1
|
Xu R, Wang Z, Jin X, Li T, Lu Z, Yang Z, Kong K, Zhang Y, Wang Y, Liu Y, Pan Z, Hwang SJ, Fang J. NiN 4/FeN 4 dual sites engineered by Fe 5 clusters on porous flexible carbon fibers for promoting oxygen reduction and evolution. J Colloid Interface Sci 2025; 693:137620. [PMID: 40252579 DOI: 10.1016/j.jcis.2025.137620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/02/2025] [Accepted: 04/15/2025] [Indexed: 04/21/2025]
Abstract
Dual-atom catalysts (DACs) are promising bifunctional electrocatalysts for the oxygen reduction/evolution reaction (ORR/OER) because of their tunable electronic structures and multiple types of active metal sites. However, achieving high catalyst activity and long-term durability towards both the ORR and OER when used in zinc-air batteries (ZABs) remain challenging. Herein, a flexible porous carbon fiber catalyst embedded with atomically scattered NiN4/FeN4 dual sites and adjacent Fe5 nanoclusters (NiN4-Fe5-FeN4@PCF) was synthesized. The optimization of the local arrangement and electronic structure of the FeN4/NiN4 sites by the neighboring Fe nanoclusters conferred NiN4-Fe5-FeN4@PCF with excellent bifunctional ORR/OER activity and stability that were superior to those of DACs comprising only NiN4/FeN4 dual sites and commercialized Pt/C and RuO2 reference catalysts. A liquid ZAB with a NiN4-Fe5-FeN4@PCF cathode achieved outstanding cycling stability for over 900 h. The Fe5 clusters effectively induced geometric structure distortion and electron redistribution of the NiN4 and FeN4 sites, optimizing the interactions between the FeN4/NiN4 sites and oxygen intermediates; thus, the energy barriers for the potential-determining steps reduced. This study opens an emerging pathway for the synthesis of self-supporting atomic catalysts and provides in-depth insight into the synergistic effects between DACs and metal nanoclusters.
Collapse
Affiliation(s)
- RuoJie Xu
- College of Textile and Clothing Engineering, National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, PR China
| | - Zhe Wang
- College of Textile and Clothing Engineering, National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, PR China.
| | - Xiaoyan Jin
- Department of Applied Chemistry, University of Seoul, Seoul 02504, Republic of Korea
| | - Tong Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Zhe Lu
- College of Textile and Clothing Engineering, National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, PR China
| | - Zhenbei Yang
- College of Textile and Clothing Engineering, National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, PR China
| | - Kexin Kong
- College of Textile and Clothing Engineering, National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, PR China
| | - Yifan Zhang
- College of Textile and Clothing Engineering, National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, PR China
| | - Yong Wang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 Singapore
| | - Yipu Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, PR China.
| | - Zhijuan Pan
- College of Textile and Clothing Engineering, National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, PR China
| | - Seong-Ju Hwang
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Jian Fang
- College of Textile and Clothing Engineering, National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
2
|
Yang Z, Yang S, Tang Y, Wang G, Pang H, Yu F. Inhibiting demetalation of ZnNC via bimetallic CoZn alloy for an efficient and durable oxygen reduction reaction. J Colloid Interface Sci 2025; 689:137276. [PMID: 40068534 DOI: 10.1016/j.jcis.2025.137276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 03/26/2025]
Abstract
Inhibition of demetalation due to electrochemical dissolution of metal active centers is a major challenge for the real-world commercialization of transition metals and nitrogen co-doped carbon (MNC) material catalysts. This research utilized a microchannel reactor to synthesize zeolitic imidazolate framework-8@zeolitic imidazolate framework-67, resulting in a CoZn/ZnNC material produced through a core-shell pyrolysis strategy. Direct synergistic interaction of CoZn alloy nanoparticles and ZnNC improves the activity and durability of the oxygen reduction reaction. In proton-exchange membrane fuel cell tests, the CoZn/ZnNC achieved a peak power density of 380.1 mW/cm2. Furthermore, it demonstrated excellent stability in Zn-air battery charge/discharge cycles, lasting up to 480 h. Experimental tests and density functional theory calculations confirmed the presence of strong interactions between the CoZn alloy and ZnNC, which could inhibit demetalation by strengthening the ZnN bond. Furthermore, a moderate rise in the d-band center optimized the adsorption and desorption capacities of oxygen-containing intermediates (*O, *OH, and *OOH). Overall, this research presents a new strategy based on interactions between alloy nanoparticles and single atoms.
Collapse
Affiliation(s)
- Zhen Yang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Shouhua Yang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Ying Tang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Gang Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| | - Feng Yu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| |
Collapse
|
3
|
Ma C, Zhu B, Wang Y, Ma S, Shi J, Zhang X, Song Y. Porous carbon nanosheets integrated with graphene-wrapped CoO and CoNx as efficient bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. J Colloid Interface Sci 2025; 685:793-803. [PMID: 39864389 DOI: 10.1016/j.jcis.2025.01.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/29/2024] [Accepted: 01/19/2025] [Indexed: 01/28/2025]
Abstract
The development of advanced bifunctional oxygen electrocatalysts for the oxygen reduction reactions (ORR) and oxygen evolution reactions (OER) is crucial for the practical application of zinc-air batteries (ZABs). Herein, porous carbon nanosheets integrated with abundant graphene-wrapped CoO and CoNx (CoO/CoNx-C) were successfully fabricated through a simple one-step pyrolysis. With convenient porous channel and large accessible surface, abundant CoO/CoNx species and graphene wrapping structure, CoO/CoNx-C exhibited a half-wave potential of 0.844 V in ORR and an overpotential of 384 mV (@10 mA cm-2) in OER in the alkaline environment and presented a negative shift of 9 mV in ORR after 8000 cycles and positive shift of 19 mV in OER after 2000 cycles. Electrochemical acid-washing and comparison analysis revealed that the ORR activity mainly originated from CoO nanoparticles, while CoNx species were greatly responsible for OER catalysis. Furthermore, the as-prepared CoO/CoNx-C endowed the rechargeable liquid and solid ZABs with superior power density (161 mW cm-2 for liquid ZABs and 137 mW cm-2 for solid ZABs) and long-term stability (stable in 1000 h charge/discharge tests) compared to commercial catalysts. This work provides a feasible strategy for cobalt/carbon hybrid materials as advanced bifunctional electrocatalysts for ZABs.
Collapse
Affiliation(s)
- Chang Ma
- Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage Technology, School of Materials Science and Engineering, Tiangong University, Tianjin 300387 China.
| | - Binji Zhu
- Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage Technology, School of Materials Science and Engineering, Tiangong University, Tianjin 300387 China
| | - Yue Wang
- Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage Technology, School of Materials Science and Engineering, Tiangong University, Tianjin 300387 China
| | - Shuwen Ma
- Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage Technology, School of Materials Science and Engineering, Tiangong University, Tianjin 300387 China
| | - Jingli Shi
- Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage Technology, School of Materials Science and Engineering, Tiangong University, Tianjin 300387 China
| | - Xiangwu Zhang
- Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27695-8301, USA
| | - Yan Song
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China.
| |
Collapse
|
4
|
Lu Y, Li Z, Cheng H, Wang M, Tian Z. d-Band Center Regulation Facilitated by Asymmetrical Ligand in the Atomically Dispersed Iron Site toward Promoting Oxygen Electrocatalysis Activities. ACS APPLIED MATERIALS & INTERFACES 2025; 17:25299-25311. [PMID: 40260677 DOI: 10.1021/acsami.5c01285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
The prosperity of aqueous rechargeable Zn-air batteries is hindered by the discontent performance of the oxygen electrocatalyst in the cathode. An important catalyst for oxygen electrocatalyst is an atomically dispersed iron atom embedded in the nitrogen-doped carbon (Fe-NC) material. However, the unsuitable binding energy between the center Fe atom and the reaction intermediate leads to the sluggish oxygen electrocatalyst reaction rate. The regulation of the electron structure of the Fe atom by adjusting the coordinate structure is one effective solution. Here, we prose the substitution of nitrogen atom by sulfur atom, who has weak electronegativity and can donor electron to Fe atom, so the d-band center of Fe atom is elevated. Thus, the Fe-NS active site facilitates the fast *OOH adsorption and the *OH desorption, compared with counterpart Fe-N active site. As a result, the oxygen electrocatalyst reaction kinetics is accelerated. The Fe-NSC catalyst has good compatibility and performance in aqueous rechargeable Zn-air batteries, affording stable charge/discharge process for 1000 h/3000 cycles with a high voltage tolerance (0.74-0.96 V voltage gap) under 10 mA cm-2. This work brings referential sights to the modification of electron structure of the center atom in the M-N-C-type catalyst.
Collapse
Affiliation(s)
- Yao Lu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zheng Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Hao Cheng
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Mengran Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zhongliang Tian
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| |
Collapse
|
5
|
Liu T, Lei C, Yang W, Wang H, Ma W, Li J, Liang X. Solvent Chemistry Manipulated Iodine Redox Thermodynamics For Durable Iodine Batteries. Angew Chem Int Ed Engl 2025; 64:e202422163. [PMID: 39960308 DOI: 10.1002/anie.202422163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/17/2025] [Indexed: 03/01/2025]
Abstract
The diverse valences of iodine enable it with multi-electron transfer capability for energy dense batteries. However, previous studies indicate that the primary I-/I2 redox couple exhibits distinct behaviors depending on electrolyte choice, with the mechanistic basis of aqueous versus nonaqueous systems remaining unclear. Here, we elucidated the solvent effect on iodine redox, particularly focusing on polyiodide formation and their molecular interaction correlations. We validate that a thermodynamically one-step conversion reaction (I2 ↔ I-) occurs in the protic solvents, while it is a two-step transformation (I2 ↔ I3 - ↔ I-) in aprotic solvents. This distinction arises from strong electron-donating properties in aprotic solvents that facilitate charge transfer with iodine, promoting complexation with iodide as solvent⋅I3 - species. Conversely, protic solvents form additional hydrogen bonds with iodine, alleviating polarization and reducing interaction with iodide. Furthermore, to address the limitations of single protic electrolytes - characterized by sluggish dissolution-precipitation and slow ion migration rates - we propose a hybrid electrolyte combining water and ethylene glycol. These hybrids enhance iodine redox kinetics, inhibits I3 - generation, and modifies the Zn2+ solvation structure to mitigate zinc anode corrosion and dendrite. The Zn-I2 batteries demonstrates exceptional long-term cycling stability in a wide temperature range, highlighting its potential for practical applications.
Collapse
Affiliation(s)
- Tingting Liu
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Joint International Research Laboratory of Energy Electrochemistry, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Chengjun Lei
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Joint International Research Laboratory of Energy Electrochemistry, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Wei Yang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Joint International Research Laboratory of Energy Electrochemistry, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Huijian Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Joint International Research Laboratory of Energy Electrochemistry, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Wenjiao Ma
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Joint International Research Laboratory of Energy Electrochemistry, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jinye Li
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Joint International Research Laboratory of Energy Electrochemistry, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xiao Liang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Joint International Research Laboratory of Energy Electrochemistry, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
6
|
Wang Y, Gan R, Shao X, Dai B, Ma L, Yang J, Shi J, Zhang X, Ma C, Jin Z. Co/CoO hetero-nanoparticles incorporated into lignin-derived carbon nanofibers as a self-supported bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. J Colloid Interface Sci 2025; 682:934-945. [PMID: 39657415 DOI: 10.1016/j.jcis.2024.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
The large-scale application of rechargeable Zn-air batteries (ZABs) necessitates the development of high-efficiency and cost-effective bifunctional electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Herein, the density functional theory calculations were performed to reveal the charge redistribution induced by the Co/CoO heterojunction integrating with N-doped carbon, which could optimize the d-band center, thereby accelerating O2 transformed into OOH* in the ORR and the conversion of O* into OOH* in OER. Guided by theoretical calculations, Co/CoO hetero-nanoparticles-decorated lignin-derived N-doped porous carbon nanofibers (Co-LCFs-800) were synthesized to use as an advanced self-supported bifunctional oxygen electrocatalyst. Consequently, Co-LCFs-800 shows a half-wave potential of 0.834 V in ORR and an overpotential of 354 mV at 10 mA cm-2 in OER. The Co-LCFs-800-based liquid ZABs afford an admirable performance with a large specific capacity of 780.8 mAh g-1, and the Co-LCFs-800-based solid-state ZABs exhibit satisfactory mechanical flexibility and cycling stability. The results suggest that the integration of hetero-nanoparticles into carbon nanofibers holds promise for oxygen cathode in ZABs.
