1
|
Stennett CR, Queen JD, Ruhlandt K, Peng Y, Wagner CL. Philip P. Power: Celebrating a Career in Exploratory Synthesis. Inorg Chem 2024; 63:24445-24452. [PMID: 39813135 DOI: 10.1021/acs.inorgchem.4c05302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
|
2
|
Evans MJ, Parr JM, Nguyen DT, Jones C. An isolable stannaimine and its cycloaddition/metathesis reactions with carbon dioxide. Chem Commun (Camb) 2024; 60:10350-10353. [PMID: 39219473 DOI: 10.1039/d4cc04006f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
An N-heterocyclic stannylene :Sn(NONAd) (NONAd = [O(SiMe2NAd)2]2-, Ad = 1-adamantyl), reacts rapidly with 2,4,6-tricyclohexylphenyl azide (TCHP)N3, affording a stannaimine, (NONAd)SnN(TCHP). Solutions of (NONAd)SnN(TCHP) react immediately with carbon dioxide (CO2) to give a [2+2]-cycloaddition product, which, upon heating, subsequently engages in a metathesis process to give [Sn(NONAd)(μ-O)]2 and the bulky isocyanate, (TCHP)NCO.
Collapse
Affiliation(s)
- Matthew J Evans
- School of Chemistry, Monash University, Melbourne, PO Box 23, Victoria, 3800, Australia.
| | - Joseph M Parr
- School of Chemistry, Monash University, Melbourne, PO Box 23, Victoria, 3800, Australia.
| | - Dat T Nguyen
- School of Chemistry, Monash University, Melbourne, PO Box 23, Victoria, 3800, Australia.
| | - Cameron Jones
- School of Chemistry, Monash University, Melbourne, PO Box 23, Victoria, 3800, Australia.
| |
Collapse
|
3
|
Kimmich R, Kern RH, Strienz M, Koldemir A, Eichele K, Pöttgen R, Wesemann L, Schnepf A. Synthesis and Investigation of a Soluble Distannene with no Trans-Bent Angle or Twisting in the Solid-State. Chemistry 2024; 30:e202400209. [PMID: 38362851 DOI: 10.1002/chem.202400209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/17/2024]
Abstract
By treating KSiiPr3 with Sn[N(SiMe3)2]2 the distannene Sn2(TIPS)4 (TIPS=SiiPr3) is formed in a metathesis reaction. The crystal structure analysis of Sn2(TIPS)4 reveals a planar arrangement of the substituents in the solid-state and hence the second planar alkene like distannene of its kind. Due to the TIPS substituents, Sn2(TIPS)4 is well soluble in all commonly used organic solvents, opening the door for various analytics and reactivity studies. Due to its stability in solution, various reactions can be performed such as cycloaddition reactions with 2,3-dimethyl-1,3-butadiene (DMBD) and TMS-azide.
Collapse
Affiliation(s)
- Roman Kimmich
- Department of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Ralf H Kern
- Department of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Markus Strienz
- Department of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Aylin Koldemir
- Department of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, D-48149, Münster
| | - Klaus Eichele
- Department of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Rainer Pöttgen
- Department of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, D-48149, Münster
| | - Lars Wesemann
- Department of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Andreas Schnepf
- Department of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| |
Collapse
|
4
|
Barthélemy A, Scherer H, Daub M, Bugnet A, Krossing I. Structures, Bonding Analyses and Reactivity of a Dicationic Digallene and Diindene Mimicking trans-bent Ditetrylenes. Angew Chem Int Ed Engl 2023; 62:e202311648. [PMID: 37728006 DOI: 10.1002/anie.202311648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
The reaction of bisdicyclohexylphosphinoethane (dcpe) and the subvalent MI sources [MI (PhF)2 ][pf] (M=Ga+ , In+ ; [pf]- =[Al(ORF )4 ]- ; RF =C(CF3 )3 ) yielded the salts [{M(dcpe)}2 ][pf]2 , containing the first dicationic, trans-bent digallene and diindene structures reported so far. The non-classical MI ⇆MI double bonds are surprisingly short and display a ditetrylene-like structure. The bonding situation was extensively analyzed by quantum chemical calculations, QTAIM (Quantum Theory of Atoms in Molecules) and EDA-NOCV (Energy Decomposition Analysis with the combination of Natural Orbitals for Chemical Valence) analyses and is compared to that in the isoelectronic and isostructural, but neutral digermenes and distannenes. The dissolved [{Ga(dcpe)}2 ]2+ ([pf]- )2 readily reacts with 1-hexene, cyclooctyne, diphenyldisulfide, diphenylphosphine and under mild conditions at room temperature. This reactivity is analyzed and rationalized.
