1
|
Zhao Y, Huang X, Wang Z, He P. Coverage of surfactants on polyoxometalate tunes the selectivity of alkene epoxidation. Chem Commun (Camb) 2025; 61:5166-5169. [PMID: 40070235 DOI: 10.1039/d5cc00075k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Self-assembled nanosheets were formed through the interaction between polyoxometalate (POM) and dodecyltrimethylammonium bromide (DTB), which has hydrophilic groups at both ends of the carbon chain and serves as a "bridge" connecting the POMs. The resulting POM assemblies demonstrated high efficiency in the epoxidation of cyclohexene, with the selectivity of the reaction being tunable by adjusting the coverage of DTB on the POM.
Collapse
Affiliation(s)
- Yali Zhao
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xinjie Huang
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Ziru Wang
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Peilei He
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- CISRI & NIMTE Joint Innovation Center for Rare Earth Permanent Magnets, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| |
Collapse
|
2
|
Yu H, Wang X, Kong T, Gao MY, Cui X. Assembling molecular semiconductor composites for enhanced photocatalytic cyclohexene oxidation. Chem Commun (Camb) 2024; 60:15051-15054. [PMID: 39620312 DOI: 10.1039/d4cc04194a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Here, a molecular semiconductor composite was assembled by integrating atomically precise Ti12-oxo clusters and phosphotungstic acid (PTA) into a cocrystal system. A molecular heterojunction was demonstrated to form between the two units, which allows the charge separation efficiency to be enhanced, resulting in a two-fold increase in photocatalytic activity for cyclohexene oxidation compared to the physically mixed composite.
Collapse
Affiliation(s)
- Haiyan Yu
- Anhui Engineering Research Center of Carbon Neutrality, The Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, Anhui, P. R. China.
| | - Xueting Wang
- Anhui Engineering Research Center of Carbon Neutrality, The Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, Anhui, P. R. China.
| | - Tingting Kong
- Anhui Engineering Research Center of Carbon Neutrality, The Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, Anhui, P. R. China.
| | - Mei-Yan Gao
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland.
| | - Xiaofeng Cui
- Anhui Engineering Research Center of Carbon Neutrality, The Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, Anhui, P. R. China.
| |
Collapse
|
3
|
Li C, Zhang J, Guan L, Hao Q, Zhang W, Zhou Y, Teng B, Wen X. Exploring effects of reactant’s chemical environments on adsorption and reaction mechanism by global optimization and IR spectrum calculation, using NO oxidation as a case. APPLIED SURFACE SCIENCE 2024; 677:160996. [DOI: 10.1016/j.apsusc.2024.160996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Ghuffar HA, Noh H. Lithium-coupled electron transfer reactions of nano-confined WO x within Zr-based metal-organic framework. Front Chem 2024; 12:1427536. [PMID: 38947957 PMCID: PMC11214277 DOI: 10.3389/fchem.2024.1427536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
Interfacial charge transfer reactions involving cations and electrons are fundamental to (photo/electro) catalysis, energy storage, and beyond. Lithium-coupled electron transfer (LCET) at the electrode-electrolyte interfaces of lithium-ion batteries (LIBs) is a preeminent example to highlight the importance of charge transfer in modern-day society. The thermodynamics of LCET reactions define the minimal energy for charge/discharge of LIBs, and yet, these parameters are rarely available in the literature. Here, we demonstrate the successful incorporation of tungsten oxides (WOx) within a chemically stable Zr-based metal-organic framework (MOF), MOF-808. Cyclic voltammograms (CVs) of the composite, WOx@MOF-808, in Li+-containing acetonitrile (MeCN)-based electrolytes showed an irreversible, cathodic Faradaic feature that shifted in a Nernstian fashion with respect to the Li+ concentration, i.e., ∼59 mV/log [(Li+)]. The Nernstian dependence established 1:1 stoichiometry of Li+ and e-. Using the standard redox potential of Li+/0, the apparent free energy of lithiation of WOx@MOF-808 (ΔGapp,Li) was calculated to be -36 ± 1 kcal mol-1. ΔGapp,Li is an intrinsic parameter of WOx@MOF-808, and thus by deriving the similar reaction free energies of other metal oxides, their direct comparisons can be achieved. Implications of the reported measurements will be further contrasted to proton-coupled electron transfer (PCET) reactions on metal oxides.
