1
|
Nayek A, Poria RK, Ahmed ME, Patra S, Dey SG, Dey A. Hydrogen Oxidation by Bioinspired Models of [FeFe]-Hydrogenase. ACS ORGANIC & INORGANIC AU 2025; 5:105-116. [PMID: 40190389 PMCID: PMC11969278 DOI: 10.1021/acsorginorgau.4c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/06/2024] [Accepted: 11/20/2024] [Indexed: 04/09/2025]
Abstract
Synthetic azadithiolate-bridged diiron clusters serve as structural analogues of the active site of [FeFe]-hydrogenases. Recently, an o-alkyl substitution of aniline-based azadithiolate bridge allowed these synthetic models to both oxidize H2 and reduce H+, i.e., bidirectional catalysis. Hydrogen oxidation by synthetic analogues of hydrogenases is rare, and even rarer is the ability of diiron hexacarbonyls to oxidize H2. A series of synthetic azadithiolate-bridged biomimetic diiron hexacarbonyl complexes are synthesized where the substitution in the para position of the ortho-methyl aniline in the azadithiolate bridge is systematically varied between electron-withdrawing and electron-donating groups to understand factors that control H2 oxidation by diiron hexacarbonyl analogues of [FeFe]-hydrogenases. The results show that the substituents in the para position of the ortho-ethyl aniline affect the electronic structure of the azadithiolate bridge as well as that of the diiron cluster. The electron-withdrawing -NO2 substituent results in faster H2 oxidation relative to that of a -OCH3 substituent.
Collapse
Affiliation(s)
- Abhijit Nayek
- School of Chemical Science, Indian Association for
the Cultivation of Science, 2A & 2B Raja S.C Mullick Road, Kolkata, West Bengal 700032 India
| | - Rabin Kumar Poria
- School of Chemical Science, Indian Association for
the Cultivation of Science, 2A & 2B Raja S.C Mullick Road, Kolkata, West Bengal 700032 India
| | - Md Estak Ahmed
- School of Chemical Science, Indian Association for
the Cultivation of Science, 2A & 2B Raja S.C Mullick Road, Kolkata, West Bengal 700032 India
| | - Suman Patra
- School of Chemical Science, Indian Association for
the Cultivation of Science, 2A & 2B Raja S.C Mullick Road, Kolkata, West Bengal 700032 India
| | - Somdatta Ghosh Dey
- School of Chemical Science, Indian Association for
the Cultivation of Science, 2A & 2B Raja S.C Mullick Road, Kolkata, West Bengal 700032 India
| | - Abhishek Dey
- School of Chemical Science, Indian Association for
the Cultivation of Science, 2A & 2B Raja S.C Mullick Road, Kolkata, West Bengal 700032 India
| |
Collapse
|
2
|
Haake M, Reuillard B, Chavarot-Kerlidou M, Costentin C, Artero V. Proton Relays in Molecular Catalysis for Hydrogen Evolution and Oxidation: Lessons From the Mimicry of Hydrogenases and Electrochemical Kinetic Analyses. Angew Chem Int Ed Engl 2024; 63:e202413910. [PMID: 39555743 DOI: 10.1002/anie.202413910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Indexed: 11/19/2024]
Abstract
The active sites of metalloenzymes involved in small molecules activation often contain pendant bases that act as proton relay promoting proton-coupled electron-transfer processes. Here we focus on hydrogenases and on the reactions they catalyze, i. e. the hydrogen evolution and oxidation reactions. After a short description of these enzymes, we review some of the various biomimetic and bioinspired molecular systems that contain proton relays. We then provide the formal electrochemical framework required to decipher the key role of such proton relay to enhance catalysis in a single direction and discuss the few systems active for H2 evolution for which quantitative kinetic data are available. We finally highlight key parameters required to reach bidirectional catalysis (both hydrogen evolution and hydrogen oxidation catalyzed) and then transition to reversible catalysis (both reactions catalyzed in a narrow potential range) as well as illustrate these features on few systems from the literature.