Collapse
Affiliation(s)
- Antoine Barthélemy
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Harald Scherer
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Michael Daub
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Alexis Bugnet
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Ingo Krossing
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| |
Collapse
|
5
|
Kong RY, Parry JB, Anello GR, Ong ME, Lancaster KM. Accelerating σ-Bond Metathesis at Sn(II) Centers. J Am Chem Soc 2023; 145:24136-24144. [PMID: 37870565 DOI: 10.1021/jacs.3c07997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Molecular main-group hydride catalysts are attractive as cheap and Earth-abundant alternatives to transition-metal analogues. In the case of the latter, specific steric and electronic tuning of the metal center through ligand choice has enabled the iterative and rational development of superior catalysts. Analogously, a deeper understanding of electronic structure-activity relationships for molecular main-group hydrides should facilitate the development of superior main-group hydride catalysts. Herein, we report a modular Sn-Ni bimetallic system in which we systematically vary the ancillary ligand on Ni, which, in turn, tunes the Sn center. This tuning is probed using Sn L1 XAS as a measure of electron density at the Sn center. We demonstrate that increased electron density at Sn centers accelerates the rate of σ-bond metathesis, and we employ this understanding to develop a highly active Sn-based catalyst for the hydroboration of CO2 using pinacolborane. Additionally, we demonstrate that engineering London dispersion interactions within the secondary coordination sphere of Sn allows for further rate acceleration. These results show that the electronics of main-group catalysts can be controlled without the competing effects of geometry perturbations and that this manifests in substantial reactivity differences.
Collapse
Affiliation(s)
- Richard Y Kong
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, 162 Sciences Drive, Ithaca, New York 14853, United States
| | - Joseph B Parry
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, 162 Sciences Drive, Ithaca, New York 14853, United States
| | - Guy R Anello
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, 162 Sciences Drive, Ithaca, New York 14853, United States
| | - Matthew E Ong
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, 162 Sciences Drive, Ithaca, New York 14853, United States
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, 162 Sciences Drive, Ithaca, New York 14853, United States
| |
Collapse
|
6
|
Zou W, Mears KL, Fettinger JC, Power PP. Sn(II)-carbon bond reactivity: radical generation and consumption via reactions of a stannylene with alkynes. Chem Commun (Camb) 2023; 59:13203-13206. [PMID: 37853778 DOI: 10.1039/d3cc04014c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Thermal Sn-C cleavage in the diarylstannylene Sn(AriPr4)2 (AriPr4 = C6H3-2,6-(C6H3-2,6-iPr2)2) was used to generate ˙Sn(AriPr4) and ˙AriPr4 radicals for alkyne arylstannylation. The radical pair and RCCR' (R = H, R' = Ph; R = Ph, R' = Ph; R = H, R' = C4H9; R = H, R' = SiMe3) in refluxing benzene generate the aryl vinyl stannylene complexes, AriPr4Sn{C(C6H5)-C(H)(AriPr4)} (1), AriPr4Sn{C(C6H5)-C(H)(C6H5)} (2) and AriPr4Sn{C(C4H9)-C(H)(AriPr4)} (3) respectively. For HCCSiMe3, the known distannene {Sn(CCSiMe3)AriPr4}2 (4) was also generated from this new method.
Collapse
Affiliation(s)
- Wenxing Zou
- Department of Chemistry, University of California, One Shields Avenue, Davis, 95616, USA.
| | - Kristian L Mears
- Department of Chemistry, University of California, One Shields Avenue, Davis, 95616, USA.
| | - James C Fettinger
- Department of Chemistry, University of California, One Shields Avenue, Davis, 95616, USA.
| | - Philip P Power
- Department of Chemistry, University of California, One Shields Avenue, Davis, 95616, USA.
