MQ. Bonding-Directed Crystallization of Ultra-Long One-Dimensional NbS 3 van der Waals Nanowires. J Am Chem Soc 2024; 146:22863-22868. [PMID: 39116336 PMCID: PMC11345755 DOI: 10.1021/jacs.4c05730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
The rediscovery of one-dimensional (1D) and quasi-1D (q-1D) van der Waals (vdW) crystals ushered the realization of nascent physical properties in 1D that are suitable for applications in photonics, electronics, and sensing. However, despite renewed interest in the creation and understanding of the physical properties of 1D and q-1D vdW crystals, the lack of accessible synthetic pathways for growing well-defined nanostructures that extend across several length scales remains. Using the highly anisotropic 1D vdW NbS3-I crystal as a model phase, we present a catalyst-free and bottom-up synthetic approach to access ultralong nanowires, with lengths reaching up to 7.9 mm and with uniform thicknesses ranging from 13 to 160 nm between individual nanowires. Control over the synthetic parameters enabled the modulation of intra- and interchain growth modalities to selectively yield only 1D nanowires or quasi-2D nanoribbons. Comparative synthetic and density functional theory (DFT) studies with a closely related nondimerized phase, ZrS3, show that the unusual preferential growth along 1D can be correlated to the strongly anisotropic bonding and dimeric nature of NbS3-I.
Collapse
Affiliation(s)
- Diana Lopez
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Yinong Zhou
- Department
of Physics and Astronomy, University of
California Irvine, Irvine, California 92697, United States
| | | | - Griffin M. Milligan
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Kaleolani S. Ogura
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Ruqian Wu
- Department
of Physics and Astronomy, University of
California Irvine, Irvine, California 92697, United States
| | - Maxx Q. Arguilla
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
7
|
Milligan GM, Cordova DLM, Yao ZF, Zhi BY, Scammell LR, Aoki T, Arguilla M. Encapsulation of crystalline and amorphous Sb 2S 3 within carbon and boron nitride nanotubes. Chem Sci 2024; 15:10464-10476. [PMID: 38994401 PMCID: PMC11234864 DOI: 10.1039/d4sc01477d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/02/2024] [Indexed: 07/13/2024] Open
Abstract
The recent rediscovery of 1D and quasi-1D (q-1D) van der Waals (vdW) crystals has laid foundation for the realization of emergent electronic, optical, and quantum-confined physical phenomena in both bulk and at the nanoscale. Of these, the highly anisotropic q-1D vdW crystal structure and the visible-light optical/optoelectronic properties of antimony trisulfide (Sb2S3) have led to its widespread consideration as a promising building block for photovoltaic and non-volatile phase change devices. However, while these applications will greatly benefit from well-defined and sub-nanometer-thick q-1D structures, little has been known about feasible synthetic routes that can access single covalent chains of Sb2S3. In this work, we explore how encapsulation in single or multi-walled carbon nanotubes (SWCNTs or MWCNTs) and visible-range transparent boron nitride nanotubes (BNNTs) influences the growth and phase of Sb2S3 nanostructures. We demonstrate that nanotubes with smaller diameters had a more pronounced effect in the crystallographic growth direction and orientation of Sb2S3 nanostructures, promoting the crystallization of the guest structures along the long-axis [010]-direction. As such, we were able to reliably access well-ordered few to single covalent chains of Sb2S3 when synthesized within defect-free SWCNTs with sub-2 nm inner diameters. Intriguingly, we found that the degree of crystalline order of Sb2S3 nanostructures was strongly influenced by the presence of defects and discontinuities along the Sb2S3-nanotube interface. We show that amorphous nanowire domains of Sb2S3 form around defect sites in larger, multi-walled nanotubes that manifest inner wall defects and discontinuities, suggesting a means to manipulate the crystallization dynamics of confined sub-10 nm-thick Sb2S3 nanostructures within nanotubes. Lastly, we show that ultranarrow amorphous Sb2S3 can impart functionality onto isolable BNNTs with photocurrent generation in the pA range which, alongside the dispersibility of the Sb2S3@BNNTs, could be leveraged to easily fabricate photoresistors only a few nm in width. Altogether, our results serve to solidify the understanding of how q-1D vdW pnictogen chalcogenides crystallize within confined synthetic platforms and are a step towards realizing functional materials from ensembles of encapsulated heterostructures.
