1
|
Stroek W, Keilwerth M, Malaspina LA, Grabowsky S, Meyer K, Albrecht M. Deciphering Iron-Catalyzed C-H Amination with Organic Azides: N 2 Cleavage from a Stable Organoazide Complex. Chemistry 2024; 30:e202303410. [PMID: 37916523 DOI: 10.1002/chem.202303410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/03/2023]
Abstract
Catalytic C-N bond formation by direct activation of C-H bonds offers wide synthetic potential. En route to C-H amination, complexes with organic azides are critical precursors towards the reactive nitrene intermediate. Despite their relevance, α-N coordinated organoazide complexes are scarce in general, and elusive with iron, although iron complexes are by far the most active catalysts for C-H amination with organoazides. Herein, we report the synthesis of a stable iron α-N coordinated organoazide complex from [Fe(N(SiMe3 )2 )2 ] and AdN3 (Ad=1-adamantyl) and its crystallographic, IR, NMR and zero-field 57 Fe Mössbauer spectroscopic characterization. These analyses revealed that the organoazide is in fast equilibrium between the free and coordinated state (Keq =62). Photo-crystallography experiments showed gradual dissociation of N2 , which imparted an Fe-N bond shortening and correspond to structural snapshots of the formation of an iron imido/nitrene complex. Reactivity of the organoazide complex in solution showed complete loss of N2 , and subsequent formation of a C-H aminated product via nitrene insertion into a C-H bond of the N(SiMe3 )2 ligand. Monitoring this reaction by 1 H NMR spectroscopy indicates the transient formation of the imido/nitrene intermediate, which was supported by Mössbauer spectroscopy in frozen solution.
Collapse
Affiliation(s)
- Wowa Stroek
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Martin Keilwerth
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
| | - Lorraine A Malaspina
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Simon Grabowsky
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
| | - Martin Albrecht
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
2
|
Matveev EY, Dontsova OS, Avdeeva VV, Kubasov AS, Zhdanov AP, Nikiforova SE, Goeva LV, Zhizhin KY, Malinina EA, Kuznetsov NT. Synthesis and Structures of Lead(II) Complexes with Substituted Derivatives of the Closo-Decaborate Anion with a Pendant N 3 Group. Molecules 2023; 28:8073. [PMID: 38138563 PMCID: PMC10746007 DOI: 10.3390/molecules28248073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
In this work, we studied lead(II) and cobalt(II) complexation of derivatives [2-B10H9O(CH2)2O(CH2)2N3]2- and [2-B10H9O(CH2)5N3]2- of the closo-decaborate anion containing pendant azido groups in the presence of 1,10-phenanthroline and 2,2'-bipyridyl. Mononuclear [PbL2{An}] and binuclear [Pb2L4(NO3)2{An}] lead complexes (where {An} is the N3-substituted boron cluster) were isolated and studied by IR spectroscopy and elemental analysis. The mononuclear lead(II) complex [Pb(phen)2[B10H9O(CH2)2O(CH2)2N3] and the binuclear lead(II) complex [Pb2(phen)4(NO3)2[B10H9O(CH2)5)N3] were determined by single-crystal X-ray diffraction. In complex [Pb2(phen)4(NO3)2[B10H9O(CH2)5)N3], the boron cluster is coordinated by the metal atom only via the 3c2e MHB bonds. In complex [Pb(phen)2[B10H9O(CH2)2O(CH2)2N3], the coordination environment of the metal includes BH groups of the boron cluster and the oxygen atom of the exo-polyhedral substituent. When the reaction was performed in a CH3CN/water mixture, the binuclear lead(II) complex [(Pb(bipy)NO3)(Pb(bipy)2NO3)(B10H9O(CH2)2O(CH2)2N3)]·CH3CN·H2O was isolated, where the boron cluster acts as a bridging ligand between lead atoms coordinated by the boron cage via the O atoms of the substituent and/or the BH groups. In the course of cobalt(II) complexation, the starting compound (Ph4P)2[B10H9O(CH2)5N3] was isolated and its structure was also determined by X-ray diffraction. Although a number of lead(II) complexes with coordinated N3 are known from the literature, no complexes with the boron cluster coordinated by the pendant N3 group involved in the metal coordination have been isolated.
Collapse
Affiliation(s)
- Evgenii Yu. Matveev
- Institute of Fine Chemical Technologies Named after M. V. Lomonosov, MIREA—Russian Technological University, Vernadskogo pr. 86, Moscow 119571, Russia; (E.Y.M.); (O.S.D.); (K.Y.Z.)
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia; (A.S.K.); (A.P.Z.); (S.E.N.); (L.V.G.); (E.A.M.); (N.T.K.)
| | - Olga S. Dontsova
- Institute of Fine Chemical Technologies Named after M. V. Lomonosov, MIREA—Russian Technological University, Vernadskogo pr. 86, Moscow 119571, Russia; (E.Y.M.); (O.S.D.); (K.Y.Z.)