| |
Collapse
|
7
|
Helling C, Jones C. Schlenk-Type Equilibria of Grignard-Analogous Arylberyllium Complexes: Steric Effects. Chemistry 2023; 29:e202302222. [PMID: 37528538 DOI: 10.1002/chem.202302222] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/03/2023]
Abstract
The presence of complex Schlenk equilibria is a central property of synthetically invaluable Grignard reagents substantially affecting their reactivity and selectivity in chemical transformations. In this work, the steric effects of aryl substituents on the Schlenk-type equilibria of their lighter congeners, arylberyllium bromides, are systematically studied. Combination of diarylberyllium complexes Ar2 Be(OEt2 ) (1Ar, Ar=Tip, Tcpp; Tip=2,4,6-iPr3 C6 H3 , Tcpp=2,4,6-Cyp3 C6 H3 , Cyp=c-C5 H9 ), containing sterically demanding aryl groups, and BeBr2 (OEt2 )2 (2) affords the Grignard-analogous arylberyllium bromides ArBeBr(OEt2 ) (3Ar, Ar=Tip, Tcpp). In contrast, Mes2 Be(OEt2 ) (1Mes, Mes=2,4,6-Me3 C6 H3 ) and 2 exist in a temperature-dependent equilibrium with MesBeBr(OEt2 ) (3Mes) and free OEt2 . Ph2 Be(OEt2 ) (1Ph) reacts with 2 to afford dimeric [PhBeBr(OEt2 )]2 ([3Ph]2 ). Moreover, the influence of replacing the OEt2 donor by an N-heterocyclic carbene, IPr2 Me2 (IPr2 Me2 =C(iPrNCMe)2 ), on the redistribution reactions was investigated. The solution- and solid-state structures of the diarylberyllium and arylberyllium bromide complexes were comprehensively characterized using multinuclear (1 H, 9 Be, 13 C) NMR spectroscopic methods and single-crystal X-ray diffraction, while DFT calculations were employed to support the experimental findings.
Collapse
Affiliation(s)
- Christoph Helling
- School of Chemistry, Monash University, PO Box 23, Melbourne, VIC, 3800, Australia
| | - Cameron Jones
- School of Chemistry, Monash University, PO Box 23, Melbourne, VIC, 3800, Australia
| |
Collapse
|
8
|
Bashkurov R, Fridman N, Bravo-Zhivotovskii D, Apeloig Y. The First Planar, Not Twisted, Distannene - A Structural Alkene Analog. Synthesis, Isolation and X-ray Crystallography Characterization. Chemistry 2023:e202302678. [PMID: 37675971 DOI: 10.1002/chem.202302678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/08/2023]
Abstract
The tetrasilyl-substituted distannene, (tBu2 HSi)2 Sn=Sn(SiHtBu2 )2 6, was synthesized by mild thermolysis (70 °C in hexane) of tris(di-tert-butyl-hydridosilyl)stannane 4. The X-ray crystallography structure of 6 reveals the following unusual structural properties: a planar geometry around both Sn atoms (Σ∡Sn=359.87°), a non-twisted Sn=Sn double bond, and the shortest Sn=Sn double bond of 2.599 Å among all acyclic distannenes. Thus, compound 6 is the first reported distannene having a structure closely analogous to a classic alkene. Reactions of 6 with CCl4 or with 2,3-dimethylbuta-1,3-diene to produce 1,2-dichlorodistannane 9 and the [2+4] cycloadduct 10, respectively, are characteristic for a Sn=Sn double bond.
Collapse
Affiliation(s)
- Roman Bashkurov
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Natalia Fridman
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | | | - Yitzhak Apeloig
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| |
Collapse
|
9
|
Mears KL, Power PP. London Dispersion Effects on the Stability of Heavy Tetrel Molecules. Chemistry 2023; 29:e202301247. [PMID: 37263972 DOI: 10.1002/chem.202301247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/03/2023]
Abstract
London dispersion (LD) interactions, which stem from long-range electron correlations arising from instantaneously induced dipoles can occur between neighboring atoms or molecules, for example, between H atoms within ligand C-H groups. These interactions are currently of interest as a new method of stabilizing long bonds and species with unusual oxidation states. They can also limit reactivity by installing LD enhanced groups into organic frameworks or ligand substituents. Here, we address the most recent advances in the design of LD enhanced ligands, the sterically counterintuitive structures that can be generated and the consequences that these interactions can have on the structures and reactivity of sterically crowded heavy group 14 species.
Collapse
Affiliation(s)
- Kristian L Mears
- Department of Chemistry, University of California One Shields Avenue, Davis, California, 95616, USA
| | - Philip P Power
- Department of Chemistry, University of California One Shields Avenue, Davis, California, 95616, USA
| |
Collapse
|
10
|
Schümann JM, Ochmann L, Becker J, Altun A, Harden I, Bistoni G, Schreiner PR. Exploring the Limits of Intramolecular London Dispersion Stabilization with Bulky Dispersion Energy Donors in Alkane Solution. J Am Chem Soc 2023; 145:2093-2097. [PMID: 36688409 DOI: 10.1021/jacs.2c13301] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We present an experimental study of a cyclooctatetraene-based molecular balance disubstituted with increasingly bulky tert-butyl (tBu), adamantyl (Ad), and diamantyl (Dia) substituents in the 1,4-/1,6-positions for which we determined the valence-bond shift equilibrium in n-hexane (hex), n-octane (oct), and n-dodecane (dod). Computations including implicit and explicit solvation support our temperature-dependent NMR equilibrium measurements indicating that the more sterically crowded 1,6-isomer is always favored, irrespective of solvent, and that the free energy is quite insensitive to substituent size.