Collapse
Affiliation(s)
- Yali Wang
- College of Science, Hebei North University, Photovoltaic Conductive Film Engineering Research Center of Hebei Province, Zhangjiakou 075000, PR China
| | - Ruihui Gan
- Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage Technology, Tiangong University, Tianjin 300387, PR China
| | - Xiaodong Shao
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Binting Dai
- College of Science, Hebei North University, Photovoltaic Conductive Film Engineering Research Center of Hebei Province, Zhangjiakou 075000, PR China
| | - Lin Ma
- College of Science, Hebei North University, Photovoltaic Conductive Film Engineering Research Center of Hebei Province, Zhangjiakou 075000, PR China
| | - Jinzheng Yang
- College of Science, Hebei North University, Photovoltaic Conductive Film Engineering Research Center of Hebei Province, Zhangjiakou 075000, PR China
| | - Jingli Shi
- Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage Technology, Tiangong University, Tianjin 300387, PR China
| | - Xiangwu Zhang
- Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27695-8301, United States
| | - Chang Ma
- Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage Technology, Tiangong University, Tianjin 300387, PR China.
| | - Zhanshuang Jin
- College of Science, Hebei North University, Photovoltaic Conductive Film Engineering Research Center of Hebei Province, Zhangjiakou 075000, PR China.
| |
Collapse
|
7
|
Gao N, Xiao J, Wang H, Li X, Fan J, Yu X, Yang X. Structural characterization of cage clusters assembled borophene and implication for cathode electrocatalysts in Li-O 2 batteries. J Colloid Interface Sci 2025; 682:22-30. [PMID: 39612760 DOI: 10.1016/j.jcis.2024.11.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
The successful fabrication of quasi-freestanding bilayer borophene in experiments, combined with its superior metallic character, has propelled it to a rising star among two-dimensional materials, making it highly promising for applications in micro-electronic devices. Using first-principles calculations, we comprehensively explore and characterize cage cluster assembled borophenes through various methods for experimental references. The simulated scanning tunneling microscope (STM) images under diverse bias voltages exhibit distinct morphologies and closely associated with the partial densities of states (PDOS) of the surface boron atoms. High-resolution and large-scale simulated transmission electron microscope (TEM) images are investigated to detect the internal crystal structures, facilitating better identification of non-monolayer borophenes. The partial densities of states, electronic localization functions and Mulliken bond populations have been calculated to analyze the differences of morphology in STM and TEM images. Furthermore, simulated X-ray diffraction (XRD), Raman, and infrared (IR) spectra are characterized to further assist in distinguishing the phases of borophene. In light of ultrahigh stability and excellent metallic character, cluster assembled borophene of P3¯m1 symmetry act as cathode materials of Li-O2 battery with lower overpotential in oxygen evolution reaction (OER) than oxygen reduction reaction (ORR) processes. The overpotential is closely related to the adsorption strength of LiO2 and Li2O2 intermediates on surface of boron sheets. These theoretical results offer crucial guidance for the experimental identification of borophenes and suggest that the new type of cluster assembled systems might be suitable for the cathode materials of future Li-O2 batteries.
Collapse
Affiliation(s)
- Nan Gao
- School of Materials Science and Engineering, Taizhou University, Taizhou 318000, China
| | - Jingyi Xiao
- Instrumental Analysis Center, Dalian University of Technology, Dalian 116024, China
| | - Haibo Wang
- School of Materials Science and Engineering, Taizhou University, Taizhou 318000, China
| | - Xiaojie Li
- School of Materials Science and Engineering, Taizhou University, Taizhou 318000, China
| | - Junyu Fan
- Department of Physics, Taiyuan Normal University, Jinzhong 030619,China
| | - Xueke Yu
- College of Physics Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaowei Yang
- Key Laboratory of Materials Modification By Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China.
| |
Collapse
|
8
|
Wang S, Li M, Tang H, Zhang H. Interstitial Manganese-Tuned Nickel-Iron Diselenide Anode for Efficient and Durable Anion Exchange Membrane Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411397. [PMID: 39895233 DOI: 10.1002/smll.202411397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/18/2025] [Indexed: 02/04/2025]
Abstract
Anion exchange membrane water electrolysis (AEMWE) employing Ir/Ru-free anodes emerges as a bright prospect for green hydrogen society. Here, a Ni0.8Fe0.2Mn0.1Se2 nanosheet electrocatalyst is reported, in situ grown on stainless-steel paper, as an efficient and durable self-supporting AEMWE anode for oxygen evolution reaction (OER). The interstitial [MnSe4] tetrahedra elevate the Fermi level and narrows the band gap of the electrocatalyst, thereby expediting electrode reaction kinetics and increasing the electrical conductivity. In addition, the interstitial Mn atoms attenuate the electron density of Ni and Fe and motivate phase transition to actual active (Mn, Fe)-doped γ-NiOOH species. The downward d-band center of Ni active center facilitates the rate-limiting *OOH desorption step, refreshing the active center, and reducing the free energy barriers for OER. Accordingly, the Ni0.8Fe0.2Mn0.1Se2 electrode achieves OER overpotentials of 149 and 232 mV at 10 and 100 mA cm-2 in 1 m KOH. The AEMWE cell incorporating Ni0.8Fe0.2Mn0.1Se2 anode demonstrates high performance (1.0 A cm-2 at 1.68 Vcell) and durability (at 1 A cm-2 for 300 h), surpassing most AEMWE cells that use NiFe-based anodes. This work highlights the potential of noble-metal-free anodes for efficient and durable AEMWE.
Collapse
Affiliation(s)
- Shihao Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070, China
- National Energy Key Laboratory for New Hydrogen-Ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan, Guangdong, 528200, China
- International School of Materials Science and Engineering (School of Materials and Microelectronics), Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Ming Li
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, Hubei, 430062, China
| | - Haolin Tang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070, China
- National Energy Key Laboratory for New Hydrogen-Ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan, Guangdong, 528200, China
- Hubei Key Laboratory of Fuel Cell, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Haining Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070, China
- National Energy Key Laboratory for New Hydrogen-Ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan, Guangdong, 528200, China
- Hubei Key Laboratory of Fuel Cell, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| |
Collapse
|
9
|
Li Y, Xu J, Lan F, Wang Y, Jiang H, Wu X, Huang Y, Li R, Jiang Q, Gao D, Zhu P, Zhao S, Zhao Y, Wang F, Zhang L, Zhang L, Zhang R. Breaking the Stability-Activity Trade-off of Oxygen Electrocatalyst by Gallium Bilateral-Regulation for High-Performance Zinc-Air Batteries. Angew Chem Int Ed Engl 2025; 64:e202420481. [PMID: 39714358 DOI: 10.1002/anie.202420481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
The rational design of metal oxide catalysts with enhanced oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) performance is crucial for the practical application of aqueous rechargeable zinc-air batteries (a-r-ZABs). Precisely regulating the electronic environment of metal-oxygen (M-O) active species is critical yet challenging for improving their activity and stability toward OER and ORR. Herein, we propose an atomic-level bilateral regulation strategy by introducing atomically dispersed Ga for continuously tuning the electronic environment of Ru-O and Mn-O in the Ga/MnRuO2 catalyst. The Ga/MnRuO2 catalyst breaks the stability-activity restriction, showing remarkable bifunctional performance with a low potential gap (ΔE) of 0.605 V and super durability with negligible performance degradation (300,000 ORR cycles or 30,000 OER cycles). The theoretical calculations revealed that the strong coupling electron interactions between Ga and Ru-O/Mn-O tuned the valence state distribution of the metal center, effectively modulating the adsorption behavior of *O/*OH, thus optimizing the reaction pathways and reducing the reaction barriers. The a-r-ZABs based on Ga/MnRuO2 catalysts exhibited excellent performance with a wide working temperature range of -20-60 °C and a long lifetime of 2308 hours (i.e., 13,848 cycles) under a current density of 5 mA cm-2 at -20 °C.
Collapse
Affiliation(s)
- Yunrui Li
- Ordos Laboratory, Ordos, Inner Mongolia Autonomous Region 010020, China
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Gongwuguan Building, Tsinghua University, Beijing, 100084, China
| | - Jiaqi Xu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Gongwuguan Building, Tsinghua University, Beijing, 100084, China
| | - Fan Lan
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Gongwuguan Building, Tsinghua University, Beijing, 100084, China
| | - Yao Wang
- School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, China
| | - Hairong Jiang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Gongwuguan Building, Tsinghua University, Beijing, 100084, China
| | - Xueke Wu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Gongwuguan Building, Tsinghua University, Beijing, 100084, China
| | - Ya Huang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Gongwuguan Building, Tsinghua University, Beijing, 100084, China
| | - Run Li
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Gongwuguan Building, Tsinghua University, Beijing, 100084, China
| | - Qinyuan Jiang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Gongwuguan Building, Tsinghua University, Beijing, 100084, China
| | - Di Gao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Gongwuguan Building, Tsinghua University, Beijing, 100084, China
| | - Ping Zhu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Gongwuguan Building, Tsinghua University, Beijing, 100084, China
| | - Siming Zhao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Gongwuguan Building, Tsinghua University, Beijing, 100084, China
| | - Yanlong Zhao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Gongwuguan Building, Tsinghua University, Beijing, 100084, China
| | - Fei Wang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Gongwuguan Building, Tsinghua University, Beijing, 100084, China
| | - Libo Zhang
- Sinopec Beijing Research Institute of Chemical Industry, 10013, Beijing, China
| | - Longgui Zhang
- Sinopec Beijing Research Institute of Chemical Industry, 10013, Beijing, China
| | - Rufan Zhang
- Ordos Laboratory, Ordos, Inner Mongolia Autonomous Region 010020, China
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Gongwuguan Building, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
10
|
Li Y, Xu J, Lan F, Wang Y, Jiang H, Zhu P, Wu X, Huang Y, Li R, Jiang Q, Zhao Y, Liu R, Zhang L, Zhang R. Atomic-Level Tin Regulation for High-Performance Zinc-Air Batteries. J Am Chem Soc 2025; 147:4833-4843. [PMID: 39883881 DOI: 10.1021/jacs.4c12601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
The trade-off between the performances of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) presents a challenge in designing high-performance aqueous rechargeable zinc-air batteries (a-r-ZABs) due to sluggish kinetics and differing reaction requirements. Accurate control of the atomic and electronic structures is crucial for the rational design of efficient bifunctional oxygen electrocatalysts. Herein, we designed a Sn-Co/RuO2 trimetallic oxide utilizing dual-active sites and tin (Sn) regulation strategy by dispersing Co (for ORR) and auxiliary Sn into the near-surface and surface of RuO2 (for OER) to enhance both ORR and OER performances. Both theoretical calculations and advanced dynamic monitoring experiments revealed that the auxiliary Sn effectively regulated the atomic/electronic environment of Ru and Co dual-active sites, which optimized the *OOH/*OH adsorption behavior and promoted the release of the final products, thus breaking the reaction limits. Therefore, the as-designed Sn-Co/RuO2 catalysts exhibited superb bifunctional performance with an oxygen potential difference (ΔE) of 0.628 V and negligible activity degradation after 200,000 (ORR) or 20,000 (OER) CV cycles. The a-r-ZABs based on the Sn-Co/RuO2 catalyst exhibited a higher performance at a wide temperature range of -30 to 65 °C. They demonstrated an ultralong lifespan of 138 days (20,000 cycles) at 5 mA cm-2, 39.7 times higher than that of Pt/C + IrO2 coupled catalysts at a low temperature of -20 °C. Additionally, they maintained an initial power density of 85.8% after long-term tests, significantly outperforming previously reported catalysts. More importantly, the a-r-ZABs also showed excellent stability of 766.45 h (about 4598 cycles) at a high current density of 10 mA cm-2.
Collapse
Affiliation(s)
- Yunrui Li
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Ordos Laboratory, Ordos, Inner Mongolia Autonomous Region, 010020, China
| | - Jiaqi Xu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Fan Lan
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yao Wang
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Hairong Jiang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Ping Zhu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xueke Wu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Ya Huang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Run Li
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Qinyuan Jiang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yanlong Zhao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Ruina Liu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Longgui Zhang
- Sinopec Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Rufan Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Ordos Laboratory, Ordos, Inner Mongolia Autonomous Region, 010020, China
| |
Collapse
|
11
|
Shi X, Sun P, Wang X, Xiang W, Wei Y, Lv X, Sun X. High-performance rechargeable zinc-air batteries enabled by cobalt iron anchored on nitrogen-doped carbon matrix as bifunctional electrocatalyst. J Colloid Interface Sci 2025; 679:1029-1039. [PMID: 39489131 DOI: 10.1016/j.jcis.2024.10.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Developing efficient bifunctional oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) electrocatalysts is potential ways for achieving high rechargeable zinc-air (Zn-air) battery performance. Herein, we report an iron (II) acetate-assisted strategy to synthesize Co3Fe7-NC-OAc catalyst with cobalt iron (Co3Fe7) alloy anchored on nitrogen-doped carbon (NC) matrix, which can serve as efficient ORR/OER bifunctional electrocatalysts for rechargeable Zn-air batteries. Apart from alloying with Co to form ORR/OER active Co3Fe7 nanoparticles, the incorporation of iron (II) acetate has expanded the pore size inside the Co3Fe7-NC-OAc catalyst to serve as gas transfer channels, and has induced synergetic electronic coupling between Co3Fe7 nanoparticles and NC matrix for boosting catalytic activity. Therefore, Co3Fe7-NC-OAc exhibits favorable ORR activity with a most positive half-wave potential of 0.90 V vs. RHE, fast ORR kinetics with a highest kinetic current density of 57.4 mA cm-2 at 0.85 V vs. RHE, and fast O2 diffusion and transport that enables smaller mass transport overpotential at high current density up to 800 mA cm-2. Additionally, Co3Fe7-NC-OAc can catalyze OER with low overpotential of 310 mV at 10 mA cm-2. When employed as air electrode for Zn-air batteries, Co3Fe7-NC-OAc achieve high peak power densities of 193 mW cm-2 and 587 mW cm-2 in liquid and solid-state Zn-air batteries. The liquid battery also exhibits high specific capacity and remarkable cycling performance. This work opens up a new opportunity for developing highly efficient bifunctional electrocatalysts for Zn-air battery applications.