Collapse
Affiliation(s)
- Griffin M Milligan
- Department of Chemistry, University of California Irvine Irvine California 92697 USA
| | | | - Ze-Fan Yao
- Department of Chemical and Biomolecular Engineering, University of California Irvine Irvine California 92697 USA
| | - Brian Y Zhi
- Department of Chemistry, University of California Irvine Irvine California 92697 USA
| | | | - Toshihiro Aoki
- Irvine Materials Research Institute, University of California Irvine Irvine California 92697 USA
| | - Maxx Arguilla
- Department of Chemistry, University of California Irvine Irvine California 92697 USA
| |
Collapse
|
8
|
Li C, Wang Y, Liu K, Jiang D, Feng J, Wen T, Yue B, Zhou Y, Sun L, Wang Y. Superconductivity in Quasi-One-Dimensional Ferromagnet CrSbSe 3 under High Pressure. J Am Chem Soc 2024; 146:9688-9696. [PMID: 38427795 DOI: 10.1021/jacs.3c13503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Nearly a decade has passed since the discovery of superconductivity in CrAs, but until now, the discovered structure types of chromium-based superconductors are still scanty. It is urgent to expand this family to decipher the interplay between magnetism and superconductivity penetratingly. Here, we report the observation of superconductivity in ferromagnet CrSbSe3 with a quasi-one-dimensional structure under high pressure. Under compression, CrSbSe3 undergoes an insulator-to-metal transition and sequential isostructural phase transitions accompanied by volume collapse. Superconductivity emerges at 32.8 GPa concomitant with metallization in CrSbSe3. A maximum superconducting transition temperature Tc of 7.7 K is achieved at 57.9 GPa benefiting from both the phonon softening and the enhanced p-d hybridization between Se and Cr in CrSbSe3. The discovery of superconductivity in CrSbSe3 expands the existing chromium-based superconductor family and sheds light on the search for concealed superconductivity in low-dimensional van der Waals materials.
Collapse
Affiliation(s)
- Chen Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100193, China
| | - Yiming Wang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100193, China
| | - Ke Liu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100193, China
| | - Dequan Jiang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Jiajia Feng
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100193, China
| | - Ting Wen
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100193, China
| | - Binbin Yue
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100193, China
| | - Yazhou Zhou
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Liling Sun
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100193, China
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yonggang Wang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100193, China
| |
Collapse
|
9
|
Yang M, Cheng G, Mathur N, Singha R, Yuan F, Yao N, Schoop LM. Chemical exfoliation of 1-dimensional antiferromagnetic nanoribbons from a non-van der Waals material. NANOSCALE HORIZONS 2024; 9:479-486. [PMID: 38258388 DOI: 10.1039/d3nh00408b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
As the demand for increasingly varied types of 1-dimensional (1D) materials grows, there is a greater need for new methods to synthesize these types of materials in a simple and scalable way. Chemical exfoliation is commonly used to make 2-dimensional (2D) materials, often in a way that is both straightforward and suitable for making larger quantities, yet this method has thus far been underutilized for synthesizing 1D materials. In the few instances when chemical exfoliation has been used to make 1D materials, the starting compound has been a van der Waals material, thus excluding any structures without these weak bonds inherently present. We demonstrate here that ionically bonded crystals can also be chemically exfoliated to 1D structures by choosing KFeS2 as an example. Using chemical exfoliation, antiferromagnetic 1D nanoribbons can be yielded in a single step. The nanoribbons are crystalline and closely resemble the parent compound both in structure and in intrinsic antiferromagnetism. The facile chemical exfoliation of an ionically bonded crystal shown in this work opens up opportunities for the synthesis of both magnetic and non-magnetic 1D nanomaterials from a greater variety of starting structures.