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia; (A.S.K.); (A.P.Z.); (S.E.N.); (L.V.G.); (E.A.M.); (N.T.K.)
| | - Varvara V. Avdeeva
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia; (A.S.K.); (A.P.Z.); (S.E.N.); (L.V.G.); (E.A.M.); (N.T.K.)
| | - Alexey S. Kubasov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia; (A.S.K.); (A.P.Z.); (S.E.N.); (L.V.G.); (E.A.M.); (N.T.K.)
| | - Andrey P. Zhdanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia; (A.S.K.); (A.P.Z.); (S.E.N.); (L.V.G.); (E.A.M.); (N.T.K.)
| | - Svetlana E. Nikiforova
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia; (A.S.K.); (A.P.Z.); (S.E.N.); (L.V.G.); (E.A.M.); (N.T.K.)
| | - Lyudmila V. Goeva
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia; (A.S.K.); (A.P.Z.); (S.E.N.); (L.V.G.); (E.A.M.); (N.T.K.)
| | - Konstantin Yu. Zhizhin
- Institute of Fine Chemical Technologies Named after M. V. Lomonosov, MIREA—Russian Technological University, Vernadskogo pr. 86, Moscow 119571, Russia; (E.Y.M.); (O.S.D.); (K.Y.Z.)
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia; (A.S.K.); (A.P.Z.); (S.E.N.); (L.V.G.); (E.A.M.); (N.T.K.)
| | - Elena A. Malinina
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia; (A.S.K.); (A.P.Z.); (S.E.N.); (L.V.G.); (E.A.M.); (N.T.K.)
| | - Nikolay T. Kuznetsov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia; (A.S.K.); (A.P.Z.); (S.E.N.); (L.V.G.); (E.A.M.); (N.T.K.)
| |
Collapse
|
3
|
Kayser AK, Wolczanski PT, Cundari TR, MacMillan SN, Bollmeyer MM. Benzimidazole-diamide (bida) Pincer Chromium Complexes: Structures and Reactivity. Inorg Chem 2023; 62:15450-15464. [PMID: 37707794 DOI: 10.1021/acs.inorgchem.3c01771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Serendipitous discovery of bida (i.e., N1-Ar-N2-((1-Ar-1-benzo[d]imidazol-2-yl)methyl)benzene-1,2-diamide; Ar = 2,6-iPr-C6H3), a potentially redox noninnocent, hemilabile pincer ligand with a methylene group that may facilitate proton/H atom reactivity, prompted its investigation. Chromium was chosen for study due to its multiple stable oxidation states. Disodium salt (bida)Na2(THF)n was prepared by thermal rearrangement of (dadi)Na2(THF)4 (i.e., (N,N'-di-2-(2,6-diisopropylphenylamine)phenylglyoxaldiimine)-Na2(THF)4). Salt metathesis of (bida)Na2(THF)n (generated in situ) with CrCl3(THF)3 or Cl3V═NAr (Ar = 2,6-iPr2C6H3) afforded (bida)CrCl(THF) (1-THF) and (bida)ClV═NAr, respectively. Substitutions provided (bida)CrCl(PMe2Ph) (1-PMe2Ph) and (bida)CrR(THF) (2-R, where R = Me, CH2CMe2Ph (Nph)). Oxidation of 1-THF with ArN3 (Ar = 2,6-iPr2C6H3) or AdN3 (Ad = 1-adamantyl) generated (bida)ClCr═NAr (3═NAr) and (bida)ClCr═NAd (3═NAd) and subsequent alkylation converted these to (bida)R'Cr═NR (R' = Me, R = Ad, Ar, 5═NR; R' = CH2CMe2Ph (Nph), R = Ad, Ar, 6═NR). In contrast, the addition of AdN3 to 2-Nph gave the insertion product (bida)Cr(κ2-N,N-ArN3Nph) (7). Addition of N-chlorosuccinimide to 1-THF produced (bia)CrCl2(THF) (8), where bia is the pincer derived via hydrogen atom loss from bida methylene. A similar HAT afforded (bia)ClCr(CNAr')2 (9, Ar' = 2,6-Me2C6H3) when 3═NAd was exposed to Ar'NC. An empirical equation of charge was applied to each bida species, whose metric parameters are unchanging despite formal oxidation state conversions from Cr(III) to Cr(V). Calculations and Mulliken spin density assessments reveal several situations in which antiferromagnetic (AF) coupling and admixtures of integer ground states (GSs) describe a complicated electronic structure.