Collapse
Affiliation(s)
- Xianyu Shi
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
| | - Panpan Sun
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China; Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China.
| | - Xin Wang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
| | - Wang Xiang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
| | - Yongan Wei
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
| | - Xiaowei Lv
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China; Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| | - Xiaohua Sun
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China; Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China.
| |
Collapse
|
12
|
Li A, Tan Y, Wang Y, Shen S, Jia R, Cheng Y, Cong C, Zhang Y, Guan C, Cheng C. A General Sol-Gel Route to Fabricate Large-Area Highly-Ordered Metal Oxide Arrays Toward High-Performance Zinc-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409620. [PMID: 39654338 DOI: 10.1002/smll.202409620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/18/2024] [Indexed: 02/06/2025]
Abstract
A universal method is demonstrated for the fabrication of large-area highly ordered microporous arrayed metal oxides based on a high-quality self-assembly opal template combined with a sucrose-assisted sol-gel technique. Sucrose as a chelating agent optimizes precursor infiltration and regulates both oxide formation and the melting process of polystyrene templates, thus preventing crack formation during infiltration and calcination. As a result, over 20 metal element-based 3DOM oxides with arbitrary compositions are successfully prepared. Therein, a champion electrocatalyst RuCoOx-IO exhibits outstanding bifunctional oxygen activity with an ultra-narrow oxygen potential gap of 0.598 V, and the Zn-air batteries based on RuCoOx-IO air cathode operates for 1380 h under fast-charging cycling (50 mA cm-2), and reaches a high energy efficiency of 69.5% in discharge-charge cycling. In situ spectroscopy characterizations and density functional theory reveal that the rational construction of Ru─O─Co heterointerface with decoupled multi-active sites and mutual coupling of RuO2 and Co3O4 facilitate interfacial electron transfer, leading to an optimized d-band centers of active Ru/Co and a weakened spin interaction between oxygen intermediates and Co sites, so as to enhance the adsorption ability of *OOH on interfacial Co sites for fast ORR kinetics while favoring the desorption of oxygen intermediates on interfacial Ru during OER.
Collapse
Affiliation(s)
- Aoshuang Li
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yan Tan
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yijie Wang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Shuwen Shen
- School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Runlong Jia
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yiwen Cheng
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Chunxiao Cong
- School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Yuzhong Zhang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Cao Guan
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Chuanwei Cheng
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
13
|
Ye S, Ou Z, Chen W, Wu S, Dong X, Zhang J, Zheng L, Chen W, Xu Y, Li Y, Ren X, Ouyang X, Yan X, Liu J, Zhang Q. Modulating the Oxygen Evolution Reaction of Single-Crystal Cobalt Carbonate Hydroxide via Surface Fe Doping and Facet Dependence. J Phys Chem Lett 2025; 16:1073-1080. [PMID: 39842038 DOI: 10.1021/acs.jpclett.4c03018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The oxygen evolution reaction (OER) is a critical half-reaction in water splitting and metal-air cells. The sensitivity of the OER to the composition and structure of the electrocatalyst presents a significant challenge in elucidating the structure-property relationship. In this study, highly stable single-crystal cobalt carbonate hydroxide [Co2(OH)2CO3, CoCH] was used as a model to investigate the correlations among structure, composition, and reactivity. Single-crystal CoCH nanowires (denoted as CoCH NWs) and Fe-doped CoCH nanowires (denoted as Fe-CoCH NWs) with an exposed (210) facet and Fe-doped CoCH nanosheets (denoted as Fe-CoCH NSs) with an exposed (2-13) facet were synthesized using electrochemical and one-step hydrothermal strategies, respectively. Their OER activity decreased in the following order: Fe-CoCH NWs > Fe-CoCH NSs > CoCH NWs. Theoretical investigation suggested that the doped Fe sites serve as active sites, and the crystal-facet dependence can finely adjust the 3d configuration of Fe sites, resulting in the optimal adsorption strengths and energy barriers for potential-determining steps on the (210) facet of CoCH. This renders the as-prepared Fe-CoCH NWs as some of the most promising Co-based OER catalysts.
Collapse
Affiliation(s)
- Shenghua Ye
- State Key Laboratory of Nuclear Physics and Technology and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871, China
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- Shenzhen Eigen-Equation Graphene Technology Company Ltd., Shenzhen 518000, P. R. China
| | - Zhijun Ou
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Weibin Chen
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Shuyuan Wu
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xiao Dong
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Jie Zhang
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Lirong Zheng
- Institute of High Energy Physics Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenda Chen
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yuan Xu
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yongliang Li
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xiangzhong Ren
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xiaoping Ouyang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, P. R. China
| | - Xueqing Yan
- State Key Laboratory of Nuclear Physics and Technology and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871, China
| | - Jianhong Liu
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- Shenzhen Eigen-Equation Graphene Technology Company Ltd., Shenzhen 518000, P. R. China
| | - Qianling Zhang
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
14
|
Li Q, Zhao Z, Wang T, Adeli M, Xu X, Luo X, Cheng C. Upgrading the Bioinspired Iron-Polyporphyrin Structures by Abiological Metals Toward New-Generation Reactive Oxygen Biocatalysts. NANO LETTERS 2025; 25:1404-1413. [PMID: 39727164 DOI: 10.1021/acs.nanolett.4c05103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Developing artificial enzymes based on organic molecules or polymers for reactive oxygen biocatalysis has broad applicability. Here, inspired by heme-based enzyme systems, we construct the abiological iron group metal-based polyporphyrin (Ru/Os-coordinated porphyrin-based biocatalyst, Ru/Os-PorBC) to serve as a new generation of efficient and versatile reactive oxygen species (ROS)-related biocatalyst. Due to the structural benefits, including excellent electron configuration, appropriate bandgap, and optimized adsorption and activation of reaction intermediates, Ru/Os-PorBC shows unparalleled ROS-production activities regarding maximum reaction rate and turnover numbers, which also demonstrates superior pH and temperature adaptability compared to natural enzymes. Impressively, the Os-PorBC manifests the most efficacious ROS-production capabilities, surpassing not only Ru/Fe-PorBC but also the existing state-of-the-art ROS-related biocatalyst. Our findings provide a pivotal direction for developing next-generation polyporphyrin-based biocatalysts, setting the stage for a new era of upgrading the artificial metalloenzymes by abiological metals.
Collapse
Affiliation(s)
- Qian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhenyang Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Ting Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Mohsen Adeli
- Institute of Chemistry and Biochemistry, Freie Universitat Berlin, Berlin 14195, Germany
- Department of Organic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad 68137-17133, Iran
| | - Xiaohui Xu
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Department of Endodontics, State Key Laboratory of Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
15
|
Kharabe GP, Verma T, Barik S, Urkude RR, Ayasha N, Ghosh B, Krishnamurty S, Kurungot S. Hydrogel Electrolyte-Mediated In Situ Zn-Anode Modification and the Ru-RuO 2/NGr-Coated Cathode for High-Performance Solid-State Rechargeable Zn-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3188-3204. [PMID: 39752228 DOI: 10.1021/acsami.4c14231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
This work aims to deal with the challenges associated with designing complementary bifunctional electrocatalysts and a separator/membrane that enables rechargeable zinc-air batteries (RZABs) with nearly solid-state operability. This solid-state RZAB was accomplished by integrating a bifunctional electrocatalyst based on Ru-RuO2 interface nanoparticles supported on nitrogen-doped (N-doped) graphene (Ru-RuO2/NGr) and a dual-doped poly(acrylic acid) hydrogel (d-PAA) electrolyte soaked in KOH with sodium stannate additive. The catalyst shows enhanced activity and stability toward the two oxygen reactions, i.e., oxygen reduction and evolution reactions (ORR and OER), with a very low potential difference (ΔE) of 0.64 V. The computational insights bring out the electronic factors contributing to the enhanced catalytic activity of Ru-RuO2/NGr based on the charge density difference (CDD) between the interfaces. The disadvantages of the existing solid-state RZABs, such as their limited lifespan brought on by passivation, dendritic growth, corrosion, and shape change, have also been taken into account. The introduction of the stannate additive to the electrolyte induced an in situ Zn-anode modification, which subsequently improved the interfacial stability of the ZABs and, hence, the battery life cycles. The experimental observations reveal that, during the charging process, the Sn nanoparticles enable the homogeneous Zn deposition on the surface of the anode. Thus, the in situ Zn-anode surface modification assisted in achieving a high-rate cycle capability, viz., the homemade catalyst-based system exhibited continuous charge-discharge cycles for 20 h at a current density of 2.0 mA cm-2, with each cycle lasting for 5 min.
Collapse
Affiliation(s)
- Geeta Pandurang Kharabe
- Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Tushar Verma
- Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sidharth Barik
- Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajashri R Urkude
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Nadeema Ayasha
- Materials and Chemistry, VITO-Flemish Institute for Technological Research, Boeretang 200, 2400 Mol, Belgium
| | - Biplab Ghosh
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Sailaja Krishnamurty
- Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sreekumar Kurungot
- Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
16
|
Shen Y, Yan F, Yang H, Xu J, Geng B, Liu L, Zhu C, Zhang X, Chen Y. Encapsulating CoNi nanoparticles into nitrogen-doped carbon nanotube arrays as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. J Colloid Interface Sci 2025; 677:842-852. [PMID: 39126802 DOI: 10.1016/j.jcis.2024.07.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024]
Abstract
The high theoretical specific energy and environmental friendliness of zinc-air batteries (ZABs) have garnered significant attention. However, the practical application of ZABs requires overcoming the sluggish kinetics associated with oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Herein, 3D self-supported nitrogen-doped carbon nanotubes (N-CNTs) arrays encapsulated by CoNi nanoparticles on carbon fiber cloth (CoNi@N-CNTs/CFC) are synthesized as bifunctional catalysts for OER and ORR. The 3D interconnected N-CNTs arrays not only improve the electrical conductivity, the permeation and gas escape capabilities of the electrode, but also enhance the corrosion resistance of CoNi metals. DFT calculations reveal that the co-existence of Co and Ni synergistically reduces the energy barrier for OOH conversion to OH, thereby optimizing the Gibbs free energy of the catalysts. Additionally, analysis of the change in energy barrier during the rate-determining step suggests that the primary catalytic active center is Ni site for OER. As a result, CoNi@N-CNTs/CFC exhibits superior catalytic activity with an overpotential of 240 mV at 10 mA cm-2 toward OER, and the onset potential of 0.92 V for ORR. Moreover, utilization of CoNi@N-CNTs/CFC in liquid and solid-state ZABs exhibited exceptional stability, manifesting a consistent cycling operation lasting for 100 and 15 h, respectively.
Collapse
Affiliation(s)
- Yu Shen
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China; Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
| | - Feng Yan
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China; Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Huan Yang
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China; Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jia Xu
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Bo Geng
- Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Lina Liu
- Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Chunling Zhu
- Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Xitian Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, and School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
| | - Yujin Chen
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China; Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China; Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| |
Collapse
|
17
|
Yang Z, Lai F, Mao Q, Liu C, Peng S, Liu X, Zhang T. Breaking the Mutual-Constraint of Bifunctional Oxygen Electrocatalysis via Direct O─O Coupling on High-Valence Ir Single-Atom on MnO x. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412950. [PMID: 39558778 DOI: 10.1002/adma.202412950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/27/2024] [Indexed: 11/20/2024]
Abstract
Insufficient bifunctional activity of electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is the major obstruction to the application of rechargeable metal-air batteries. The primary reason is the mutual constraint of ORR and OER mechanism, involving the same oxygen-containing intermediates and demonstrating the scaling limitations of the adsorption energies. Herein, it is reported a high-valence Ir single atom anchored on manganese oxide (IrSA-MnOx) bifunctional catalyst showing independent pathways for ORR and OER, i.e., associated 4e- pathway on high-valence Ir site for ORR and a novel chemical-activated concerted mechanism for OER, where a distinct spontaneous chemical activation process triggers direct O─O coupling. The IrSA-MnOx therefore delivers outstanding bifunctional activities with remarkably low potential difference (0.635 V) between OER potential at 10 mA cm-2 and ORR half-wave potential in alkaline solution. This work breaks the scaling limitations and provides a new avenue to design efficient and multifunctional electrocatalysts.