Collapse
Affiliation(s)
| | - Hyunho Noh
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, OK, United States
| |
Collapse
|
5
|
Li HY, Kong XJ, Han SD, Pang J, He T, Wang GM, Bu XH. Metalation of metal-organic frameworks: fundamentals and applications. Chem Soc Rev 2024; 53:5626-5676. [PMID: 38655667 DOI: 10.1039/d3cs00873h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Metalation of metal-organic frameworks (MOFs) has been developed as a prominent strategy for materials functionalization for pore chemistry modulation and property optimization. By introducing exotic metal ions/complexes/nanoparticles onto/into the parent framework, many metallized MOFs have exhibited significantly improved performance in a wide range of applications. In this review, we focus on the research progress in the metalation of metal-organic frameworks during the last five years, spanning the design principles, synthetic strategies, and potential applications. Based on the crystal engineering principles, a minor change in the MOF composition through metalation would lead to leveraged variation of properties. This review starts from the general strategies established for the incorporation of metal species within MOFs, followed by the design principles to graft the desired functionality while maintaining the porosity of frameworks. Facile metalation has contributed a great number of bespoke materials with excellent performance, and we summarize their applications in gas adsorption and separation, heterogeneous catalysis, detection and sensing, and energy storage and conversion. The underlying mechanisms are also investigated by state-of-the-art techniques and analyzed for gaining insight into the structure-property relationships, which would in turn facilitate the further development of design principles. Finally, the current challenges and opportunities in MOF metalation have been discussed, and the promising future directions for customizing the next-generation advanced materials have been outlined as well.
Collapse
Affiliation(s)
- Hai-Yu Li
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| | - Xiang-Jing Kong
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Song-De Han
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
| | - Jiandong Pang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| | - Tao He
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
| | - Xian-He Bu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| |
Collapse
|
6
|
Mao L, Qian J. Interfacial Engineering of Heterogeneous Reactions for MOF-on-MOF Heterostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308732. [PMID: 38072778 DOI: 10.1002/smll.202308732] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/16/2023] [Indexed: 05/18/2024]
Abstract
Metal-organic frameworks (MOFs), as a subclass of porous crystalline materials with unique structures and multifunctional properties, play a pivotal role in various research domains. In recent years, significant attention has been directed toward composite materials based on MOFs, particularly MOF-on-MOF heterostructures. Compared to individual MOF materials, MOF-on-MOF structures harness the distinctive attributes of two or more different MOFs, enabling synergistic effects and allowing for the tailored design of diverse multilayered architectures to expand their application scope. However, the rational design and facile synthesis of MOF-on-MOF composite materials are in principle challenging due to the structural diversity and the intricate interfaces. Hence, this review primarily focuses on elucidating the factors that influence their interfacial growth, with a specific emphasis on the interfacial engineering of heterogeneous reactions, in which MOF-on-MOF hybrids can be conveniently obtained by using pre-fabricated MOF precursors. These factors are categorized as internal and external elements, encompassing inorganic metals, organic ligands, lattice matching, nucleation kinetics, thermodynamics, etc. Meanwhile, these intriguing MOF-on-MOF materials offer a wide range of advantages in various application fields, such as adsorption, separation, catalysis, and energy-related applications. Finally, this review highlights current complexities and challenges while providing a forward-looking perspective on future research directions.
Collapse
Affiliation(s)
- Lujiao Mao
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| |
Collapse
|
7
|
Lee S, Xie H, Chen Z, Mian MR, Gómez-Torres A, Syed ZH, Reischauer S, Chapman KW, Delferro M, Farha OK. Metal-Organic Frameworks as a Tunable Platform to Deconvolute Stereoelectronic Effects on the Catalytic Activity of Thioanisole Oxidation. J Am Chem Soc 2024; 146:3955-3962. [PMID: 38295514 DOI: 10.1021/jacs.3c11809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The local environment of a metal active site plays an important role in affecting the catalytic activity and selectivity. In recent studies, tailoring the behavior of a molybdenum-based active site via modulation of the first coordination sphere has led to improved thioanisole oxidation performance, but disentangling electronic effects from steric influences that arise from these modifications is nontrivial, especially in heterogeneous systems. To this end, the tunability of metal-organic frameworks (MOFs) makes them promising scaffolds for controlling the coordination sphere of a heterogeneous, catalytically active metal site while offering additional attractive features such as crystallinity and high porosity. Herein, we report a variety of MOF-supported Mo species, which were investigated for catalytic thioanisole oxidation to methyl phenyl sulfoxide and/or methyl phenyl sulfone using tert-butyl hydroperoxide (tBHP) as the oxidant. In particular, MOFs of contrasting node architectures were targeted, presenting a unique opportunity to investigate the stereoelectronic control of Mo active sites in a systematic manner. A Zr6-based MOF, NU-1000, was employed along with its sulfated analogue Zr6-based NU-1000-SO4 to anchor a dioxomolybdenum species, which enabled examination of support-mediated active site polarizability on catalytic performance. In addition, a MOF containing a mixed metal node, Mo-MFU-4l, was used to probe the stereoelectronic impact of an N-donor ligand environment on the catalytic activity of the transmetalated Mo center. Characterization techniques, including single crystal X-ray diffraction, were concomitantly used with reaction time course profiles to better comprehend the dynamics of different Mo active sites, thus correlating structural change with activity.