Collapse
Affiliation(s)
- Mulan Yang
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| | | | - Nitish Mathur
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| | - Ratnadwip Singha
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| | - Fang Yuan
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| | - Nan Yao
- Princeton Materials Institute, Princeton, NJ 08544, USA
| | - Leslie M Schoop
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
10
|
Milligan G, Yao ZF, Cordova DLM, Tong B, Arguilla MQ. Single Quasi-1D Chains of Sb 2Se 3 Encapsulated within Carbon Nanotubes. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:730-741. [PMID: 38282683 PMCID: PMC10809716 DOI: 10.1021/acs.chemmater.3c02114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024]
Abstract
The realization of stable monolayers from 2D van der Waals (vdW) solids has fueled the search for exfoliable crystals with even lower dimensionalities. To this end, 1D and quasi-1D (q-1D) vdW crystals comprising weakly bound subnanometer-thick chains have been discovered and demonstrated to exhibit nascent physics in the bulk. Although established micromechanical and liquid-phase exfoliation methods have been applied to access single isolated chains from bulk crystals, interchain vdW interactions with nonequivalent strengths have greatly hindered the ability to achieve uniform single isolated chains. Here, we report that encapsulation of the model q-1D vdW crystal, Sb2Se3, within single-walled carbon nanotubes (CNTs) circumvents the relatively stronger c-axis vdW interactions between the chains and allows for the isolation of single chains with structural integrity. High-resolution transmission electron microscopy and selected area electron diffraction studies of the Sb2Se3@CNT heterostructure revealed that the structure of the [Sb4Se6]n chain is preserved, enabling us to systematically probe the size-dependent properties of Sb2Se3 from the bulk down to a single chain. We show that ensembles of the [Sb4Se6]n chains within CNTs display Raman confinement effects and an emergent band-like absorption onset around 600 nm, suggesting a strong blue shift of the near-infrared band gap of Sb2Se3 into the visible range upon encapsulation. First-principles density functional theory calculations further provided qualitative insight into the structures and interactions that could manifest in the Sb2Se3@CNT heterostructure. Spatial visualization of the calculated electron density difference map of the heterostructure indicated a minimal degree of electron donation from the host CNT to the guest [Sb4Se6]n chain. Altogether, this model system demonstrates that 1D and q-1D vdW crystals with strongly anisotropic vdW interactions can be precisely studied by encapsulation within CNTs with suitable diameters, thereby opening opportunities in understanding dimension-dependent properties of a plethora of emergent vdW solids at or approaching the subnanometer regime.
Collapse
Affiliation(s)
- Griffin
M. Milligan
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Ze-Fan Yao
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
- Department
of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California 92697, United States
| | | | - Baixin Tong
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Maxx Q. Arguilla
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
11
|
Gao W, Yu M, Wang B, Yin H. Strong spin-orbital coupling induced tunable electronic structures and enhanced visible-light absorption in one-dimensional RhTe 6I 3 systems. Phys Chem Chem Phys 2023; 25:28402-28411. [PMID: 37843509 DOI: 10.1039/d3cp02874g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Considering the demand for device miniaturization, low-dimensional materials have been widely employed in various fields due to their unique and fascinating physical and chemical properties. Here, based on first-principles calculations, we predict a novel one-dimensional (1D) RhTe6I3 chain system. Our calculations indicate that a 1D RhTe6I3 single chain can be prepared from its bulk counterpart by an exfoliation method and exists stably at room temperature. The 1D RhTe6I3 single chain is a direct semiconductor with a moderate bandgap of 1.75 eV under a strong spin-orbital coupling (SOC) effect dominated by Te. This bandgap can be modulated by the chain number and the application of external strain. Notably, the 1D RhTe6I3 single chain has a high electron mobility (1093 cm2 V-1 s-1), which is one to two orders of magnitude higher than those of most previously reported 1D materials. The strong SOC effect can also enhance the visible-light absorption capacity of the 1D RhTe6I3 single chain. The moderate direct bandgap, high electron mobility, excellent visible-light absorption, and strong spin-orbital coupling make 1D RhTe6I3 systems ideal candidates in electronic and optoelectronic devices.