Collapse
Affiliation(s)
- Matthieu Haake
- Univ. Grenoble. Alpes, CNRS, CEA, IRIG, L, aboratoire de Chimie et Biologie des Métaux, 38000, Grenoble, France
| | - Bertrand Reuillard
- Univ. Grenoble. Alpes, CNRS, CEA, IRIG, L, aboratoire de Chimie et Biologie des Métaux, 38000, Grenoble, France
| | - Murielle Chavarot-Kerlidou
- Univ. Grenoble. Alpes, CNRS, CEA, IRIG, L, aboratoire de Chimie et Biologie des Métaux, 38000, Grenoble, France
| | - Cyrille Costentin
- Département de Chimie Moléculaire, Univ. Grenoble. Alpes, CNRS, 38000, Grenoble, France
| | - Vincent Artero
- Univ. Grenoble. Alpes, CNRS, CEA, IRIG, L, aboratoire de Chimie et Biologie des Métaux, 38000, Grenoble, France
| |
Collapse
|
3
|
Li W, Peng X, Qin H, Xu Y, Han J, Lei H, Cao R. Electrocatalytic hydrogen evolution reaction with a Cu porphyrin bearing meso-CF 3 substituents. Dalton Trans 2024; 53:19121-19125. [PMID: 39588664 DOI: 10.1039/d4dt03098b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Cu tetrakis(trifluoromethyl)porphyrin (1) was synthesized and examined as an electrocatalyst for the hydrogen evolution reaction (HER). We showed that 1 is highly efficient for the electrocatalytic HER in acetonitrile with trifluoroacetic acid (TFA) and outperforms Cu tetrakis(pentafluorophenyl)porphyrin (2) by decreasing the onset overpotential by 220 mV. The icat/ip value (icat is the catalytic peak current and ip is the non-catalytic peak current) with 1 is 97, while it is 53 with 2. These results suggest that for Cu porphyrins, meso-CF3 substituents are much more effective than meso-C6F5 substituents to enhance the HER.
Collapse
Affiliation(s)
- Wenzi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Xinyang Peng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Haonan Qin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yuhan Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Jinxiu Han
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
4
|
Ahmed ME, Das P, Ahamed SM, Chattopadhyay S, Nayek A, Mondal M, Malik S, Dey A. Amplifying Reactivity of Bio-Inspired [FeFe]-Hydrogenase Mimics by Organic Nanotubes. Chemistry 2024; 30:e202403011. [PMID: 39206678 DOI: 10.1002/chem.202403011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
A bio-inspired FeFe hydrogenase model which catalyses hydrogen evolution reaction (HER) in acidic solutions is immobilized in polyaniline (PANI)-based nanotubes. A combination of analytical techniques reveals that this construct maintains both the molecular signatures of the bio-inspired complex and the material properties of PANI. The amine and imine-rich environment of the PANI chain amplifies the inherent HER activity of the bio-inspired complex, allowing electrocatalytic HER at neutral pH, with lower overpotentials and higher current densities compared to the bio-inspired complex alone. This construct retains the oxygen stability of the bio-inspired complex and remains stable through several hours of aerobic electrolysis, producing only 6.5 % H₂O₂ from the competing oxygen reduction reaction (ORR).