Collapse
Affiliation(s)
- Ziyi Yang
- Center of Materials Science and Optoelectronics Engineering, College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Fayuan Lai
- Center of Materials Science and Optoelectronics Engineering, College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Qianjiang Mao
- Center of Materials Science and Optoelectronics Engineering, College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Chong Liu
- Center of Materials Science and Optoelectronics Engineering, College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing City, Jiangsu Province, 211106, China
| | - Xiangfeng Liu
- Center of Materials Science and Optoelectronics Engineering, College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Tianran Zhang
- Center of Materials Science and Optoelectronics Engineering, College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City, Shandong Province, 256606, China
| |
Collapse
|
18
|
Liu M, Chen X, Li S, Ni C, Chen Y, Su H. Dynamic-Cycling Zinc Sites Promote Ruthenium Oxide for Sub-Ampere Electrochemical Water Oxidation. NANO LETTERS 2024; 24:16055-16063. [PMID: 39641405 DOI: 10.1021/acs.nanolett.4c04485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Although iridium-based electrocatalysts are commonly regarded as the sole stable operating acidic oxygen evolution reaction (OER) catalysts in proton-exchange membrane water electrolysis (PEMWE) devices, their exorbitant cost and scarcity severely restrict their widespread application. Herein, we introduce a promising alternative to iridium: zinc-doped ruthenium dioxide (TE-Zn/RuO2), which exhibits remarkable and enduring activity for acidic OER. In situ characterizations elucidate that the dynamic cycling of zinc dopants serves as both electron acceptors and donors, facilitating the activation of Ru sites at low overpotentials while thwarting peroxidation at high overpotentials, thus concurrently achieving heightened activity and robust stability. Additionally, the incorporation of zinc induces weakened Ru-O covalency, thereby stabling *OOH intermediates and instigating a sustained adsorbate evolution mechanism, dramatically stabilizing the RuO2 lattice. Importantly, the TE-Zn/RuO2 catalyst as an anode exhibits good stability over 300 h at a water-splitting current of 500 mA cm-2 in the PEMWE device, underscoring its considerable promise for practical applications.
Collapse
Affiliation(s)
- Meihuan Liu
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, Hunan, China
| | - Xiaoxia Chen
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China
| | - Shiyu Li
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China
| | - Chudi Ni
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China
| | - Yiwen Chen
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China
| | - Hui Su
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China
| |
Collapse
|
19
|
Xu HM, Yue KH, Song LJ, Zhang HC, Zhu HR, Zhang ZJ, Li GR. The Asymmetrical Fe-O-Se Bonds in Fe 2O(SeO 3) 2 Boosting Bifunctional Oxygen Electrocatalytic Performance for Zinc-Air Battery. Angew Chem Int Ed Engl 2024; 63:e202412025. [PMID: 39228013 DOI: 10.1002/anie.202412025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/15/2024] [Accepted: 09/01/2024] [Indexed: 09/05/2024]
Abstract
Zinc-air batteries (ZABs) have the advantages of high energy density and rich zinc raw materials. It is a low-cost, green and sustainable energy storage device. At present, one of the key technologies that hinder the large-scale application of ZABs is the design and fabrication oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) bifunctional catalysts with excellent performance, especially the non-platinum-based catalysts. Here N-doped carbon-coated Fe-based selenium oxide catalyst Fe2O(SeO3)2/Fe3C@NC with high performance has been fabricated by a one-step pyrolysis and then the electrochemical oxidization. The experimental results confirmed that the existence of Fe-O-Se bonds in Fe2O(SeO3)2 crystal phase of Fe2O(SeO3)2/Fe3C@NC, and the Fe-O-Se bonds could obviously enhance ORR and OER catalytic performance of Fe2O(SeO3)2/Fe3C@NC. Density functional theoretical calculations (DFT) confirmed that the Fe2O(SeO3)2 in Fe2O(SeO3)2/Fe3C@NC had a higher d-band center of Fe atom and a lower p-orbital coupling degree with its own lattice O atom than Fe2O3, which leads to Fe site of Fe2O(SeO3)2 being more likely to adsorb external oxygen intermediates. The Fe-O-Se bonds in Fe2O(SeO3)2 results in the modification of coordination environment of Fe atoms and optimizes the adsorption energy of Fe site for oxygen intermediates. Compared with Fe2O3/Fe3C@NC, the Fe2O(SeO3)2/Fe3C@NC showed the obvious enhancements of ORR/OER catalytic activities with a half-wave potential of 0.91 V for ORR in 0.1 M KOH electrolyte and a low overpotential of 345 mV for OER at 10 mA cm-2 in a 1.0 M KOH electrolyte. The peak power density and specific capacity of Fe2O(SeO3)2/Fe3C@NC-based ZABs are higher than those of Pt/C+RuO2-ZABs. The above results demonstrate that the asymmetrical Fe-O-Se bonds in Fe2O(SeO3)2 plays a key role in improving the bifunctional catalytic activities of ORR/OER for ZABs.
Collapse
Affiliation(s)
- Hui-Min Xu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065
| | - Kai-Hang Yue
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 585 Heshuo Road, Shanghai, 200050, China
| | - Lian-Jie Song
- Materials and Equipment Engineering Branch of China 19th Metallurgical Group Corporation Limited, Chengdu, 610031, China
| | - Hong-Cheng Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065
| | - Hong-Rui Zhu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065
| | - Zhi-Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065
| | - Gao-Ren Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065
| |
Collapse
|
20
|
Ozgur C, Erdil T, Geyikci U, Yildiz I, Lokcu E, Toparli C. B-Site Doping Boosts the OER and ORR Performance of Double Perovskite Oxide as Air Cathode for Zinc-Air Batteries. Chemphyschem 2024; 25:e202400531. [PMID: 39024470 DOI: 10.1002/cphc.202400531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/20/2024]
Abstract
Double perovskite oxides are key players as oxygen evolution and oxygen reduction catalysts in alkaline media due to their tailorable electronic structures by doping. In this study, we synthesized B-site doped NdBaCoaFe2-aO5+δ (a=1.0, 1.4, 1.6, 1.8) electrocatalysts, systematically probed their bifunctionality and assessed their performance in zinc-air batteries as air cathodes. X-ray photoelectron spectroscopy analysis reveals a correlation between iron reduction and increased oxygen vacancy content, influencing electrocatalyst bifunctionality by lowering the work function. The electrocatalyst with highest cobalt content, NdBaCo1.8Fe0.2O5+δ exhibited a bifunctionality value of 0.95 V, outperforming other synthesized electrocatalysts. Remarkably, NdBaCo1.8Fe0.2O5+δ, demonstrated facilitated charge transfer rate in oxygen evolution reaction with four-electron oxygen reduction reaction process. As an air cathode in a zinc-air battery, NdBaCo1.8Fe0.2O5+δ demonstrated superior performance characteristics, including maximum capacity of 428.27 mA h at 10 mA cm-2 discharge current density, highest peak power density of 64 mW cm-2, with an enhanced durability and stability. It exhibits lowest voltage gap change between charge and discharge even after 350 hours of cyclic operation with a rate capability of 87.14 %.
Collapse
Affiliation(s)
- Cagla Ozgur
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, 06800, Turkey
| | - Tuncay Erdil
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, 06800, Turkey
| | - Uygar Geyikci
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, 06800, Turkey
| | - Ilker Yildiz
- Central Laboratory Middle East Technical University, Ankara, 06800, Turkey
| | - Ersu Lokcu
- Department of Metallurgical and Materials Engineerring, Eskisehir Osmangazi University, Eskisehir, 26040, Turkey
| | - Cigdem Toparli
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, 06800, Turkey
| |
Collapse
|
21
|
Zhao H. Recent Advances in Rechargeable Zn-Air Batteries. Molecules 2024; 29:5313. [PMID: 39598702 PMCID: PMC11596800 DOI: 10.3390/molecules29225313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024] Open
Abstract
Rechargeable Zn-air batteries are considered to be an effective energy storage device due to their high energy density, environmental friendliness, and long operating life. Further progress on rechargeable Zn-air batteries with high energy density/power density is greatly needed to satisfy the increasing energy conversion and storage demands. This review summarizes the strategies proposed so far to pursue high-efficiency Zn-air batteries, including the aspects of the electrocatalysts (from noble metals to non-noble metals), the electrode chemistry (from the oxygen evolution reaction to the organic oxidation reaction), electrode engineering (from powdery to free-standing), aqueous electrolytes (from alkaline to non-alkaline) and the battery configuration (from liquid to flexible). An essential evaluation of electrochemistry is highlighted to solve the challenges in boosting the efficiency of rechargeable metal-air batteries. In the end, the perspective on current challenges and future research directions to promote the industrial application of rechargeable Zn-air batteries is provided.
Collapse
Affiliation(s)
- Hui Zhao
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
22
|
Bai J, Zhang H, Zhang C, Qin H, Zhou P, Xiang M, Lian Y, Deng Y. Regulating Ru-O Bond and Oxygen Vacancies of RuO 2 by Ta Doping for Electrocatalytic Oxygen Evolution in Acid Media. Inorg Chem 2024; 63:20584-20591. [PMID: 39397578 DOI: 10.1021/acs.inorgchem.4c03227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Proton exchange membrane water electrolysis (PEMWE) is considered an ideal green hydrogen production technology with promising application prospects. However, the development of efficient and stable acid electroanalytic oxygen electrocatalysts is still a challenging bottleneck. This progress is achieved by adopting a strategic approach with the introduction of the high valence metal Ta to regulate the electronic configuration of RuO2 by manipulating its local microenvironment to optimize the stability and activity of the electrocatalysts. The Ta-RuO2 catalysts are notable for their excellent electrocatalytic activity, as evidenced by an overpotential of only 202 mV at 10 mA cm-2, which significantly exceeds that of homemade RuO2 and commercial RuO2. Furthermore, the Ta-RuO2 catalyst exhibits exceptional stability with negligible potential reduction observed after 50 h of electrolysis. Theoretical calculations show that the asymmetric configuration of Ru-O-Ta breaks the thermodynamic activity limitations usually associated with adsorption evolution, weakening the energy barrier for the formation of the OOH* formation. The strategic approach presented in this study provides an important reference for the development of a stable active center for acid water splitting.
Collapse
Affiliation(s)
- Jirong Bai
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China
| | - Hanyu Zhang
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China
| | - Chunyong Zhang
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Hengfei Qin
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Pin Zhou
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China
| | - Mei Xiang
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China
| | - Yuebin Lian
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China
| | - Yaoyao Deng
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China
| |
Collapse
|
23
|
Ma L, Wang H, Zang J, Wang X, Li H, Li Y, Li Y. Multilayer Porous Fe/Co-N-MWCNT Electrocatalyst For Rechargeable Zinc-Air Batteries. Chem Asian J 2024; 19:e202400366. [PMID: 39058230 DOI: 10.1002/asia.202400366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024]
Abstract
The design of efficient, stable, low-cost non-precious metal-based electrocatalysts with enhanced oxygen reduction reaction (ORR) activity has garnered significant attention in the scientific community. This study introduces a novel electrocatalyst, Fe/Co-N-MWCNT, synthesized through the in-situ growth of ZIF-8 and Fe/Co-Phen on multi-walled carbon nanotubes (MWCNTs), followed by pyrolysis at varying temperatures to optimize its properties. The inclusion of Fe and Co during the pyrolysis process facilitated the creation of metal active sites and Fe-Co, enhancing electron transfer and ORR activity. Compared to Pt/C (E1/2=0.854 V, JL=4.90 mA cm-2), Fe/Co-N-MWCNT exhibited a similar half-wave potential (E1/2=0.812 V) and an improved limiting current density (JL=5.37 mA cm-2). Moreover, Fe/Co-N-MWCNT displayed remarkable stability, showing only a 7 mV negative shift in E1/2 after 2000 cycles. Ampere response testing indicated a current decay of only 7.8 % for Fe/Co-N-MWCNT after 10000 s, while Pt/C experienced a decay of about 18.4 %. The exceptional catalytic stability of Fe/Co-N-MWCNT positions it as a promising candidate for rechargeable zinc-air batteries, attributed to its high pyridinic nitrogen content, unique structure, and abundant metal active sites.
Collapse
Affiliation(s)
- Lijuan Ma
- Changchun University of Science and Technology, Changchun, 130022, PR China
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Han Wang
- Changchun University of Science and Technology, Changchun, 130022, PR China
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Jing Zang
- Changchun University of Science and Technology, Changchun, 130022, PR China
| | - Xinna Wang
- Changchun University of Science and Technology, Changchun, 130022, PR China
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Hao Li
- Changchun University of Science and Technology, Changchun, 130022, PR China
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Yanwei Li
- Changchun University of Science and Technology, Changchun, 130022, PR China
| | - Yanhui Li
- Changchun University of Science and Technology, Changchun, 130022, PR China
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen, 361024, China
| |
Collapse
|
24
|
Hu X, Tian W, Wu Z, Li X, Li Y, Wang H. Synthesis of Zr 2ON 2 via a urea-glass route to modulate the bifunctional catalytic activity of NiFe layered double hydroxide in a rechargeable zinc-air battery. J Colloid Interface Sci 2024; 672:610-617. [PMID: 38861848 DOI: 10.1016/j.jcis.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
The development of a highly efficient, stable, and low-cost bifunctional catalyst is imperative for facilitating the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). However, significant challenges are involved in extending its applications to rechargeable zinc-air batteries. This study presents a bifunctional catalyst, Zr2ON2@NiFe layered double hydroxide (LDH), that was developed by utilizing a urea-glass route for synthesizing the Zr2ON2 precursor, followed by riveting NiFe LDH nanosheets using a hydrothermal method. Specifically, the vertical distribution of NiFe LDH on the Zr2ON2 surface ensures the maximization of the number of accessible active sites and interfacial catalysis of NiFe LDH. Notably, Zr2ON2@NiFe LDH demonstrates ORR and OER bifunctional electrocatalytic behavior and high stability owing to its heterostructure and composition. Furthermore, a rechargeable zinc-air battery using a Zr2ON2@NiFe LDH electrocatalyst as the air cathode demonstrated a high peak power density (172 mW cm-2) and galvanostatic charge-discharge cycle stability (5 mA cm-2 over 443 h). Thus, this study presents an efficient and cost-effective strategy for the design of bifunctional electrocatalysts.