Collapse
Affiliation(s)
- Wenjiang Gao
- Institute for Computational Materials Science, Joint Center for Theoretical Physics, and International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| | - Meiyang Yu
- Institute for Computational Materials Science, Joint Center for Theoretical Physics, and International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| | - Bing Wang
- Institute for Computational Materials Science, Joint Center for Theoretical Physics, and International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| | - Huabing Yin
- Institute for Computational Materials Science, Joint Center for Theoretical Physics, and International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| |
Collapse
|
12
|
Li Y, Li A, Li J, Tian H, Zhang Z, Zhu S, Zhang R, Liu S, Cao K, Kang L, Li Q. Efficient Synthesis of Highly Crystalline One-Dimensional CrCl 3 Atomic Chains with a Spin Glass State. ACS NANO 2023; 17:20112-20119. [PMID: 37791779 DOI: 10.1021/acsnano.3c05819] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
One-dimensional (1D) magnetic material systems have attracted widespread interest from researchers because of their peculiar physical properties and potential applications in spintronics devices. However, the synthesis of 1D magnetic atomic chains has seldom been investigated. Here, we developed an iodine-assisted vacuum chemical vapor-phase transport (I-VCVT) method, utilizing single-walled carbon nanotubes (SWCNTs) with 1D cavities as templates, and high-quality and high-efficiency fabrication of 1D atomic chains of CrCl3 was achieved. Furthermore, the structure of CrCl3 atomic chains in the confined space of SWCNTs was analyzed in detail, and the charge transfer between the 1D atomic chains and SWCNTs was investigated through spectroscopic characterization. A comprehensive study of the dynamic magnetic properties revealed the existence of spin glass states and freezing of the 1D CrCl3 atomic chains at around 3 K, which has never been seen in bulk CrCl3. Our work established an effective strategy for the control synthesis of 1D magnetic atomic chains with promising potential applications in further magnetic-based spintronics devices.
Collapse
Affiliation(s)
- Yunfei Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Alei Li
- Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jing Li
- Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Haiquan Tian
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Zhen Zhang
- Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Siqi Zhu
- Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Rong Zhang
- Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Shuai Liu
- Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Kecheng Cao
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Lixing Kang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Qingwen Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
13
|
Cordova DM, Chua K, Huynh RM, Aoki T, Arguilla MQ. Anisotropy-Driven Crystallization of Dimensionally Resolved Quasi-1D Van der Waals Nanostructures. J Am Chem Soc 2023; 145:22413-22424. [PMID: 37713247 PMCID: PMC10591320 DOI: 10.1021/jacs.3c05887] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Indexed: 09/16/2023]
Abstract
Unusual behavior in solids emerges from the complex interplay between crystalline order, composition, and dimensionality. In crystals comprising weakly bound one-dimensional (1D) or quasi-1D (q-1D) chains, properties such as charge density waves, topologically protected states, and indirect-to-direct band gap crossovers have been predicted to arise. However, the experimental demonstration of many of these nascent physics in 1D or q-1D van der Waals (vdW) crystals is obscured by the highly anisotropic bonding between the chains, stochasticity of top-down exfoliation, and the lack of synthetic strategies to control bottom-up growth. Herein, we report the directed crystallization of a model q-1D vdW phase, Sb2S3, into dimensionally resolved nanostructures. We demonstrate the uncatalyzed growth of highly crystalline Sb2S3 nanowires, nanoribbons, and quasi-2D nanosheets with thicknesses in the range of 10 to 100 nm from the bottom-up crystallization of [Sb4S6]n chains. We found that dimensionally resolved nanostructures emerge from two distinct chemical vapor growth pathways defined by diverse covalent intrachain and anisotropic vdW interchain interactions and controlled precursor ratios in the vapor phase. At sub-100 nm nanostructure thicknesses, we observe the hardening of phonon modes, blue-shifting of optical band gaps, and the emergence of a new high-energy photoluminescence peak. The directional growth of weakly bound 1D ribbons or chains into well-resolved nanocrystalline morphologies provides opportunities to develop ordered nanostructures and hierarchical assemblies that are suitable for a wide range of optoelectronic and quantum devices.