Collapse
Affiliation(s)
- Md Estak Ahmed
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Puspendu Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Sk Mustak Ahamed
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Samir Chattopadhyay
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Abhijit Nayek
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Mintu Mondal
- School of Physical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Sudip Malik
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
5
|
Luo Y, Zhang Y, Zhu J, Tian X, Liu G, Feng Z, Pan L, Liu X, Han N, Tan R. Material Engineering Strategies for Efficient Hydrogen Evolution Reaction Catalysts. SMALL METHODS 2024; 8:e2400158. [PMID: 38745530 PMCID: PMC11672190 DOI: 10.1002/smtd.202400158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/27/2024] [Indexed: 05/16/2024]
Abstract
Water electrolysis, a key enabler of hydrogen energy production, presents significant potential as a strategy for achieving net-zero emissions. However, the widespread deployment of water electrolysis is currently limited by the high-cost and scarce noble metal electrocatalysts in hydrogen evolution reaction (HER). Given this challenge, design and synthesis of cost-effective and high-performance alternative catalysts have become a research focus, which necessitates insightful understandings of HER fundamentals and material engineering strategies. Distinct from typical reviews that concentrate only on the summary of recent catalyst materials, this review article shifts focus to material engineering strategies for developing efficient HER catalysts. In-depth analysis of key material design approaches for HER catalysts, such as doping, vacancy defect creation, phase engineering, and metal-support engineering, are illustrated along with typical research cases. A special emphasis is placed on designing noble metal-free catalysts with a brief discussion on recent advancements in electrocatalytic water-splitting technology. The article also delves into important descriptors, reliable evaluation parameters and characterization techniques, aiming to link the fundamental mechanisms of HER with its catalytic performance. In conclusion, it explores future trends in HER catalysts by integrating theoretical, experimental and industrial perspectives, while acknowledging the challenges that remain.
Collapse
Affiliation(s)
- Yue Luo
- School of ResourcesEnvironment and MaterialsGuangxi UniversityNanning530004China
| | - Yulong Zhang
- College of Mechatronical and Electrical EngineeringHebei Agricultrual UnivesityBaoding07001China
| | - Jiayi Zhu
- Warwick Electrochemical EngineeringWMGUniversity of WarwickCoventryCV4 7ALUK
| | - Xingpeng Tian
- Warwick Electrochemical EngineeringWMGUniversity of WarwickCoventryCV4 7ALUK
| | - Gang Liu
- IDTECH (Suzhou) Co. Ltd.Suzhou215217China
| | - Zhiming Feng
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Liwen Pan
- School of ResourcesEnvironment and MaterialsGuangxi UniversityNanning530004China
- Education Department of Guangxi Zhuang Autonomous RegionKey Laboratory of High Performance Structural Materials and Thermo‐surface Processing (Guangxi University)Nanning530004China
| | - Xinhua Liu
- School of Transportation Science and EngineeringBeihang UniversityBeijing100191China
| | - Ning Han
- Department of Materials EngineeringKU LeuvenKasteelpark Arenberg 44, bus 2450HeverleeB‐3001Belgium
| | - Rui Tan
- Warwick Electrochemical EngineeringWMGUniversity of WarwickCoventryCV4 7ALUK
- Department of Chemcial EngineeringSwansea UniversitySwanseaSA1 8ENUnited Kingdom
| |
Collapse
|
6
|
Droghetti F, Begato F, Raulin M, Musiu G, Licini G, Natali M, Zonta C. Strong Enhancement in Cobalt(II)-TPMA Aqueous Hydrogen Photosynthesis through Intramolecular Proton Relay. Angew Chem Int Ed Engl 2024; 63:e202408316. [PMID: 39008428 DOI: 10.1002/anie.202408316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
Photosynthetic hydrogen generation by cobalt(II) tris(2-pyridylmethyl)amine (TPMA) complexes is mainly limited by protonation kinetics and decomposition routes involving demetallation. In the present work we have explored the effects of both proton shuttles and improved rigidity on the catalytic ability of cobalt(II) TPMA complexes. Remarkably, we demonstrate that, while a small enhancement in the catalytic performance is attained in a rigid cage structure, the introduction of ammonium groups as proton transfer relays in close proximity to the cobalt center allows to reach a 4-fold increase in the quantum efficiency of H2 formation, and a surprising 22-fold gain in the maximum turnover number, at low catalyst concentration. The beneficial role of the ammonium relays in promoting faster intramolecular proton transfer to the reduced cobalt center is documented by transient absorption spectroscopy, showcasing the great relevance of tuning the catalyst periphery to achieve efficient catalysis of solar fuel formation.