Collapse
Affiliation(s)
- Seryeong Lee
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Haomiao Xie
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhihengyu Chen
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Mohammad Rasel Mian
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Alejandra Gómez-Torres
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Zoha H Syed
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Susanne Reischauer
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Karena W Chapman
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
8
|
Khoo RH, Fiankor C, Yang S, Hu W, Yang C, Lu J, Morton MD, Zhang X, Liu Y, Huang J, Zhang J. Postsynthetic Modification of the Nonanuclear Node in a Zirconium Metal-Organic Framework for Photocatalytic Oxidation of Hydrocarbons. J Am Chem Soc 2023; 145:24052-24060. [PMID: 37880201 PMCID: PMC10636760 DOI: 10.1021/jacs.3c07237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
Heterogeneous catalysis plays an indispensable role in chemical production and energy conversion. Incorporation of transition metals into metal oxides and zeolites is a common strategy to fine-tune the activity and selectivity of the resulting solid catalysts, as either the active center or promotor. Studying the underlying mechanism is however challenging. Decorating the metal-oxo clusters with transition metals in metal-organic frameworks (MOFs) via postsynthetic modification offers a rational approach to construct well-defined structural models for better understanding of the reaction mechanism. Therefore, it is important to expand the materials scope beyond the currently widely studied zirconium MOFs consisting of Zr6 nodes. In this work, we report the design and synthesis of a new (4,12)-connected Zr-MOF with ith topology that consists of rare Zr9 nodes. FeIII was further incorporated onto the Zr9 nodes of the framework, and the resulting MOF material exhibits significantly enhanced activity and selectivity toward the photocatalytic oxidation of toluene. This work demonstrates a delicate ligand design strategy to control the nuclearity of Zr-oxo clusters, which further dictates the number and binding sites of transition metals and the overall photocatalytic activity toward C-H activation. Our work paves the way for future exploration of the structure-activity study of catalysts using MOFs as the model system.
Collapse
Affiliation(s)
- Rebecca
Shu Hui Khoo
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Christian Fiankor
- Department
of Chemistry, University of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| | - Sizhuo Yang
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Wenhui Hu
- Department
of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Chongqing Yang
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Jingzhi Lu
- Department
of Chemistry, University of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| | - Martha D. Morton
- Department
of Chemistry, University of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| | - Xu Zhang
- Jiangsu
Engineering Laboratory for Environment Functional Materials, Jiangsu
Collaborative Innovation Center of Regional Modern Agriculture &
Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, No. 111 West Changjiang Road, Huaian, Jiangsu 223300, China
| | - Yi Liu
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Jier Huang
- Department
of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Jian Zhang
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
9
|
Quezada-Novoa V, Titi HM, Villanueva FY, Wilson MWB, Howarth AJ. The Effect of Linker-to-Metal Energy Transfer on the Photooxidation Performance of an Isostructural Series of Pyrene-Based Rare-Earth Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302173. [PMID: 37116124 DOI: 10.1002/smll.202302173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/04/2023] [Indexed: 06/19/2023]
Abstract
The tetratopic linker, 1,3,6,8-tetrakis(p-benzoic acid)pyrene (H4 TBAPy) along with rare-earth (RE) ions is used for the synthesis of 9 isostructures of a metal-organic framework (MOF) with shp topology, named RE-CU-10 (RE = Y(III), Gd(III), Tb(III), Dy(III), Ho(III), Er(III), Tm(III), Yb(III), and Lu(III)). The synthesis of each RE-CU-10 analogue requires different reaction conditions to achieve phase pure products. Single crystal X-ray diffraction indicates the presence of a RE9 -cluster in Y- to Tm-CU-10, while a RE11 -cluster is observed for Yb- and Lu-CU-10. The photooxidation performance of RE-CU-10 analogues is evaluated, observing competition between linker-to-metal energy transfer versus the generation of singlet oxygen. The singlet oxygen produced is used to detoxify a mustard gas simulant 2-chloroethylethyl sulfide, with half-lives ranging from 4.0 to 5.8 min, some of the fastest reported to date using UV-irradiation and < 1 mol% catalyst, in methanol under O2 saturation.