Collapse
Affiliation(s)
| | - Kenneth Chua
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Rebecca Mai Huynh
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Toshihiro Aoki
- Irvine
Materials Research Institute, University
of California Irvine, Irvine, California 92697, United States
| | - Maxx Q. Arguilla
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
14
|
Yoon J, Moon JH, Chung J, Kim YJ, Kim K, Kang HS, Jeon YS, Oh E, Lee SH, Han K, Lee D, Lee CH, Kim YK, Lee D. Exploring the Magnetic Properties of Individual Barcode Nanowires using Wide-Field Diamond Microscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304129. [PMID: 37264689 DOI: 10.1002/smll.202304129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/22/2023] [Indexed: 06/03/2023]
Abstract
A barcode magnetic nanowire typically comprises a multilayer magnetic structure in a single body with more than one segment type. Interestingly, due to selective functionalization and novel interactions between the layers, it has attracted significant attention, particularly in bioengineering. However, analyzing the magnetic properties at the individual nanowire level remains challenging. Herein, the characterization of a single magnetic nanowire is investigated at room temperature under ambient conditions based on magnetic images obtained via wide-field quantum microscopy with nitrogen-vacancy centers in diamond. Consequently, critical magnetic properties of a single nanowire can be extracted, such as saturation magnetization and coercivity, by comparing the experimental result with that of micromagnetic simulation. This study opens up the possibility for a versatile in situ characterization method suited to individual magnetic nanowires.
Collapse
Affiliation(s)
- Jungbae Yoon
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
| | - Jun Hwan Moon
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jugyeong Chung
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
| | - Yu Jin Kim
- Institute for High Technology Materials and Devices, Korea University, Seoul, 02841, Republic of Korea
| | - Kihwan Kim
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
| | - Hee Seong Kang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Yoo Sang Jeon
- Center for Hydrogen∙Fuel Cell Research, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Eunsoo Oh
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sun Hwa Lee
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Kihoon Han
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
- Department of Neuroscience, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Dongmin Lee
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
- Department of Anatomy, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Chul-Ho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Keun Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Institute for High Technology Materials and Devices, Korea University, Seoul, 02841, Republic of Korea
| | - Donghun Lee
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
15
|
Qiao Y, Yin H. Ferromagnetic and half-metallic phase transition by doping in a one-dimensional narrow-bandgap W 6PCl 17 semiconductor. NANOSCALE 2023; 15:9835-9842. [PMID: 37212729 DOI: 10.1039/d3nr01717f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Based on first-principles calculations, we predict a one-dimensional (1D) semiconductor with cluster-type structure, namely phosphorus-centered tungsten chloride W6PCl17. The corresponding single-chain system can be prepared from its bulk counterpart by an exfoliation method and it exhibits good thermal and dynamical stability. 1D single-chain W6PCl17 is a narrow direct semiconductor with a bandgap of 0.58 eV. The unique electronic structure endows single-chain W6PCl17 with the p-type transport characteristic, manifested as a large hole mobility of 801.53 cm2 V-1 s-1. Remarkably, our calculations show that electron doping can easily induce itinerant ferromagnetism in single-chain W6PCl17 due to the extremely flat band feature near the Fermi level. Such ferromagnetic phase transition expectedly occurs at an experimentally achievable doping concentration. Importantly, a saturated magnetic moment of 1μB per electron is obtained over a large range of doping concentrations (from 0.02 to 5 electrons per formula unit), accompanied by the stable existence of half-metallic characteristics. A detailed analysis of the doping electronic structures indicates that the doping magnetism is mainly contributed by the d orbitals of partial W atoms. Our findings demonstrate that single-chain W6PCl17 is a typical 1D electronic and spintronic material expected to be synthesized experimentally in the future.