Collapse
Affiliation(s)
- Xiaolin Hu
- School of Science, Chongqing Key Laboratory of New Energy Storage Materials and Devices, Chongqing University of Technology, Chongqing 400054, China.
| | - Wenping Tian
- School of Science, Chongqing Key Laboratory of New Energy Storage Materials and Devices, Chongqing University of Technology, Chongqing 400054, China
| | - Zhenkun Wu
- School of Science, Chongqing Key Laboratory of New Energy Storage Materials and Devices, Chongqing University of Technology, Chongqing 400054, China
| | - Xiang Li
- School of Science, Chongqing Key Laboratory of New Energy Storage Materials and Devices, Chongqing University of Technology, Chongqing 400054, China
| | - Yanhong Li
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Haozhi Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
25
|
Pang M, Fang Y, Chen L, Sun R, Li X, Pang H, Zhang S, Xu L, Sun D, Tang Y. Highly dispersed ultrafine Ru nanoparticles on a honeycomb-like N-doped carbon matrix with modified rectifying contact for enhanced electrochemical hydrogen evolution. NANOSCALE 2024; 16:17519-17526. [PMID: 39225065 DOI: 10.1039/d4nr02404d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The manipulation of rectifying contact between metal and semiconductor represents a powerful strategy to modify the electronic configuration of active sites for improved electrocatalytic performance. Herein, we present an NaCl template-assisted approach to rationally construct a Schottky electrocatalyst consisting of a honeycomb-like N-doped carbon matrix decorated with uniformly ultrasmall Ru nanoparticles with an average diameter of 2.5 nm (hereafter abbreviated as Ru NPs@HNC). It is found that the Fermi level difference between Ru and HNC can cause self-driven migration of electrons from Ru NPs to the HNC substrate, which leads to the generation of a built-in electric field and directional flow of electrons, thereby enhancing the intrinsic activity. In addition, the immobilization of ultrafine Ru NPs on the honeycomb-like carbon skeleton can effectively inhibit the undesired migration, agglomeration and detachment of the active sites, thus ensuring remarkable structural stability. As a result, the Ru NPs@HNC with optimal rectifying contact delivers superior electrochemical activity with a small overpotential of 28 mV at 10 mA cm-2 and outstanding long-term stability in an alkaline solution. The design philosophy of grain-size modulation and Schottky contact may widen up insight into the preparation of high-performance electrocatalysts in sustainable energy conversion systems.
Collapse
Affiliation(s)
- Mingxin Pang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Yu Fang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Lizhang Chen
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Ruoxu Sun
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Xinyu Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, P. R. China
| | - Songtao Zhang
- Testing Center, Yangzhou University, Yangzhou 225009, P. R. China
| | - Lin Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Dongmei Sun
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| |
Collapse
|
26
|
Ji Q, Tang B, Zhang X, Wang C, Tan H, Zhao J, Liu R, Sun M, Liu H, Jiang C, Zeng J, Cai X, Yan W. Operando identification of the oxide path mechanism with different dual-active sites for acidic water oxidation. Nat Commun 2024; 15:8089. [PMID: 39284800 PMCID: PMC11405856 DOI: 10.1038/s41467-024-52471-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
The microscopic reaction pathway plays a crucial role in determining the electrochemical performance. However, artificially manipulating the reaction pathway still faces considerable challenges. In this study, we focus on the classical acidic water oxidation based on RuO2 catalysts, which currently face the issues of low activity and poor stability. As a proof-of-concept, we propose a strategy to create local structural symmetry but oxidation-state asymmetric Mn4-δ-O-Ru4+δ active sites by introducing Mn atoms into RuO2 host, thereby switching the reaction pathway from traditional adsorbate evolution mechanism to oxide path mechanism. Through advanced operando synchrotron spectroscopies and density functional theory calculations, we demonstrate the synergistic effect of dual-active metal sites in asymmetric Mn4-δ-O-Ru4+δ microstructure in optimizing the adsorption energy and rate-determining step barrier via an oxide path mechanism. This study highlights the importance of engineering reaction pathways and provides an alternative strategy for promoting acidic water oxidation.
Collapse
Affiliation(s)
- Qianqian Ji
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China
- Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, China
| | - Bing Tang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Xilin Zhang
- School of Physics, Henan Key Laboratory of Advanced Semiconductor & Functional Device Integration, Henan Normal University, Xinxiang, China
| | - Chao Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Hao Tan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Jie Zhao
- Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, China
| | - Ruiqi Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Mei Sun
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Hengjie Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Chang Jiang
- College of Energy, Xiamen University, Xiamen, China
| | - Jianrong Zeng
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Xingke Cai
- Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, China.
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
27
|
Shi Y, Hu S, Xu X, Chen J. Ni-doping optimized d-band center in bifunctional Fe 2O 3 modified by bamboo-like NCNTs as a cathode material for Zn-air batteries. Dalton Trans 2024; 53:14801-14810. [PMID: 39163381 DOI: 10.1039/d4dt01733a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
During the development of Zn-air batteries, designing an affordable, efficient and stable electrocatalyst for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) presents a great challenge. Fe2O3 exhibits ORR and OER activities, but when used as a cathode material in Zn-air batteries, its activity requires further improvement. To achieve this goal, Ni is doped into Fe2O3 hexagonal nanorods, derived from a metal-organic framework (MOF) precursor, and further modified by N-doped carbon nanotubes. In ORR, its half-wave potential achieves 0.946 and 0.716 V in alkaline and neutral electrolytes, respectively. In OER, it requires 388 mV to obtain 10 mA cm-2 in an alkaline electrolyte. As illustrated by theoretical calculation, Ni-doping raises the d-band center of Fe2O3, which enhances its adsorption towards relevant oxygen species in electrocatalysis. This improves its ORR and OER activities. Based on these merits, the Zn-air battery is assembled with an alkaline electrolyte. At 10 mA cm-2, its specific capacity and energy density reach 819.8 mA h g-1 and 960.1 W h kg-1, respectively. This battery remains stable after a long time of charge and discharge. In neutral electrolytes, its promising discharge performance is also well retained. This work develops an effective approach to improve ORR and OER activities of Fe2O3-based cathode materials in Zn-air batteries.
Collapse
Affiliation(s)
- Yang Shi
- Department of Chemistry, College of Science, Northeastern University, Shenyang, 110819, P.R. China.
| | - Songhan Hu
- Key Laboratory of Electromagnetic Processing of Materials, MOE, Northeastern University, Shenyang 110819, Liaoning, China
| | - Xinxin Xu
- Department of Chemistry, College of Science, Northeastern University, Shenyang, 110819, P.R. China.
| | - Jin Chen
- Key Laboratory of Electromagnetic Processing of Materials, MOE, Northeastern University, Shenyang 110819, Liaoning, China
| |
Collapse
|
28
|
Guo Q, Yuan R, Zhao Y, Yu Y, Fu J, Cao L. Performance of Nitrogen-Doped Carbon Nanoparticles Carrying FeNiCu as Bifunctional Electrocatalyst for Rechargeable Zinc-Air Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400830. [PMID: 38778739 DOI: 10.1002/smll.202400830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Catalysts for zinc-air batteries (ZABs) must be stable over long-term charging-discharging cycles and exhibit bifunctional catalytic activity. In this study, by doping nitrogen-doped carbon (NC) materials with three metal atoms (Fe, Ni, and Cu), a single-atom-distributed FeNiCu-NC bifunctional catalyst is prepared. The catalyst includes Fe(Ni-doped)-N4 for the oxygen evolution reaction (OER), Fe(Cu-doped)-N4 for the oxygen reduction reaction (ORR), and the NiCu-NC catalytic structure for the oxygen reduction reaction (ORR) in the nitrogen-doped carbon nanoparticles. This single-atom distribution catalyst structure enhances the bifunctional catalytic activity. If a trimetallic single-atom catalyst is designed, it will surpass the typical bimetallic single-atom catcalyst. FeNiCu-NC exhibits outstanding performance as an electrocatalyst, with a half-wave potential (E1/2) of 0.876 V versus RHE, overpotential (Ej = 10) of 253 mV versus RHE at 10 mA cm-2, and a small potential gap (ΔE = 0.61 V). As the anode in a ZAB, FeNiCu-NC can undergo continuous charge-discharged cycles for 575 h without significant attenuation. This study presents a new method for achieving high-performance, low-cost ZABs via trimetallic single-atom doping.
Collapse
Affiliation(s)
- Qiao Guo
- Institute of Material Science and Engineering, Dalian Jiaotong University, Dalian, 116028, China
| | - Rui Yuan
- Fuel Cell System and Engineering Laboratory, Key Laboratory of Fuel Cells & Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yutong Zhao
- Fuel Cell System and Engineering Laboratory, Key Laboratory of Fuel Cells & Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Ying Yu
- Fuel Cell System and Engineering Laboratory, Key Laboratory of Fuel Cells & Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jie Fu
- Institute of Material Science and Engineering, Dalian Jiaotong University, Dalian, 116028, China
| | - Longsheng Cao
- Fuel Cell System and Engineering Laboratory, Key Laboratory of Fuel Cells & Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
29
|
Li X, Qin J, Lin Q, Yi X, Yan C, Zhang J, Dong J, Yu K, Zhang S, Xie C, Yang H, Xiao W, Li W, Wang J, Li X. Electron Spin Broken-Symmetry of Fe-Co Diatomic Pairs to Promote Kinetics of Bifunctional Oxygen Electrocatalysis for Zinc-Air Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401187. [PMID: 38877642 PMCID: PMC11425208 DOI: 10.1002/advs.202401187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/12/2024] [Indexed: 06/16/2024]
Abstract
Designing bifunctional catalysts to reduce the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) reaction barriers while accelerating the reaction kinetics is perceived to be a promising strategy to improve the performance of Zinc-air batteries. Unsymmetric configuration in single-atom catalysts has attracted attention due to its unique advantages in regulating electron orbitals. In this work, a seesaw effect in unsymmetric Fe-Co bimetallic monoatomic configurations is proposed, which can effectively improve the OER/ORR bifunctional activity of the catalyst. Compared with the symmetrical model of Fe-Co, a strong charge polarization between Co and Fe atoms in the unsymmetric model is detected, in whom the spin-down electrons around Co atoms are much higher than those spin-up electrons. The seesaw effect occurred between Co atoms and Fe atoms, resulting in a negative shift of the d-band center, which means that the adsorption of oxygen intermediates is weakened and more conducive to their dissociation. The optimized reaction kinetics of the catalyst leads to excellent performance in ZABs, with a peak power density of 215 mW cm-2 and stable cycling for >1300 h and >4000 cycles. Flexible Zinc-air batteries have also gained excellent performance to demonstrate their potential in the field of flexible wearables.
Collapse
Affiliation(s)
- Xiaokang Li
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Jian Qin
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
- Department of Materials Science and Engineering, Macau University of Science and Technology, Macau, 999078, China
| | - Qingxin Lin
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Xiaoyu Yi
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Cheng Yan
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Jianhua Zhang
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Jinjuan Dong
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Kang Yu
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Shenglong Zhang
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Chong Xie
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Huijuan Yang
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Wei Xiao
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Wenbin Li
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Jingjing Wang
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Xifei Li
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| |
Collapse
|
30
|
Qiu D, Wang H, Ma T, Huang J, Meng Z, Fan D, Bowen CR, Lu H, Liu Y, Chandrasekaran S. Promoting Electrocatalytic Oxygen Reactions Using Advanced Heterostructures for Rechargeable Zinc-Air Battery Applications. ACS NANO 2024; 18:21651-21684. [PMID: 39129497 PMCID: PMC11342935 DOI: 10.1021/acsnano.4c02289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
In order to facilitate electrochemical oxygen reactions in electrically rechargeable zinc-air batteries (ZABs), there is a need to develop innovative approaches for efficient oxygen electrocatalysts. Due to their reliability, high energy density, material abundance, and ecofriendliness, rechargeable ZABs hold promise as next-generation energy storage and conversion devices. However, the large-scale application of ZABs is currently hindered by the slow kinetics of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). However, the development of heterostructure-based electrocatalysts has the potential to surpass the limitations imposed by the intrinsic properties of a single material. This Account begins with an explanation of the configurations of ZABs and the fundamentals of the oxygen electrochemistry of the air electrode. Then, we summarize recent progress with respect to the variety of heterostructures that exploit bifunctional electrocatalytic reactions and overview their impact on ZAB performance. The range of heterointerfacial engineering strategies for improving the ORR/OER and ZAB performance includes tailoring the surface chemistry, dimensionality of catalysts, interfacial charge transfer, mass and charge transport, and morphology. We highlight the multicomponent design approaches that take these features into account to create advanced highly active bifunctional catalysts. Finally, we discuss the challenges and future perspectives on this important topic that aim to enhance the bifunctional activity and performance of zinc-air batteries.