Collapse
Affiliation(s)
- Federico Droghetti
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Federico Begato
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131, Padova, Italy
| | - Melvin Raulin
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131, Padova, Italy
| | - Gioia Musiu
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Giulia Licini
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131, Padova, Italy
| | - Mirco Natali
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Cristiano Zonta
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
7
|
Lee J, Lee J, Seo J. Exchange coupling states of cobalt complexes to control proton-coupled electron transfer. Nat Commun 2024; 15:8688. [PMID: 39375346 PMCID: PMC11458597 DOI: 10.1038/s41467-024-53099-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024] Open
Abstract
The electrochemical proton reactivity of transition metal complexes receives significant attentions. A thorough understanding of proton-coupled electron transfer (PCET) pathways is essential for elucidating the mechanism behind a proton reduction reaction, and controlling the pathway is a key focus in the field of the catalyst development. Spin interactions within complexes, which arise during electron transfer, can affect significantly the PCET pathway. Herein, we explore the phenomenon of spin rearrangement during the electrochemical reorganization of high-spin cobalt complexes. Our findings reveal that opposing spin interactions, induced by different coordination environments, can alter the PCET pathway. Finally, detailed analysis of the PCET pathway allows us to propose mechanisms for proton reduction in high-spin cobalt complexes.
Collapse
Affiliation(s)
- Jueun Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
- Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals(Inn-ECOSysChem), Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Junseong Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Junhyeok Seo
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
- Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals(Inn-ECOSysChem), Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
8
|
Guo J, Haghshenas Y, Jiao Y, Kumar P, Yakobson BI, Roy A, Jiao Y, Regenauer-Lieb K, Nguyen D, Xia Z. Rational Design of Earth-Abundant Catalysts toward Sustainability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407102. [PMID: 39081108 DOI: 10.1002/adma.202407102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/06/2024] [Indexed: 10/18/2024]
Abstract
Catalysis is crucial for clean energy, green chemistry, and environmental remediation, but traditional methods rely on expensive and scarce precious metals. This review addresses this challenge by highlighting the promise of earth-abundant catalysts and the recent advancements in their rational design. Innovative strategies such as physics-inspired descriptors, high-throughput computational techniques, and artificial intelligence (AI)-assisted design with machine learning (ML) are explored, moving beyond time-consuming trial-and-error approaches. Additionally, biomimicry, inspired by efficient enzymes in nature, offers valuable insights. This review systematically analyses these design strategies, providing a roadmap for developing high-performance catalysts from abundant elements. Clean energy applications (water splitting, fuel cells, batteries) and green chemistry (ammonia synthesis, CO2 reduction) are targeted while delving into the fundamental principles, biomimetic approaches, and current challenges in this field. The way to a more sustainable future is paved by overcoming catalyst scarcity through rational design.
Collapse
Affiliation(s)
- Jinyang Guo
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yousof Haghshenas
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yiran Jiao
- School of Chemical Engineering, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Priyank Kumar
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Boris I Yakobson
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas, 77251, USA
| | - Ajit Roy
- U.S. Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Yan Jiao
- School of Chemical Engineering, University of Adelaide, Adelaide, SA, 5005, Australia
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, Canberra, ACT, 2601, Australia
| | - Klaus Regenauer-Lieb
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, Canberra, ACT, 2601, Australia
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA, 6151, Australia
| | | | - Zhenhai Xia
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, Canberra, ACT, 2601, Australia
| |
Collapse
|
9
|
Arya Y, Ansari T, Bera SK, Panda S, Indra A, Lahiri GK. Superior electrocatalytic hydrogen evolution activity of a triply bridged diruthenium(II) complex on a carbon cloth support. Chem Commun (Camb) 2024; 60:6011-6014. [PMID: 38753000 DOI: 10.1039/d4cc01173b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
This article describes the structural authentication of a unique triply bridged [1](ClO4)2 and monomeric [2]ClO4/[3]ClO4. Electrochemical HER on a carbon cloth support demonstrated the superior performance of [1](ClO4)2 with high TON (>105) and its long-term stability. The primary kinetic isotope effect of [1](ClO4)2 revealed the involvement of PCET in the rate-determining step.