Collapse
Affiliation(s)
- Yusen Qiao
- Joint Center for Theoretical Physics, Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Huabing Yin
- Joint Center for Theoretical Physics, Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| |
Collapse
|
16
|
Jiang J, Cheng R, Feng W, Yin L, Wen Y, Wang Y, Cai Y, Liu Y, Wang H, Zhai B, Liu C, He J, Wang Z. Van der Waals Epitaxy Growth of 2D Single-Element Room-Temperature Ferromagnet. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211701. [PMID: 36807945 DOI: 10.1002/adma.202211701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Indexed: 05/12/2023]
Abstract
2D single-element materials, which are pure and intrinsically homogeneous on the nanometer scale, can cut the time-consuming material-optimization process and circumvent the impure phase, bringing about opportunities to explore new physics and applications. Herein, for the first time, the synthesis of ultrathin cobalt single-crystalline nanosheets with a sub-millimeter scale via van der Waals epitaxy is demonstrated. The thickness can be as low as ≈6 nm. Theoretical calculations reveal their intrinsic ferromagnetic nature and epitaxial mechanism: that is, the synergistic effect between van der Waals interactions and surface energy minimization dominates the growth process. Cobalt nanosheets exhibit ultrahigh blocking temperatures above 710 K and in-plane magnetic anisotropy. Electrical transport measurements further reveal that cobalt nanosheets have significant magnetoresistance (MR) effect, and can realize a unique coexistence of positive MR and negative MR under different magnetic field configurations, which can be attributed to the competition and cooperation effect among ferromagnetic interaction, orbital scattering, and electronic correlation. These results provide a valuable case for synthesizing 2D elementary metal crystals with pure phase and room-temperature ferromagnetism and pave the way for investigating new physics and related applications in spintronics.
Collapse
Affiliation(s)
- Jian Jiang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, And School of Physical and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Ruiqing Cheng
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, And School of Physical and Technology, Wuhan University, Wuhan, 430072, P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Wenyong Feng
- The State Key Lab of Optoelectronic Materials & Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Lei Yin
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, And School of Physical and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Yao Wen
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, And School of Physical and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Yanrong Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Yuchen Cai
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Yong Liu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, And School of Physical and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Hao Wang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, And School of Physical and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Baoxing Zhai
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, And School of Physical and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Chuansheng Liu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, And School of Physical and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Jun He
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, And School of Physical and Technology, Wuhan University, Wuhan, 430072, P. R. China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, P. R. China
| | - Zhenxing Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| |
Collapse
|
17
|
Giri A, Park G, Jeong U. Layer-Structured Anisotropic Metal Chalcogenides: Recent Advances in Synthesis, Modulation, and Applications. Chem Rev 2023; 123:3329-3442. [PMID: 36719999 PMCID: PMC10103142 DOI: 10.1021/acs.chemrev.2c00455] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 02/01/2023]
Abstract
The unique electronic and catalytic properties emerging from low symmetry anisotropic (1D and 2D) metal chalcogenides (MCs) have generated tremendous interest for use in next generation electronics, optoelectronics, electrochemical energy storage devices, and chemical sensing devices. Despite many proof-of-concept demonstrations so far, the full potential of anisotropic chalcogenides has yet to be investigated. This article provides a comprehensive overview of the recent progress made in the synthesis, mechanistic understanding, property modulation strategies, and applications of the anisotropic chalcogenides. It begins with an introduction to the basic crystal structures, and then the unique physical and chemical properties of 1D and 2D MCs. Controlled synthetic routes for anisotropic MC crystals are summarized with example advances in the solution-phase synthesis, vapor-phase synthesis, and exfoliation. Several important approaches to modulate dimensions, phases, compositions, defects, and heterostructures of anisotropic MCs are discussed. Recent significant advances in applications are highlighted for electronics, optoelectronic devices, catalysts, batteries, supercapacitors, sensing platforms, and thermoelectric devices. The article ends with prospects for future opportunities and challenges to be addressed in the academic research and practical engineering of anisotropic MCs.