Collapse
Affiliation(s)
- Dingrong Qiu
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Huihui Wang
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Tingting Ma
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Jiangdu Huang
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Zhen Meng
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Dayong Fan
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Chris R. Bowen
- Department
of Mechanical Engineering, University of
Bath, BA2 7AY Bath, U.K.
| | - Huidan Lu
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Yongping Liu
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Sundaram Chandrasekaran
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| |
Collapse
|
31
|
Wang H, Yan Z, Cheng F, Chen J. Advances in Noble Metal Electrocatalysts for Acidic Oxygen Evolution Reaction: Construction of Under-Coordinated Active Sites. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401652. [PMID: 39189476 PMCID: PMC11348273 DOI: 10.1002/advs.202401652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/02/2024] [Indexed: 08/28/2024]
Abstract
Renewable energy-driven proton exchange membrane water electrolyzer (PEMWE) attracts widespread attention as a zero-emission and sustainable technology. Oxygen evolution reaction (OER) catalysts with sluggish OER kinetics and rapid deactivation are major obstacles to the widespread commercialization of PEMWE. To date, although various advanced electrocatalysts have been reported to enhance acidic OER performance, Ru/Ir-based nanomaterials remain the most promising catalysts for PEMWE applications. Therefore, there is an urgent need to develop efficient, stable, and cost-effective Ru/Ir catalysts. Since the structure-performance relationship is one of the most important tools for studying the reaction mechanism and constructing the optimal catalytic system. In this review, the recent research progress from the construction of unsaturated sites to gain a deeper understanding of the reaction and deactivation mechanism of catalysts is summarized. First, a general understanding of OER reaction mechanism, catalyst dissolution mechanism, and active site structure is provided. Then, advances in the design and synthesis of advanced acidic OER catalysts are reviewed in terms of the classification of unsaturated active site design, i.e., alloy, core-shell, single-atom, and framework structures. Finally, challenges and perspectives are presented for the future development of OER catalysts and renewable energy technologies for hydrogen production.
Collapse
Affiliation(s)
- Huimin Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Zhenhua Yan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Fangyi Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Jun Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| |
Collapse
|
32
|
Wei S, Yang R, Wang Z, Zhang J, Bu XH. Planar Chlorination Engineering: A Strategy of Completely Breaking the Geometric Symmetry of Fe-N 4 Site for Boosting Oxygen Electroreduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404692. [PMID: 38752852 DOI: 10.1002/adma.202404692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/09/2024] [Indexed: 05/28/2024]
Abstract
Introducing asymmetric elements and breaking the geometric symmetry of traditional metal-N4 site for boosting oxygen reduction reaction (ORR) are meaningful and challenging. Herein, the planar chlorination engineering of Fe-N4 site is first proposed for remarkably improving the ORR activity. The Fe-N4/CNCl catalyst with broken symmetry exhibits a half-wave potential (E1/2) of 0.917 V versus RHE, 49 and 72 mV higher than those of traditional Fe-N4/CN and commercial 20 wt% Pt/C catalysts. The Fe-N4/CNCl catalyst also has excellent stability for 25 000 cycles and good methanol tolerance ability. For Zn-air battery test, the Fe-N4/CNCl catalyst has the maximum power density of 228 mW cm-2 and outstanding stability during 150 h charge-discharge test, as the promising substitute of Pt-based catalysts in energy storage and conversion devices. The density functional theory calculation demonstrates that the adjacent C─Cl bond effectively breaks the symmetry of Fe-N4 site, downward shifts the d-band center of Fe, facilitates the reduction and release of OH*, and remarkably lowers the energy barrier of rate-determining step. This work reveals the enormous potential of planar chlorination engineering for boosting the ORR activity of traditional metal-N4 site by thoroughly breaking their geometric symmetry.
Collapse
Affiliation(s)
- Shengjie Wei
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Rongyan Yang
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin, 300350, P. R. China
| | - Ziyi Wang
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Jijie Zhang
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Xian-He Bu
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
33
|
Hu H, Xu Z, Zhang Z, Yan X, Zhu Y, Attfield JP, Yang M. Electrocatalytic Oxygen Reduction Using Metastable Zirconium Suboxide. Angew Chem Int Ed Engl 2024; 63:e202404374. [PMID: 38726699 DOI: 10.1002/anie.202404374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Indexed: 06/19/2024]
Abstract
Strategies for discovery of high-performance electrocatalysts are important to advance clean energy technologies. Metastable phases such as low temperature or interfacial structures that are difficult to access in bulk may offer such catalytically active surfaces. We report here that the suboxide Zr3O, which is formed at Zr-ZrO2 interfaces but does not appear in the experimental Zr-O phase diagram exhibits outstanding oxygen reduction reaction (ORR) performance surpassing that of benchmark Pt/C and most transition metal-based catalysts. Addition of Fe3C nanoparticles to give a Zr-Zr3O-Fe3C/NC catalyst (NC=nitrogen-doped carbon) gives a half-wave potential (E1/2) of 0.914 V, outperforming Pt/C and showing only a 3 mV decrease after 20,000 electrochemical cycles. A zinc-air battery (ZAB) using this cathode material has a high power density of 241.1 mW cm-2 and remains stable for over 50 days of continuous cycling, demonstrating potential for practical applications. Zr3O demonstrates that interfacial or other phases that are difficult to stabilize may offer new directions for the discovery of high-performance electrocatalysts.
Collapse
Affiliation(s)
- Huashuai Hu
- School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, 116024, China
| | - Zhihang Xu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Zhaorui Zhang
- School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, 116024, China
| | - Xiaohui Yan
- School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, 116024, China
| | - Ye Zhu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong, 999077, China
| | - J Paul Attfield
- Centre for Science at Extreme Conditions and School of Chemistry, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JZ, UK
| | - Minghui Yang
- School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, 116024, China
| |
Collapse
|
34
|
Wu H, Wang C, Ma Y, Huang S, Ren Y, Ding F, Li F, Yang Y, Gu J, Tang S, Meng X. NiO/RuO 2 p-n Heterojunction Nanofoam as a High-Performance Electrocatalyst for Desulfurization and Concurrent Hydrogen Evolution. Inorg Chem 2024; 63:12604-12614. [PMID: 38918078 DOI: 10.1021/acs.inorgchem.4c01684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The development of bifunctional electrocatalysts with excellent performance in both the hydrogen evolution reaction (HER) and sulfide oxidation reaction (SOR) remains a formidable challenge. Herein, we experimentally synthesize a NiO/RuO2 p-n heterojunction nanofoam that exhibits highly desirable electrocatalytic properties for both the HER and the SOR. We further design an electrolytic cell by pairing alkaline HER with SOR utilizing the NiO/RuO2 heterojunction nanofoam as both the anode and the cathode, which demands a low applied voltage of 0.846 V to achieve a current density of 10 mA cm-2. Density functional theory calculations confirm that the formation of the NiO/RuO2 p-n heterojunction nanofoam effectively regulates the electronic structure, thereby boosting the electrocatalytic performances for both HER and SOR. This work not only provides a novel strategy to prepare an efficient and stable nanofoam electrocatalyst for hydrogen production but also highlights the potential application of oxide heterojunction electrocatalysts in treating sulfur-containing waste liquid.
Collapse
Affiliation(s)
- Hao Wu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, PR China
| | - Cong Wang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, PR China
| | - Yujie Ma
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, PR China
- School of Intelligent Manufacturing and Information, Jiangsu Shipping College, Nantong 226010, PR China
| | - Sirui Huang
- College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Yilun Ren
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, PR China
| | - Fan Ding
- Department of Computer Science, Purdue University, West Lafayette, Indiana 47907, United States
| | - Fengqi Li
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, PR China
| | - Yurong Yang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, PR China
| | - Jian Gu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, PR China
| | - Shaochun Tang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, PR China
| | - Xiangkang Meng
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, PR China
| |
Collapse
|
35
|
Sun P, Qiao Z, Dong X, Jiang R, Hu ZT, Yun J, Cao D. Designing 3d Transition Metal Cation-Doped MRuO x As Durable Acidic Oxygen Evolution Electrocatalysts for PEM Water Electrolyzers. J Am Chem Soc 2024; 146:15515-15524. [PMID: 38785086 DOI: 10.1021/jacs.4c04096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The continuous dissolution and oxidation of active sites in Ru-based electrocatalysts have greatly hindered their practical application in proton exchange membrane water electrolyzers (PEMWE). In this work, we first used density functional theory (DFT) to calculate the dissolution energy of Ru in the 3d transition metal-doped MRuOx (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) to evaluate their stability for acidic oxygen evolution reaction (OER) and screen out ZnRuOx as the best candidate. To confirm the theoretical predictions, we experimentally synthesized these MRuOx materials and found that ZnRuOx indeed displays robust acidic OER stability with a negligible decay of η10 after 15 000 CV cycles. Of importance, using ZnRuOx as the anode, the PEMWE can run stably for 120 h at 200 mA cm-2. We also further uncover the stability mechanism of ZnRuOx, i.e., Zn atoms doped in the outside of ZnRuOx nanocrystal would form a "Zn-rich" shell, which effectively shortened average Ru-O bond lengths in ZnRuOx to strengthen the Ru-O interaction and therefore boosted intrinsic stability of ZnRuOx in acidic OER. In short, this work not only provides a new study paradigm of using DFT calculations to guide the experimental synthesis but also offers a proof-of-concept with 3d metal dopants as RuO2 stabilizer as a universal principle to develop high-durability Ru-based catalysts for PEMWE.
Collapse
Affiliation(s)
- Panpan Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zelong Qiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xiaobin Dong
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Run Jiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zhong-Ting Hu
- Institute of Environmental-Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jimmy Yun
- Qingdao International Academician Park Research Institute, Qingdao 266000, PR China
- School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
36
|
Yang S, Liu X, Li S, Yuan W, Yang L, Wang T, Zheng H, Cao R, Zhang W. The mechanism of water oxidation using transition metal-based heterogeneous electrocatalysts. Chem Soc Rev 2024; 53:5593-5625. [PMID: 38646825 DOI: 10.1039/d3cs01031g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The water oxidation reaction, a crucial process for solar energy conversion, has garnered significant research attention. Achieving efficient energy conversion requires the development of cost-effective and durable water oxidation catalysts. To design effective catalysts, it is essential to have a fundamental understanding of the reaction mechanisms. This review presents a comprehensive overview of recent advancements in the understanding of the mechanisms of water oxidation using transition metal-based heterogeneous electrocatalysts, including Mn, Fe, Co, Ni, and Cu-based catalysts. It highlights the catalytic mechanisms of different transition metals and emphasizes the importance of monitoring of key intermediates to explore the reaction pathway. In addition, advanced techniques for physical characterization of water oxidation intermediates are also introduced, for the purpose of providing information for establishing reliable methodologies in water oxidation research. The study of transition metal-based water oxidation electrocatalysts is instrumental in providing novel insights into understanding both natural and artificial energy conversion processes.
Collapse
Affiliation(s)
- Shujiao Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Xiaohan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Sisi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Wenjie Yuan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Luna Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Ting Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| |
Collapse
|
37
|
Tang L, Peng H, Kang J, Chen H, Zhang M, Liu Y, Kim DH, Liu Y, Lin Z. Zn-based batteries for sustainable energy storage: strategies and mechanisms. Chem Soc Rev 2024; 53:4877-4925. [PMID: 38595056 DOI: 10.1039/d3cs00295k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Batteries play a pivotal role in various electrochemical energy storage systems, functioning as essential components to enhance energy utilization efficiency and expedite the realization of energy and environmental sustainability. Zn-based batteries have attracted increasing attention as a promising alternative to lithium-ion batteries owing to their cost effectiveness, enhanced intrinsic safety, and favorable electrochemical performance. In this context, substantial endeavors have been dedicated to crafting and advancing high-performance Zn-based batteries. However, some challenges, including limited discharging capacity, low operating voltage, low energy density, short cycle life, and complicated energy storage mechanism, need to be addressed in order to render large-scale practical applications. In this review, we comprehensively present recent advances in designing high-performance Zn-based batteries and in elucidating energy storage mechanisms. First, various redox mechanisms in Zn-based batteries are systematically summarized, including insertion-type, conversion-type, coordination-type, and catalysis-type mechanisms. Subsequently, the design strategies aiming at enhancing the electrochemical performance of Zn-based batteries are underscored, focusing on several aspects, including output voltage, capacity, energy density, and cycle life. Finally, challenges and future prospects of Zn-based batteries are discussed.
Collapse
Affiliation(s)
- Lei Tang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Haojia Peng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Jiarui Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Han Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Mingyue Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Yan Liu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Dong Ha Kim
- Department of Chemistry and Nano Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| | - Yijiang Liu
- College of Chemistry, Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan Province, P. R. China.