Collapse
Affiliation(s)
- Victor Quezada-Novoa
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St. W., Montreal, Quebec, H4B 1R6, Canada
| | - Hatem M Titi
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, Quebec, H3A 0B8, Canada
| | | | - Mark W B Wilson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Ashlee J Howarth
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St. W., Montreal, Quebec, H4B 1R6, Canada
| |
Collapse
|
10
|
Ke F, Pan A, Liu J, Liu X, Yuan T, Zhang C, Fu G, Peng C, Zhu J, Wan X. Hierarchical camellia-like metal–organic frameworks via a bimetal competitive coordination combined with alkaline-assisted strategy for boosting selective fluoride removal from brick tea. J Colloid Interface Sci 2023; 642:61-68. [PMID: 37001458 DOI: 10.1016/j.jcis.2023.03.137] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Developing an efficient and easy scale-up adsorbent with excellent fluoride adsorption and selectivity from brick tea is urgently desired. However, the separation of fluoride from tea is particularly challenging due to it contains abundant active compounds. Herein, we report ultrahigh fluoride adsorption from brick tea by a hierarchical camellia-like bimetallic metal-organic frameworks (MOFs). The hierarchical camellia-like Ca2Al1Fu is fabricated via a Ca/Al competitive coordination combined with alkaline-assisted strategy to tailor the morphology and porous structure. Subsequently, we systematically explore how the kinetic, thermodynamic, pH, and coexisting ions parameters employed during fluoride adsorption influence the resulting uptake behavior of Ca2Al1Fu. Further, sensory evaluation of the tea after adsorption is explored to determine the optimal dose that makes Ca2Al1Fu as a practical adsorbent for application. Importantly, the fluoride adsorption capacity of optical CaAlFu with mixed CaAl metals molar ratio of 2:1 is 3.15 and 2.11 times higher than that of pristine CaFu and AlFu, respectively. Theoretical results reveal that the boosting selective fluoride removal can be ascribed to the specific interactions between fluoride and CaAl coordinatively unsaturated bimetallic centers. These results present an effective design strategy for the construction of bimetallic MOFs with hierarchically porous structures for broad prospect in adsorption-based applications.
Collapse
|
11
|
Zhu YJ, Wang JJ, Li JY, Zhang T. A metal-organic framework-supported dinuclear iron catalyst for hydroboration of carbonyl compounds. Dalton Trans 2023. [PMID: 37191176 DOI: 10.1039/d3dt01109g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Preparation of catalytically active dinuclear transition metal complexes with an open coordination sphere is a challenging task because the metal sites tend to be "saturated" with excess donor atoms around during synthesis. By isolating the binding scaffolds with the metal-organic framework (MOF) skeleton and installing metal sites through post-synthetic modification, we succeed in constructing a MOF-supported metal catalyst, namely FICN-7-Fe2, with dinuclear Fe2 sites. FICN-7-Fe2 effectively catalyses the hydroboration of a broad range of ketone, aldehyde, and imine substrates with a low loading of 0.05 mol%. Remarkably, kinetic measurements showed that FICN-7-Fe2 is 15 times more active than its mononuclear counterpart FICN-7-Fe1, indicating that cooperative substrate activation on the two Fe centres significantly enhances the catalysis.
Collapse
Affiliation(s)
- Yi-Jie Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
- Fujian College, University of the Chinese Academy of Sciences, Fuzhou 350002, China
| | - Jun-Jie Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Jun-Yu Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Teng Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Fujian College, University of the Chinese Academy of Sciences, Fuzhou 350002, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Gan N, Sun Q, Peng X, Ai P, Wu D, Yi B, Xia H, Wang X, Li H. MOFs-alginate/polyacrylic acid/poly (ethylene imine) heparin-mimicking beads as a novel hemoadsorbent for bilirubin removal in vitro and vivo models. Int J Biol Macromol 2023; 235:123868. [PMID: 36870639 DOI: 10.1016/j.ijbiomac.2023.123868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
Metal-organic frameworks (MOFs) have a potential application in blood purification, but their microcrystalline nature has hampered their industrial application. Here, novel MOFs-polymer beads based on UiO, sodium alginate, polyacrylic acid, and poly (ethylene imine) were prepared and applied as a whole blood hemoadsorbent for the first time. The amidation among polymers immobilized UiO66-NH2 into the network of the optimal product (SAP-3), and the NH2 of UiO66-NH2 significantly increased the removal rate (70 % within 5 min) of SAP-3 on bilirubin. The adsorption of SAP-3 on bilirubin mainly obeyed the pseudo-second-order kinetic, Langmuir isotherm and Thomas models with a maximum adsorption capacity (qm) of 63.97 mg·g-1. Experimental and density functional theory simulation results show that bilirubin was mainly adsorbed by UiO66-NH2via electrostatic force, hydrogen bonding, and π-π interactions. Notably, the adsorption in vivo show that the total bilirubin removal rate in the whole blood of the rabbit model was up to 42 % after 1 h of adsorption. Given its excellent stability, cytotoxicity, and hemocompatibility, SAP-3 has a great potential in hemoperfusion therapy. This study proposes an effective strategy for settling the powder property of MOFs and could provide experimental and theoretical references for application of MOFs in blood purification.