Collapse
Affiliation(s)
- Anupam Giri
- Department
of Chemistry, Faculty of Science, University
of Allahabad, Prayagraj, UP-211002, India
| | - Gyeongbae Park
- Department
of Materials Science and Engineering, Pohang
University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk790-784, Korea
- Functional
Materials and Components R&D Group, Korea Institute of Industrial Technology, Gwahakdanji-ro 137-41, Sacheon-myeon, Gangneung, Gangwon-do25440, Republic of Korea
| | - Unyong Jeong
- Department
of Materials Science and Engineering, Pohang
University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk790-784, Korea
| |
Collapse
|
18
|
Ritchhart A, Filatov AS, Jeon IR, Anderson JS. Structure and Magnetic Properties of Pseudo-1D Chromium Thiolate Coordination Polymers. Inorg Chem 2023; 62:2817-2825. [PMID: 36728752 DOI: 10.1021/acs.inorgchem.2c03991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The synthesis, structure, and magnetic properties of two novel, pseudo-one-dimensional (1D) chromium thiolate coordination polymers (CPs), CrBTT and Cr2BDT3, are reported. The structures of these materials were determined using X-ray powder diffraction revealing highly symmetric 1D chains embedded within a CP framework. The magnetic coupling of this chain system was measured by SQUID magnetometry, revealing a switch from antiferromagnetic to ferromagnetic behavior dictated by the angular geometrical constraints within the CP scaffold consistent with the Goodenough-Kanamori-Anderson rules. Intrachain magnetic coupling constants JNN of -32.0 and +5.7 K were found for CrBTT and Cr2BDT3, respectively, using the 1D Bonner-Fisher model of magnetism. The band structure of these materials has also been examined by optical spectroscopy and density functional theory calculations revealing semiconducting behavior. Our findings here demonstrate how CP scaffolds can support idealized low-dimensional structural motifs and dictate magnetic interactions through tuning of geometry and inter-spin couplings.
Collapse
Affiliation(s)
- Andrew Ritchhart
- Department of Chemistry, University of Chicago, Chicago, Illinois60637, United States
| | - Alexander S Filatov
- Department of Chemistry, University of Chicago, Chicago, Illinois60637, United States
| | - Ie-Rang Jeon
- Université de Rennes, Institut des Sciences Chimiques de Rennes, UMR CNRS 6226, 35042Rennes, France
| | - John S Anderson
- Department of Chemistry, University of Chicago, Chicago, Illinois60637, United States
| |
Collapse
|
19
|
Zhang K, Wu X, Yang J. Transition metal dichalcogenide magnetic atomic chains. NANOSCALE ADVANCES 2022; 4:4905-4912. [PMID: 36381508 PMCID: PMC9642364 DOI: 10.1039/d2na00543c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Reducing the dimensions of a material to the atomic scale endows them with novel properties that are significantly different from their bulk counterparts. A family of stoichiometric transition metal dichalcogenide (TMD) MX2 (M = Ti to Mn, and X = S to Te) atomic chains is proposed. The results reveal that the MX2 atomic chains, the smallest possible nanostructure of a TMD, are lattice-dynamically stable, as confirmed from their phonon spectra and ab initio molecular dynamics simulations. In contrast to their bulk and two-dimensional (2D) counterparts, the TiX2 atomic chains are nonmagnetic semiconductors, while the VX2, CrX2, and MnX2 chains are unipolar magnetic, bipolar magnetic, and antiferromagnetic semiconductors, respectively. In addition, the VX2, CrX2, and MnX2 chains can be converted via carrier doping from magnetic semiconductors to half metals with reversible spin-polarization orientation at the Fermi level. Of these chains, the MnX2 chains exhibit either ferromagnetic or antiferromagnetic half metallicity depending on the injected carrier type and concentration. The diverse and tunable electronic and magnetic properties in the MX2 chains originate, based on crystal field theory, from the occupation of the metal d orbitals and the exchange interaction between the tetrahedrally coordinated metal atoms in the atomic chain. The calculated interaction between the carbon nanotubes and the MX2 chains implies that armchair (7,7) or armchair (8,8) carbon nanotubes are appropriate sheaths for growing MX2 atomic single-chains in a confined channel. This study reveals the diverse magnetic properties of MX2 atomic single-chains and provides a promising building block for nanoscale electronic and spintronic devices.