Collapse
Affiliation(s)
- Yogita Arya
- Department of Chemistry, Indian Institute of Technology Bombay, Powai Mumbai 400076, India.
| | - Toufik Ansari
- Department of Chemistry, Indian Institute of Technology BHU, Varanasi 221005, India.
| | - Sudip Kumar Bera
- Department of Chemistry, Indian Institute of Technology Bombay, Powai Mumbai 400076, India.
| | - Sanjib Panda
- Department of Chemistry, Indian Institute of Technology Bombay, Powai Mumbai 400076, India.
| | - Arindam Indra
- Department of Chemistry, Indian Institute of Technology BHU, Varanasi 221005, India.
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai Mumbai 400076, India.
| |
Collapse
|
10
|
Sun R, Jiang Y, Chen HR, Jiang X, Cao YC, Ye S, Liao RZ, Tung CH, Wang W. Bimetallic H 2 Addition and Intramolecular Caryl-H Activation Mediated by an Iron-Zinc Hydride. Inorg Chem 2024; 63:6082-6091. [PMID: 38512050 DOI: 10.1021/acs.inorgchem.4c00454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Heteronuclear Fe(μ-H)Zn hydride Cp*Fe(1,2-Cy2PC6H4)HZnEt (3) undergoes reversible intramolecular Caryl-H reductive elimination through coupling of the cyclometalated phosphinoaryl ligand and the hydride, giving rise to a formal Fe(0)-Zn(II) species. Addition of CO intercepts this equilibrium, affording Cp*(Cy2PPh)(CO)Fe-ZnEt that features a dative Fe-Zn bond. Significantly, this system achieves bimetallic H2 addition, as demonstrated by the transformation of the monohydride Fe(μ-H)Zn to a deuterated dihydride Fe-(μ-D)2-Zn upon reaction with D2.
Collapse
Affiliation(s)
- Rui Sun
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yang Jiang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hao-Ran Chen
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xuebin Jiang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yu-Chen Cao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Wenguang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
11
|
Peng X, Zhang M, Qin H, Han J, Xu Y, Li W, Zhang XP, Zhang W, Apfel UP, Cao R. Switching Electrocatalytic Hydrogen Evolution Pathways through Electronic Tuning of Copper Porphyrins. Angew Chem Int Ed Engl 2024; 63:e202401074. [PMID: 38311965 DOI: 10.1002/anie.202401074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/06/2024]
Abstract
The electronic structure of metal complexes plays key roles in determining their catalytic features. However, controlling electronic structures to regulate reaction mechanisms is of fundamental interest but has been rarely presented. Herein, we report electronic tuning of Cu porphyrins to switch pathways of the hydrogen evolution reaction (HER). Through controllable and regioselective β-oxidation of Cu porphyrin 1, we synthesized analogues 2-4 with one or two β-lactone groups in either a cis or trans configuration. Complexes 1-4 have the same Cu-N4 core site but different electronic structures. Although β-oxidation led to large anodic shifts of reductions, 1-4 displayed similar HER activities in terms of close overpotentials. With electrochemical, chemical and theoretical results, we show that the catalytically active species switches from a CuI species for 1 to a Cu0 species for 4. This work is thus significant to present mechanism-controllable HER via electronic tuning of catalysts.