Collapse
Affiliation(s)
- Na Gan
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Qiaomei Sun
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Xu Peng
- Laboratory Animal Center, Sichuan University, Chengdu 610065, China
| | - Pu Ai
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Di Wu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Bin Yi
- R&D Center of China Tobacco Yunnan Industrial Co., Ltd., No.367, Hongjin Road, Kunming 650231, China
| | - Haobin Xia
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Xinlong Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Hui Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
13
|
Liu X, Qian B, Zhang D, Yu M, Chang Z, Bu X. Recent progress in host–guest metal–organic frameworks: Construction and emergent properties. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Xie FT, Li YL, Yang T, Yang YH, Hu R. Metal-Organic Framework UiO-66-Mediated Dual-Signal Ratiometric Electrochemical Sensor for microRNA Detection with DNA Walker Amplification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11828-11836. [PMID: 36148509 DOI: 10.1021/acs.langmuir.2c00932] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Electrochemical nanotags with strong signal input are necessary for a ratiometric electrochemical sensor to overcome the drawbacks of inaccurate detection results. In this paper, the metal-organic framework (MOF) UiO-66 was utilized as an electrochemical signal tag. A stable and strong current response at +0.9 V can be detected in neutral conditions. MicroRNA (miRNA) was employed as the model analyte. Herein, an enzyme-free DNA-walker-based ultrasensitive ratiometric electrochemical biosensor in combination with Zr MOF (UiO-66) signal tags to detect miRNA was demonstrated. In the presence of miRNA, the autonomous walker movement can be initiated by miRNA, leading to the release of biotin-modified fragments. Thus, streptavidin-labeled UiO-66 nanomaterials were not bound to the electrode, generating a low signal response of UiO-66 at +0.9 V. However, the current signal of electrolyte solution as reference at +0.2 V was increased due to the enhancement of electrode conductivity. This ratiometic sensor demonstrated high sensitivity, selectivity, and reproducibility. It can eliminate the disturbance of environmental factors and basic electrode characteristics, providing more accurate signals. A limit of detection (LOD) of 0.17 fM was achieved. Moreover, the method was also used to detect miRNA-21 spiked in real serum samples.
Collapse
Affiliation(s)
- Fa-Ting Xie
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan 650500, P.R. China
| | - Yu-Long Li
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan 650500, P.R. China
| | - Tong Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan 650500, P.R. China
| | - Yun-Hui Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan 650500, P.R. China
| | - Rong Hu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
15
|
Multifunctional Mn(II) Metal-Organic framework for photocatalytic aerobic oxidation and C H direct trifluoromethylation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Sheng W, Wang X, Wang Y, Chen S, Lang X. Integrating TEMPO into a Metal–Organic Framework for Cooperative Photocatalysis: Selective Aerobic Oxidation of Sulfides. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Wenlong Sheng
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoxiao Wang
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yuexin Wang
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Shengli Chen
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xianjun Lang
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
17
|
Teng Q, He Y, Chen G, Chen S. Cage‐Ligand
Strategy for the Construction of Zr
4
(embonate)
6
–based
MOFs
with
Third‐Order Nonlinear‐Optical
Properties. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qian Teng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- College of Chemistry Fuzhou University Fuzhou Fujian 350108 China
| | - Yan‐Ping He
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Guang‐Hui Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Shu‐Mei Chen
- College of Chemistry Fuzhou University Fuzhou Fujian 350108 China
| |
Collapse
|
18
|
Wang K, Jiang H, Liu H, Chen H, Zhang F. Accelerated Direct Hydroxylation of Aryl Chlorides with Water to Phenols via the Proximity Effect in a Heterogeneous Metallaphotocatalyst. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kaixuan Wang
- Department of Chemistry, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, China
| | - Huating Jiang
- Department of Chemistry, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, China
| | - Helong Liu
- Department of Chemistry, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, China
| | - Huiying Chen
- Department of Chemistry, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, China
| | - Fang Zhang
- Department of Chemistry, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, China
| |
Collapse
|