Collapse
Affiliation(s)
- Jan M Schümann
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Lukas Ochmann
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Jonathan Becker
- Institute of Analytical and Inorganic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Ahmet Altun
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Ingolf Harden
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Giovanni Bistoni
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.,Dipartmento di Chimica, Biologia e Biotechnologie, Università Degli Studi Di Perugia, Via Elce di sotto, 8, 06123 Perugia, Italy
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
11
|
Morris LJ, Rajeshkumar T, Maron L, Okuda J. Reversible Oxidative Addition of Zinc Hydride at a Gallium(I)-Centre: Labile Mono- and Bis(hydridogallyl)zinc Complexes. Chemistry 2022; 28:e202201480. [PMID: 35819049 PMCID: PMC9804236 DOI: 10.1002/chem.202201480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Indexed: 01/05/2023]
Abstract
In the presence of TMEDA (N,N,N',N'-tetramethylethylenediamine), partially deaggregated zinc dihydride as hydrocarbon suspensions react with the gallium(I) compound [(BDI)Ga] (I, BDI={HC(C(CH3 )N(2,6-iPr2 -C6 H3 ))2 }- ) by formal oxidative addition of a Zn-H bond to the gallium(I) centre. Dissociation of the labile TMEDA ligand in the resulting complex [(BDI)Ga(H)-(H)Zn(tmeda)] (1) facilitates insertion of a second equiv. of I into the remaining Zn-H to form a thermally sensitive trinuclear species [{(BDI)Ga(H)}2 Zn] (2). Compound 1 exchanges with polymeric zinc dideuteride [ZnD2 ]n in the presence of TMEDA, and with compounds I and 2 via sequential and reversible ligand dissociation and gallium(I) insertion. Spectroscopic and computational studies demonstrate the reversibility of oxidative addition of each Zn-H bond to the gallium(I) centres.
Collapse
Affiliation(s)
- Louis J. Morris
- Institute for Inorganic ChemistryRWTH Aachen University52062AachenGermany
- Chemistry Research LaboratoryUniversity of OxfordOxfordOX1 3TAUnited Kingdom
| | | | - Laurent Maron
- CNRSINSAUPSUMR 5215LPCNOUniversité de Toulouse31077ToulouseFrance
| | - Jun Okuda
- Institute for Inorganic ChemistryRWTH Aachen University52062AachenGermany
| |
Collapse
|
12
|
Rummel L, König HF, Hausmann H, Schreiner PR. Silyl Groups Are Strong Dispersion Energy Donors. J Org Chem 2022; 87:13168-13177. [PMID: 36166406 DOI: 10.1021/acs.joc.2c01633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present an experimental and computational study to investigate noncovalent interactions between silyl groups that are often employed as "innocent" protecting groups. We chose an extended cyclooctatetraene (COT)-based molecular balance comprising unfolded (1,4-disubstituted) and folded (1,6-disubstituted) valance bond isomers that typically display remote and close silyl group contacts, respectively. The thermodynamic equilibria were determined using nuclear magnetic resonance measurements. Additionally, we utilized Boltzmann weighted symmetry-adapted perturbation theory (SAPT) at the sSAPT0/aug-cc-pVDZ level of theory to dissect and quantify noncovalent interactions. Apart from the extremely bulky tris(trimethylsilyl)silyl "supersilyl" group, there is a preference for the folded 1,6-COT valence isomer, with London dispersion interactions being the main stabilizing factor. This makes silyl groups excellent dispersion energy donors, a finding that needs to be taken into account in synthesis planning.
Collapse
Affiliation(s)
- Lars Rummel
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Henrik F König
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Heike Hausmann
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
13
|
Mears KL, Stennett CR, Fettinger JC, Vasko P, Power PP. Inhibition of Alkali Metal Reduction of 1-Adamantanol by London Dispersion Effects. Angew Chem Int Ed Engl 2022; 61:e202201318. [PMID: 35255185 DOI: 10.1002/anie.202201318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 12/17/2022]
Abstract
A series of alkali metal 1-adamantoxide (OAd1 ) complexes of formula [M(OAd1 )(HOAd1 )2 ], where M=Li, Na or K, were synthesised by reduction of 1-adamantanol with excess of the alkali metal. The syntheses indicated that only one out of every three HOAd1 molecules was reduced. An X-ray diffraction study of the sodium derivative shows that the complex features two unreduced HOAd1 donors as well as the reduced alkoxide (OAd1 ), with the Ad1 fragments clustered together on the same side of the NaO3 plane, contrary to steric considerations. This is the first example of an alkali metal reduction of an alcohol that is inhibited from completion due to the formation of the [M(OAd1 )(HOAd1 )2 ] complexes, stabilized by London dispersion effects. NMR spectroscopic studies revealed similar structures for the lithium and potassium derivatives. Computational analyses indicate that decisive London dispersion effects in the molecular structure are a consequence of the many C-H⋅⋅⋅H-C interactions between the OAd1 groups.