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
- Department of Chemistry and Nano Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| |
Collapse
|
38
|
Song Y, Xia L, Salla M, Xi S, Fu W, Wang W, Gao M, Huang S, Huang S, Wang X, Yu X, Niu T, Zhang Y, Wang S, Han M, Ni M, Wang Q, Zhang H. A Hybrid Redox-Mediated Zinc-Air Fuel Cell for Scalable and Sustained Power Generation. Angew Chem Int Ed Engl 2024; 63:e202314796. [PMID: 38391058 DOI: 10.1002/anie.202314796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/03/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Zinc-air batteries (ZABs) have attracted considerable attention for their high energy density, safety, low noise, and eco-friendliness. However, the capacity of mechanically rechargeable ZABs was limited by the cumbersome procedure for replacing the zinc anode, while electrically rechargeable ZABs suffer from issues including low depth of discharge, zinc dendrite and dead zinc formation, and sluggish oxygen evolution reaction, etc. To address these issues, we report a hybrid redox-mediated zinc-air fuel cell (HRM-ZAFC) utilizing 7,8-dihydroxyphenazine-2-sulfonic acid (DHPS) as the anolyte redox mediator, which shifts the zinc oxidation reaction from the electrode surface to a separate fuel tank. This approach decouples fuel feeding and electricity generation, providing greater operation flexibility and scalability for large-scale power generation applications. The DHPS-mediated ZAFC exhibited a superior peak power density of 0.51 W/cm2 and a continuous discharge capacity of 48.82 Ah with ZnO as the discharge product in the tank, highlighting its potential for power generation.
Collapse
Affiliation(s)
- Yuxi Song
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore, 117574, Singapore
| | - Lingchao Xia
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) and Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Kowloon, Hong Kong
| | - Manohar Salla
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore, 117574, Singapore
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, 627833, Singapore, Singapore
| | - Weiyin Fu
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore, 117574, Singapore
| | - Wanwan Wang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Mengqi Gao
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore, 117574, Singapore
| | - Songpeng Huang
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore, 117574, Singapore
| | - Shiqiang Huang
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore, 117574, Singapore
| | - Xun Wang
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore, 117574, Singapore
| | - Xingzi Yu
- College of Mechanical and Vehicle Engineering, Chongqing University, No.174, Shazheng Street, Shapingba District, 400044, China
| | - Tong Niu
- College of Mechanical and Vehicle Engineering, Chongqing University, No.174, Shazheng Street, Shapingba District, 400044, China
| | - Yuqi Zhang
- College of Mechanical and Vehicle Engineering, Chongqing University, No.174, Shazheng Street, Shapingba District, 400044, China
| | - Shijie Wang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Ming Han
- School of Engineering, Temasek Polytechnic, 21 Tampines Ave 1, 529757, Singapore, Singapore
| | - Meng Ni
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) and Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Kowloon, Hong Kong
| | - Qing Wang
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore, 117574, Singapore
| | - Hang Zhang
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore, 117574, Singapore
| |
Collapse
|
39
|
Zhang YL, Liu B, Dai YK, Shen LX, Guo P, Xia YF, Zhang Z, Kong F, Zhao L, Wang ZB. Engineering Co-N-Cr Cross-Interfacial Electron Bridges to Break Activity-Stability Trade-Off for Superdurable Bifunctional Single Atom Oxygen Electrocatalysts. Angew Chem Int Ed Engl 2024; 63:e202400577. [PMID: 38284909 DOI: 10.1002/anie.202400577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 01/30/2024]
Abstract
Atomically dispersed metal-nitrogen-carbon (M-N-C) catalysts have exhibited encouraging oxygen reduction reaction (ORR) activity. Nevertheless, the insufficient long-term stability remains a widespread concern owing to the inevitable 2-electron byproducts, H2O2. Here, we construct Co-N-Cr cross-interfacial electron bridges (CIEBs) via the interfacial electronic coupling between Cr2O3 and Co-N-C, breaking the activity-stability trade-off. The partially occupied Cr 3d-orbitals of Co-N-Cr CIEBs induce the electron rearrangement of CoN4 sites, lowering the Co-OOH* antibonding orbital occupancy and accelerating the adsorption of intermediates. Consequently, the Co-N-Cr CIEBs suppress the two-electron ORR process and approach the apex of Sabatier volcano plot for four-electron pathway simultaneously. As a proof-of-concept, the Co-N-Cr CIEBs is synthesized by the molten salt template method, exhibiting dominant 4-electron selectively and extremely low H2O2 yield confirmed by Damjanovic kinetic analysis. The Co-N-Cr CIEBs demonstrates impressive bifunctional oxygen catalytic activity (▵E=0.70 V) and breakthrough durability including 100 % current retention after 10 h continuous operation and cycling performance over 1500 h for Zn-air battery. The hybrid interfacial configuration and the understanding of the electronic coupling mechanism reported here could shed new light on the design of superdurable M-N-C catalysts.
Collapse
Affiliation(s)
- Yun-Long Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Laboratory of Space Power-Sources, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Bo Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Laboratory of Space Power-Sources, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Yun-Kun Dai
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Laboratory of Space Power-Sources, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Li-Xiao Shen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, Guangdong, China
| | - Pan Guo
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Laboratory of Space Power-Sources, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Yun-Fei Xia
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Laboratory of Space Power-Sources, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Ziyu Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Laboratory of Space Power-Sources, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Fantao Kong
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Lei Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Laboratory of Space Power-Sources, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Zhen-Bo Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Laboratory of Space Power-Sources, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, Guangdong, China
| |
Collapse
|
40
|
Luo Z, Gong J, Li Q, Wei F, Liu B, Taylor Isimjan T, Yang X. Geometric and Electronic Engineering in Co/VN Nanoparticles to Boost Bifunctional Oxygen Electrocatalysis for Aqueous/Flexible Zn-Air Batteries. Chemistry 2024; 30:e202303943. [PMID: 38288675 DOI: 10.1002/chem.202303943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Indexed: 02/21/2024]
Abstract
Modulating metal-metal and metal-support interactions is one of the potent tools for augmenting catalytic performance. Herein, highly active Co/VN nanoparticles are well dispersed on three-dimensional porous carbon nanofoam (Co/VN@NC) with the assistance of dicyandiamide. Studies certify that the consequential disordered carbon substrate reinforces the confinement of electrons, while the coupling of diverse components optimizes charge redistribution among species. Besides, theoretical analyses confirm that the regulated electron configuration can significantly tune the binding strength between the active sites and intermediates, thus optimizing reaction energy barriers. Therefore, Co/VN@NC exhibits a competitive potential difference (ΔE, 0.65 V) between the half-wave potential of ORR and OER potential at 10 mA cm-2, outperforming Pt/C+RuO2 (0.67 V). Further, catalyst-based aqueous/flexible ZABs present superior performances with peak power densities of 156 and 85 mW cm-2, superior to Pt/C-based counterparts (128 and 73 mW cm-2). This research provides a pivotal foundation for the evolution of bifunctional catalysts in the energy sector.
Collapse
Affiliation(s)
- Zuyang Luo
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Junlin Gong
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Qiuxia Li
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Fengli Wei
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Baofa Liu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Tayirjan Taylor Isimjan
- Saudi Arabia Basic Industries Corporation (SABIC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xiulin Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|
41
|
Li H, Wang W, Xue S, He J, Liu C, Gao G, Di S, Wang S, Wang J, Yu Z, Li L. Superstructure-Assisted Single-Atom Catalysis on Tungsten Carbides for Bifunctional Oxygen Reactions. J Am Chem Soc 2024; 146:9124-9133. [PMID: 38515273 DOI: 10.1021/jacs.3c14354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Single-atom catalysis (SAC) attracts wide interest for zinc-air batteries that require high-performance bifunctional electrocatalysts for oxygen reactions. However, catalyst design is still highly challenging because of the insufficient driving force for promoting multiple-electron transfer kinetics. Herein, we report a superstructure-assisted SAC on tungsten carbides for oxygen evolution and reduction reactions. In addition to the usual single atomic sites, strikingly, we reveal the presence of highly ordered Co superstructures in the interfacial region with tungsten carbides that induce internal strain and promote bifunctional catalysis. Theoretical calculations show that the combined effects from superstructures and single atoms strongly reduce the adsorption energy of intermediates and overpotential of both oxygen reactions. The catalyst therefore presented impressive bifunctional activity with an ultralow potential gap of 0.623 V and delivered a high power density of 188.5 mW cm-2 for assembled zinc-air batteries. This work opens up new opportunities for atomic catalysis.
Collapse
Affiliation(s)
- Hongguan Li
- School of Metallurgy, Northeastern University, Shenyang 110819, Liaoning, People's Republic of China
- State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, Liaoning, People's Republic of China
- Foshan Graduate School of Innovation, Northeastern University, Foshan 528311, Guangdong, People's Republic of China
| | - Wu Wang
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, Liaoning, People's Republic of China
| | - Sikang Xue
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, People's Republic of China
| | - Jiarui He
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, Liaoning, People's Republic of China
| | - Chen Liu
- School of Metallurgy, Northeastern University, Shenyang 110819, Liaoning, People's Republic of China
| | - Guangying Gao
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, Liaoning, People's Republic of China
| | - Shuanlong Di
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, Liaoning, People's Republic of China
| | - Shulan Wang
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, Liaoning, People's Republic of China
| | - Jing Wang
- State Key Laboratory of Metastable Materials Science and Technology, Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, Hebei, People's Republic of China
| | - Zhiyang Yu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, People's Republic of China
| | - Li Li
- School of Metallurgy, Northeastern University, Shenyang 110819, Liaoning, People's Republic of China
- State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, Liaoning, People's Republic of China
- Foshan Graduate School of Innovation, Northeastern University, Foshan 528311, Guangdong, People's Republic of China
| |
Collapse
|
42
|
Jo SG, Ramkumar R, Lee JW. Recent Advances in Laser-Induced Graphene-Based Materials for Energy Storage and Conversion. CHEMSUSCHEM 2024; 17:e202301146. [PMID: 38057133 DOI: 10.1002/cssc.202301146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/10/2023] [Indexed: 12/08/2023]
Abstract
Laser-induced graphene (LIG) is a porous carbon nanomaterial that can be produced by irradiation of CO2 laser directly on the polymer substrate under ambient conditions. LIG has many merits over conventional graphene, such as simple and fast synthesis, tunable structure and composition, high surface area and porosity, excellent electrical and thermal conductivity, and good flexibility and stability. These properties make LIG a promising material for energy applications, such as supercapacitors, batteries, fuel cells, and solar cells. In this review, we highlight the recent advances of LIG in energy materials, covering the fabrication methods, performance enhancement strategies, and device integration of LIG-based electrodes and devices in the area of hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, zinc-air batteries, and supercapacitors. This comprehensive review examines the potential of LIG for future sustainable and efficient energy material development, highlighting its versatility and multifunctionality in energy conversion.
Collapse
Affiliation(s)
- Seung Geun Jo
- Department of Materials Science and Engineering, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Rahul Ramkumar
- Department of Materials Science and Engineering, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Jung Woo Lee
- Department of Materials Science and Engineering, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| |
Collapse
|
43
|
Do VH, Lee JM. Surface engineering for stable electrocatalysis. Chem Soc Rev 2024; 53:2693-2737. [PMID: 38318782 DOI: 10.1039/d3cs00292f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
In recent decades, significant progress has been achieved in rational developments of electrocatalysts through constructing novel atomistic structures and modulating catalytic surface topography, realizing substantial enhancement in electrocatalytic activities. Numerous advanced catalysts were developed for electrochemical energy conversion, exhibiting low overpotential, high intrinsic activity, and selectivity. Yet, maintaining the high catalytic performance under working conditions with high polarization and vigorous microkinetics that induce intensive degradation of surface nanostructures presents a significant challenge for commercial applications. Recently, advanced operando and computational techniques have provided comprehensive mechanistic insights into the degradation of surficial functional structures. Additionally, various innovative strategies have been devised and proven effective in sustaining electrocatalytic activity under harsh operating conditions. This review aims to discuss the most recent understanding of the degradation microkinetics of catalysts across an entire range of anodic to cathodic polarizations, encompassing processes such as oxygen evolution and reduction, hydrogen reduction, and carbon dioxide reduction. Subsequently, innovative strategies adopted to stabilize the materials' structure and activity are highlighted with an in-depth discussion of the underlying rationale. Finally, we present conclusions and perspectives regarding future research and development. By identifying the research gaps, this review aims to inspire further exploration of surface degradation mechanisms and rational design of durable electrocatalysts, ultimately contributing to the large-scale utilization of electroconversion technologies.
Collapse
Affiliation(s)
- Viet-Hung Do
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459.
- Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141
| | - Jong-Min Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459.
- Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141
| |
Collapse
|
44
|
Xu HM, Zhu HR, Zhang ZJ, Huang CJ, Shuai TY, Zhan QN, Li GR. Co/Co 3O 4 Heterojunctions Encased in Porous N-Doped Carbon Nanocapsules for High-Performance Cathode of Rechargeable Zinc-Air Batteries. Inorg Chem 2024; 63:3702-3711. [PMID: 38335057 DOI: 10.1021/acs.inorgchem.3c03660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
A long-term goal of rechargeable zinc-air batteries (ZABs) has always been to design bifunctional electrocatalysts that are robust, effective, and affordable for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). It has become a feasible method to construct metal/metal oxide interfaces to achieve superior electrocatalytic performance for ORR and OER by enhanced charge transfer. In this study, Co/Co3O4 heterojunctions were successfully prepared and encased in porous N-doped mesoporous carbon (Co/Co3O4@NC) via a simple condensation-carbonization-etching method. The extensive specific surface area of Co/Co3O4@NC facilitates effective interaction between the electrolyte and the catalyst, thereby enabling sufficient exposure of active sites for the ORR and the OER, consequently enhancing the rate of transport of active species. The well-designed Co/Co3O4@NC delivers superior ORR catalytic activity with a half-wave potential of 0.82 V (vs RHE) and a low overpotential of 347 mV at 10 mA cm-2 for OER in alkaline solution. The power density of Co/Co3O4@NC-based alkaline aqueous ZAB (156.5 mW cm-2) is superior to the commercial Pt/C + IrO2-based alkaline aqueous ZAB, and the cycling stability of ZAB is up to 220 h. In addition, Co/Co3O4@NC-based ZAB shows a high power density (50.1 mW cm-2). The construction of metal/metal oxide heterojunction encased in N-doped mesoporous carbon provides a novel route for the design of bifunctional electrocatalysts for high-performance ZABs.
Collapse
Affiliation(s)
- Hui-Min Xu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hong-Rui Zhu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zhi-Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Chen-Jin Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ting-Yu Shuai
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Qi-Ni Zhan
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Gao-Ren Li
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
45
|
Zhu S, Liu Y, Gong Y, Sun Y, Chen K, Liu Y, Liu W, Xia T, Zheng Q, Gao H, Guo H, Wang R. Boosting Bifunctional Catalysis by Integrating Active Faceted Intermetallic Nanocrystals and Strained Pt-Ir Functional Shells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305062. [PMID: 37803476 DOI: 10.1002/smll.202305062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/23/2023] [Indexed: 10/08/2023]
Abstract
PtIr-based nanostructures are fascinating materials for application in bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysis. However, the fabrication of PtIr nanocatalysts with clear geometric features and structural configurations, which are crucial for enhancing the bifunctionality, remains challenging. Herein, PtCo@PtIr nanoparticles are precisely designed and fabricated with a quasi-octahedral PtCo nanocrystal as a highly atomically ordered core and an ultrathin PtIr atomic layer as a compressively strained shell. Owing to their geometric and core-shell features, the PtCo@PtIr nanoparticles deliver approximately six and eight times higher mass and specific activities, respectively, as an ORR catalyst than a commercial Pt/C catalyst. The half-wave potential of PtCo@PtIr exhibits a negligible decrease by 9 mV after 10 000 cycles, indicating extraordinary ORR durability because of the ordered arrangement of Pt and Co atoms. When evaluated using the ORR-OER dual reaction upon the introduction of Ir, PtCo@PtIr exhibits a small ORR-OER overpotential gap of 679 mV, demonstrating its great potential as a bifunctional electrocatalyst for fabricating fuel cells. The findings pave the way for designing precise intermetallic core-shell nanocrystals as highly functional catalysts.
Collapse
Affiliation(s)
- Shiyu Zhu
- Key Laboratory of Materials Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Yun Liu
- Zhongyuan Critical Metals Laboratory, School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450052, China
| | - Yue Gong
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yuting Sun
- Key Laboratory of Materials Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Kang Chen
- Key Laboratory of Materials Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Yuan Liu
- Key Laboratory of Materials Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Weidi Liu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, ST Lucia, QLD, 4072, Australia
| | - Tianyu Xia
- Key Laboratory of Materials Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Qiang Zheng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Han Gao
- Key Laboratory of Materials Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Haizhong Guo
- Key Laboratory of Materials Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou, 450046, China
| | - Rongming Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
46
|
Wu P, Ma Z, Xia X, Song B, Zhong J, Yu Y, Huang Y. Precise Engineering of the Electrocatalytic Activity of FeN 4-Embedded Graphene on Oxygen Electrode Reactions by Attaching Electrides. J Phys Chem Lett 2024; 15:1121-1129. [PMID: 38263631 DOI: 10.1021/acs.jpclett.3c03358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Using first-principles calculations combined with a constant-potential implicit solvent model, we comprehensively studied the activity of oxygen electrode reactions catalyzed by electride-supported FeN4-embedded graphene (FeN4Cx). The physical quantities in FeN4Cx/electrides, i.e., work function of electrides, interlayer spacing, stability of heterostructures, charge transferred to Fe, d-band center of Fe, and adsorption free energy of O, are highly intercorrelated, resulting in activity being fully expressed by the nature of the electrides themselves, thereby achieving a precise modulation in activity by selecting different electrides. Strikingly, the FeN4PDCx/Ca2N and FeN4PDCx/Y2C systems maintain a high oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) activity with the overpotential less than 0.46 and 0.62 V in a wide pH range. This work provides an effective strategy for the rational design of efficient bifunctional catalysts as well as a model system with a simple activity-descriptor, helping to realize significant advances in energy devices.
Collapse
Affiliation(s)
- Peng Wu
- College of Chemistry and Material Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu 241000, China
| | - Zengying Ma
- College of Chemistry and Material Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu 241000, China
| | - Xueqian Xia
- College of Chemistry and Material Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu 241000, China
| | - Bowen Song
- College of Chemistry and Material Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu 241000, China
| | - Junwen Zhong
- Anhui Key Laboratory of Molecule-Based Materials, Anhui Carbon Neutrality Engineering Center, Anhui Normal University, Wuhu 241000, China
| | - Yanghong Yu
- Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory of New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University, Wuhu 241000, China
| | - Yucheng Huang
- College of Chemistry and Material Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu 241000, China
- Anhui Key Laboratory of Molecule-Based Materials, Anhui Carbon Neutrality Engineering Center, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
47
|
Zhao H, Wang T, Li C, Chen M, Niu L, Gong Y. Designing highly efficient oxygen evolution reaction electrocatalyst of high-entropy oxides FeCoNiZrO x: Theory and experiment. iScience 2024; 27:108718. [PMID: 38235334 PMCID: PMC10792234 DOI: 10.1016/j.isci.2023.108718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/30/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
The correlations between the experimental methods and catalytic activities are urgent to be defined for the design of highly efficient catalysts. In this work, a new oxygen evolution reaction electrocatalyst of high-entropy oxide (HEO) FeCoNiZrOx was designed and analyzed by experimental and theoretical methods. On account of the shortened coordinate bond along with the increased annealing temperature, the atomic/electronic structures of active site were adjusted quantitatively with the aid of the pre-designed correlator of d electron density, which contributed to adjust the catalytic activity of HEO specimens. The prepared HEO specimen exhibited the low overpotentials of 245 mV at 10 mA cm-2 and 288 mV at 100 mA cm-2 with small Tafel slope of 35.66 mV dec-1, fast charge transfer rate, and stable electrocatalytic activity. This strategy would be adopted to improve the catalytic activity of HEO by adjusting the d electron density of transition metal ions with suitable preparation method.
Collapse
Affiliation(s)
- Haiqing Zhao
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Tao Wang
- School of Micro-Nano Electronics, Zhejiang University, Hangzhou 310027, China
| | - Can Li
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Miaogen Chen
- Department of Physics, China Jiliang University, Hangzhou 310018, China
| | - Lengyuan Niu
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Yinyan Gong
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
48
|
Ran L, Xu Y, Zhu X, Chen S, Qiu X. Mn Single-Atom Tuning Fe-N-C Catalyst Enables Highly Efficient and Durable Oxygen Electrocatalysis and Zinc-Air Batteries. ACS NANO 2024; 18:750-760. [PMID: 38150590 DOI: 10.1021/acsnano.3c09100] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Fe-N-C catalyst is one of most promising candidates for oxygen electrocatalysis reaction in zinc-air batteries (ZABs), but achieving sustained high activity is still a challenging issue. Herein, we demonstrate that introducing Mn single atoms into Fe-N-C (Mn1@Fe-N-C/CNTs) enables the realization of highly efficient and durable oxygen electrocatalysis performance and application in ZABs. Multiple characterizations confirm that Mn1@Fe-N-C/CNTs is equipped with Mn-N2O2 and Fe-N4 sites and Fe nanoparticles. The Mn-N2O2 sites not only tune the electron structure of Fe-Nx sites to enhance intrinsic activity, but also scavenge the attack of radicals from Fe-Nx sites for improvement in ORR durability. As a result, Mn1@Fe-N-C/CNTs exhibits enhanced ORR performance to traditional Fe-N-C catalysts with high E1/2 of 0.89 V vs reversible hydrogen electrode (RHE) and maintains ORR activity after 15 000 CV. Impressively, Mn1@Fe-N-C/CNTs also presents excellent OER activity and the difference (ΔE) between E1/2 of ORR and OER potential at 10 mA cm-2 (Ej10) is only 0.59 V, outperforming most reported catalysts. In addition, the maintainable bifunctional activity of Mn1@Fe-N-C/CNTs is demonstrated in ZABs with almost unchanged cycle voltage efficiency up to 200 h. This work highlights the critical role of Mn single atoms in enhancing ORR activity and stability, promoting the development of advanced catalysts.
Collapse
Affiliation(s)
- Lan Ran
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yan Xu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xinwang Zhu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Shanyong Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Xiaoqing Qiu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
49
|
Qin Y, Zhang W, Wang R, Li L, Zhao X, Zhang W. Metal-Organic Frameworks-Derived FeS-Co 9S 8/NCA Porous Aerogel Electrocatalyst as a High-Performance Cathode for Zinc-Air Batteries. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1024-1034. [PMID: 38113516 DOI: 10.1021/acs.langmuir.3c03260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Herein, a novel strategy to establish a porous FeS-Co9S8/carbon aerogel (FeS-Co9S8/NCA) electrocatalyst for oxygen evolution reaction (OER) is fabricated via applying a green biomass carrageenan sulfuration method to CoFe-metal-organic frameworks (MOFs). The FeS-Co9S8/NCA exhibits optimized catalytic activity toward the OER with a lower overpotential of 322 mV, which is overmatched to the majority of transition metal sulfides (TMSs), as well as lifted long-term durability without evident variation in the LSV curves after 3000 cycles. Rechargeable liquid zinc-air battery (ZAB) assembled with FeS-Co9S8/NCA as the OER catalyst indicated a maximum power density of 176 mW cm-2 and superior cycling stability without raised polarization even after 48 h, outperforms commercial RuO2-based ZAB. Furthermore, the flexible solid-state ZAB built with FeS-Co9S8/NCA also demonstrated outdistance properties and bendability. The excellent performance stems from the hierarchical porous aerogel structure, which offers a multiscale mass/electron transport channel, together with the interfacial synergy effect between FeS and Co9S8, which serves as the active site of the OER reaction. Thus, this work instituted a novel strategy for obtaining both clean and efficient transition metal sulfide electrocatalysts for the OER reaction and an environmentally friendly biomass material-based sustainable electrocatalyst.
Collapse
Affiliation(s)
- Yunong Qin
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Wanzhihan Zhang
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Rui Wang
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Ling Li
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Xiaohui Zhao
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Wenming Zhang
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| |
Collapse
|
50
|
Zhang P, Liu Y, Liu S, Zhou L, Wu X, Han G, Liu T, Sun K, Li B, Jiang J. Precise Design and Modification Engineering of Single-Atom Catalytic Materials for Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305782. [PMID: 37718497 DOI: 10.1002/smll.202305782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Indexed: 09/19/2023]
Abstract
Due to their unique electronic and structural properties, single-atom catalytic materials (SACMs) hold great promise for the oxygen reduction reaction (ORR). Coordinating environmental and engineering strategies is the key to improving the ORR performance of SACMs. This review summarizes the latest research progress and breakthroughs of SACMs in the field of ORR catalysis. First, the research progress on the catalytic mechanism of SACMs acting on ORR is reviewed, including the latest research results on the origin of SACMs activity and the analysis of pre-adsorption mechanism. The study of the pre-adsorption mechanism is an important breakthrough direction to explore the origin of the high activity of SACMs and the practical and theoretical understanding of the catalytic process. Precise coordination environment modification, including in-plane, axial, and adjacent site modifications, can enhance the intrinsic catalytic activity of SACMs and promote the ORR process. Additionally, several engineering strategies are discussed, including multiple SACMs, high loading, and atomic site confinement. Multiple SACMs synergistically enhance catalytic activity and selectivity, while high loading can provide more active sites for catalytic reactions. Overall, this review provides important insights into the design of advanced catalysts for ORR.
Collapse
Affiliation(s)
- Pengxiang Zhang
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Yanyan Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
- College of Science, Henan Agricultural University, 63 Agriculture Road, Zhengzhou, 450002, P. R. China
| | - Shuling Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Limin Zhou
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Xianli Wu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Guosheng Han
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Tao Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Kang Sun
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
| | - Baojun Li
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
| |
Collapse
|