Collapse
Affiliation(s)
- Kai Zhang
- Hefei National Research Center of Physical Sciences at the Microscale, University of Science and Technology of China Hefei Anhui 230026 China
| | - Xiaojun Wu
- Hefei National Research Center of Physical Sciences at the Microscale, University of Science and Technology of China Hefei Anhui 230026 China
- School of Chemistry and Materials Sciences, CAS Key Laboratory of Materials for Energy Conversion, Synergetic Innovation of Quantum Information & Quantum Technology, CAS Center for Excellence in Nanoscience, University of Science and Technology of China Hefei Anhui 230026 China
| | - Jinlong Yang
- Hefei National Research Center of Physical Sciences at the Microscale, University of Science and Technology of China Hefei Anhui 230026 China
- School of Chemistry and Materials Sciences, CAS Key Laboratory of Materials for Energy Conversion, Synergetic Innovation of Quantum Information & Quantum Technology, CAS Center for Excellence in Nanoscience, University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
20
|
Shen H, Liu S, Qiao Y, Zhang F, Yin H, Ju L. High electron mobility and wide-bandgap properties in a novel 1D PdGeS 3 nanochain. Phys Chem Chem Phys 2022; 24:18868-18876. [PMID: 35912920 DOI: 10.1039/d2cp02732a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a versatile platform, one-dimensional (1D) electronic systems host plenty of excellent merits, such as high length-to-diameter ratios, flexible mechanical properties, and manageable electronic characteristics, which endow them with significant potential applications in catalysts, flexible wearable devices, and multifunctional integrated circuits. Herein, based on first-principles calculations, we propose a versatile 1D PdGeS3 nanochain system. Our calculations show that the 1D PdGeS3 nanochain can be synthesized simply from its bulk crystal by exfoliation methods and can stably exist at room temperature. The 1D PdGeS3 nanochain is an indirect semiconductor with a wide bandgap of 2.86 eV, and such a bandgap can be effectively modulated by strain. Remarkably, the electron mobility of the 1D PdGeS3 nanochain reaches as high as 1506 cm2 V-1 s-1, which is one to two orders of magnitude larger than those of most reported 1D materials and even some 2D materials. Such high electron mobility accompanied with low hole mobility endow the 1D PdGeS3 nanochain with the capacity of the separation of carriers. Our work shows that the 1D PdGeS3 nanochain is a promising candidate for applications in novel multifunctional nanoelectronic devices.
Collapse
Affiliation(s)
- Huimin Shen
- Institute for Computational Materials Science, Joint Center for Theoretical Physics (JCTP), School of Physics and Electronics, Henan University, Kaifeng 475004, China. .,International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Siyuan Liu
- Institute for Computational Materials Science, Joint Center for Theoretical Physics (JCTP), School of Physics and Electronics, Henan University, Kaifeng 475004, China. .,International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Yusen Qiao
- Institute for Computational Materials Science, Joint Center for Theoretical Physics (JCTP), School of Physics and Electronics, Henan University, Kaifeng 475004, China. .,International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Fumin Zhang
- Institute for Computational Materials Science, Joint Center for Theoretical Physics (JCTP), School of Physics and Electronics, Henan University, Kaifeng 475004, China. .,International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Huabing Yin
- Institute for Computational Materials Science, Joint Center for Theoretical Physics (JCTP), School of Physics and Electronics, Henan University, Kaifeng 475004, China. .,International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Lin Ju
- School of Physics and Electrical Engineering, Anyang Normal University, Anyang 455000, China.
| |
Collapse
|