Collapse
Affiliation(s)
- Ann K Kayser
- Department of Chemistry and Chemical Biology, Baker Laboratory Cornell University, Ithaca, New York 14853, United States
| | - Peter T Wolczanski
- Department of Chemistry and Chemical Biology, Baker Laboratory Cornell University, Ithaca, New York 14853, United States
| | - Thomas R Cundari
- Department of Chemistry, CASCam University of North Texas Denton, Denton, Texas 76201, United States
| | - Samantha N MacMillan
- Department of Chemistry and Chemical Biology, Baker Laboratory Cornell University, Ithaca, New York 14853, United States
| | | |
Collapse
|
4
|
Wang B, Seo CSG, Zhang C, Chu J, Szymczak NK. A Borane Lewis Acid in the Secondary Coordination Sphere of a Ni(II) Imido Imparts Distinct C-H Activation Selectivity. J Am Chem Soc 2022; 144:15793-15802. [PMID: 35973127 PMCID: PMC10276360 DOI: 10.1021/jacs.2c06662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Two borane-functionalized bidentate phosphine ligands that vary in tether length have been prepared to examine cooperative metal-substrate interactions. Ni(0) complexes react with aryl azides at low temperatures to form structurally unusual κ2-(N,N)-N3Ar adducts. Warming these adducts affords products of N2 extrusion and in one case, a Ni-imido compound that is capped by the appended borane. Reactions with 1-azidoadamantane (AdN3) provide a distinct outcome, where a proposed nickel imido intermediate activates the sp2 C-H bonds of arenes, even in the presence of benzylic C-H sites. Combined experimental and computational mechanistic studies demonstrate that the unique reactivity is a consequence of Lewis-acid-induced polarization of the Ni-NR bond, potentially providing a synthetic strategy for chemoselective reaction engineering.
Collapse
Affiliation(s)
- Baolu Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 10049, P. R. China
| | - Chris S. G. Seo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Cuijuan Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 10049, P. R. China
| | - Jiaxiang Chu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 10049, P. R. China
| | - Nathaniel K. Szymczak
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
5
|
G Jafari M, Fehn D, Reinholdt A, Hernández-Prieto C, Patel P, Gau MR, Carroll PJ, Krzystek J, Liu C, Ozarowski A, Telser J, Delferro M, Meyer K, Mindiola DJ. Tale of Three Molecular Nitrides: Mononuclear Vanadium (V) and (IV) Nitrides As Well As a Mixed-Valence Trivanadium Nitride Having a V 3N 4 Double-Diamond Core. J Am Chem Soc 2022; 144:10201-10219. [PMID: 35652694 DOI: 10.1021/jacs.2c00276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transmetallation of [VCl3(THF)3] and [TlTptBu,Me] afforded [(TptBu,Me)VCl2] (1, TptBu,Me = hydro-tris(3-tert-butyl-5-methylpyrazol-1-yl)borate), which was reduced with KC8 to form a C3v symmetric VII complex, [(TptBu,Me)VCl] (2). Complex 1 has a high-spin (S = 1) ground state and displays rhombic high-frequency and -field electron paramagnetic resonance (HFEPR) spectra, while complex 2 has an S = 3/2 4A2 ground state observable by conventional EPR spectroscopy. Complex 1 reacts with NaN3 to form the VV nitride-azide complex [(TptBu,Me)V≡N(N3)] (3). A likely VIII azide intermediate en route to 3, [(TptBu,Me)VCl(N3)] (4), was isolated by reacting 1 with N3SiMe3. Complex 4 is thermally stable but reacts with NaN3 to form 3, implying a bis-azide intermediate, [(TptBu,Me)V(N3)2] (A), leading to 3. Reduction of 3 with KC8 furnishes a trinuclear and mixed-valent nitride, [{(TptBu,Me)V}2(μ4-VN4)] (5), conforming to a Robin-Day class I description. Complex 5 features a central vanadium ion supported only by bridging nitride ligands. Contrary to 1, complex 2 reacts with NaN3 to produce an azide-bridged dimer, [{(TptBu,Me)V}2(1,3-μ2-N3)2] (6), with two antiferromagnetically coupled high-spin VII ions. Complex 5 could be independently produced along with [(κ2-TptBu,Me)2V] upon photolysis of 6 in arene solvents. The putative {VIV≡N} intermediate, [(TptBu,Me)V≡N] (B), was intercepted by photolyzing 6 in a coordinating solvent, such as tetrahydrofuran (THF), yielding [(TptBu,Me)V≡N(THF)] (B-THF). In arene solvents, B-THF expels THF to afford 5 and [(κ2-TptBu,Me)2V]. A more stable adduct (B-OPPh3) was prepared by reacting B-THF with OPPh3. These adducts of B are the first neutral and mononuclear VIV nitride complexes to be isolated.
Collapse
Affiliation(s)
- Mehrafshan G Jafari
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Dominik Fehn
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Anders Reinholdt
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Cristina Hernández-Prieto
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Prajay Patel
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Michael R Gau
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Patrick J Carroll
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - J Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Cong Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Joshua Telser
- Department of Biological, Physical and Health Sciences, Roosevelt University, Chicago, Illinois 60605, United States
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Karsten Meyer
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|