Collapse
Affiliation(s)
- Kristian L Mears
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Cary R Stennett
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - James C Fettinger
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Petra Vasko
- Department of Chemistry, University of Helsinki, P.O. Box 55 (A. I. Virtasen aukio 1), 00014, Helsinki, Finland
| | - Philip P Power
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
14
|
Mears KL, Power PP. Beyond Steric Crowding: Dispersion Energy Donor Effects in Large Hydrocarbon Ligands. Acc Chem Res 2022; 55:1337-1348. [PMID: 35427132 DOI: 10.1021/acs.accounts.2c00116] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Interactions between sterically crowded hydrocarbon-substituted ligands are widely considered to be repulsive because of the intrusion of the electron clouds of the ligand atoms into each other's space, which results in Pauli repulsion. Nonetheless, there is another interaction between the ligands which is less widely publicized but is always present. This is the London dispersion (LD) interaction which can occur between atoms or molecules in which dipoles can be induced instantaneously, for example, between the H atoms from the ligand C-H groups.These LD interactions are always attractive, but their effects are not as widely recognized as those of the Pauli repulsion despite their central role in the formation of condensed matter. Their relatively poor recognition is probably due to the relative weakness (ca. 1 kcal mol-1) of individual H···H interactions owing to their especially strong distance dependence. In contrast, where there are numerous H···H interactions, a collective LD energy equaling several tens of kcal mol-1 may ensue. As a result, in some molecules the latent importance of the LD attraction energies emerges and assumes a prominence that can overshadow the Pauli effects (e.g., in the stabilization of high-oxidation-state transition-metal alkyls, inducing disproportionation reactions, or in the stabilization of otherwise unstable bonds).Despite being known for over a century, the accurate quantification of individual H···H LD effects in molecular species is a relatively recent phenomenon and at present is based mainly on modified DFT calculations. A few leading reviews summarized these earlier studies of the C-H···H-C LD interactions in organic molecules, and their effects on the structures and stabilities were described. LD effects in sterically crowded inorganic and organometallic molecules have been recognized.The author's interest in these LD effects arose fortuitously over a decade ago during research on sterically crowded heavier main-group element carbene analogues and two-coordinate, open-shell (d1-d9) transition-metal complexes where counterintuitive steric effects were observed. More detailed explanations of these effects were provided by dispersion-corrected DFT calculations in collaboration with the groups of Tuononen and Nagase (see below).This Account describes our development of these initial results for other inorganic molecular classes. More recently, the work has led us to move to the planned inclusion of dispersion effects in ligands to stabilize new molecular types with theoretical input from the groups of Vasko and Grimme (see below). Our approach sought to use what Grimme has described as dispersion effect donor (DED) groups (i.e., spatially close-lying, densely packed substituents either as ligands (e.g., -C6H2-2,4,6-Cy3, Cy = cyclohexyl) or as parts of ligands (e.g., a Cy substituent) that produce relatively large dispersion energies to stabilize these new compounds.We predict that the future design of sterically crowding hydrocarbon ligands will include the consideration and incorporation of LD effects as a standard methodology for directed use in the attainment of new synthetic targets.
Collapse
Affiliation(s)
- Kristian L. Mears
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Philip P. Power
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
15
|
Mears KL, Stennett CR, Fettinger JC, Vasko P, Power PP. Inhibition of Alkali Metal Reduction of 1‐Adamantanol by London Dispersion Effects. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kristian L. Mears
- Department of Chemistry University of California One Shields Avenue Davis CA 95616 USA
| | - Cary R. Stennett
- Department of Chemistry University of California One Shields Avenue Davis CA 95616 USA
| | - James C. Fettinger
- Department of Chemistry University of California One Shields Avenue Davis CA 95616 USA
| | - Petra Vasko
- Department of Chemistry University of Helsinki P.O. Box 55 (A. I. Virtasen aukio 1) 00014 Helsinki Finland
| | - Philip P. Power
- Department of Chemistry University of California One Shields Avenue Davis CA 95616 USA
| |
Collapse
|