Collapse
Affiliation(s)
- Xinyang Peng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Mengchun Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haonan Qin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jinxiu Han
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yuhan Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wenzi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xue-Peng Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ulf-Peter Apfel
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Anorganische Chemie I, Universitätsstrasse 150, 44801, Bochum, Germany
- Fraunhofer UMSICHT, Osterfelder Strasse 3, 46047, Oberhausen, Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
12
|
Nayek A, Dey S, Patra S, Rana A, Serrano PN, George SJ, Cramer SP, Ghosh Dey S, Dey A. Facile electrocatalytic proton reduction by a [Fe-Fe]-hydrogenase bio-inspired synthetic model bearing a terminal CN - ligand. Chem Sci 2024; 15:2167-2180. [PMID: 38332837 PMCID: PMC10848691 DOI: 10.1039/d3sc05397k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/22/2023] [Indexed: 02/10/2024] Open
Abstract
An azadithiolate bridged CN- bound pentacarbonyl bis-iron complex, mimicking the active site of [Fe-Fe] H2ase is synthesized. The geometric and electronic structure of this complex is elucidated using a combination of EXAFS analysis, infrared and Mössbauer spectroscopy and DFT calculations. The electrochemical investigations show that complex 1 effectively reduces H+ to H2 between pH 0-3 at diffusion-controlled rates (1011 M-1 s-1) i.e. 108 s-1 at pH 3 with an overpotential of 140 mV. Electrochemical analysis and DFT calculations suggests that a CN- ligand increases the pKa of the cluster enabling hydrogen production from its Fe(i)-Fe(0) state at pHs much higher and overpotential much lower than its precursor bis-iron hexacarbonyl model which is active in its Fe(0)-Fe(0) state. The formation of a terminal Fe-H species, evidenced by spectroelectrochemistry in organic solvent, via a rate determining proton coupled electron transfer step and protonation of the adjacent azadithiolate, lowers the kinetic barrier leading to diffusion controlled rates of H2 evolution. The stereo-electronic factors enhance its catalytic rate by 3 order of magnitude relative to a bis-iron hexacarbonyl precursor at the same pH and potential.
Collapse
Affiliation(s)
- Abhijit Nayek
- School of Chemical Science, Indian Association for the Cultivation of Science Kolkata 700032 India
| | - Subal Dey
- School of Chemical Science, Indian Association for the Cultivation of Science Kolkata 700032 India
| | - Suman Patra
- School of Chemical Science, Indian Association for the Cultivation of Science Kolkata 700032 India
| | - Atanu Rana
- School of Chemical Science, Indian Association for the Cultivation of Science Kolkata 700032 India
| | - Pauline N Serrano
- Department of Chemistry, University of California Davis CA 94616 USA
| | - Simon J George
- Department of Chemistry, University of California Davis CA 94616 USA
- SETI Institute 339 Bernardo Ave, Suite, 200 Mountain View CA 94043 USA
| | - Stephen P Cramer
- Department of Chemistry, University of California Davis CA 94616 USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- SETI Institute 339 Bernardo Ave, Suite, 200 Mountain View CA 94043 USA
| | - Somdatta Ghosh Dey
- School of Chemical Science, Indian Association for the Cultivation of Science Kolkata 700032 India
| | - Abhishek Dey
- School of Chemical Science, Indian Association for the Cultivation of Science Kolkata 700032 India
| |
Collapse
|
13
|
Chatelain L, Arrigoni F, Schollhammer P, Zampella G. C-Cl Bond Activation at Rotated vs Unrotated Dinuclear Site Related to [FeFe]-Hydrogenases. Inorg Chem 2023; 62:20913-20918. [PMID: 38047903 DOI: 10.1021/acs.inorgchem.3c03481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The novel dinuclear complex related to the [FeFe]-hydrogenases active site, [Fe2(μ-pdt)(κ2-dmpe)2(CO)2] (1), is highly reactive toward chlorinated compounds CHxCl4-x (x = 1, 2) affording selectively terminal or bridging chloro diiron isomers through a C-Cl bond activation. DFT calculations suggest a cooperative mechanism involving a formal concerted regioselective chloronium transfer depending on the unrotated or rotated conformation of two isomers of 1.
Collapse
Affiliation(s)
- Lucile Chatelain
- UMR CNRS 6521 Chimie, Electrochimie Moléculaires et Chimie Analytique, Université de Bretagne Occidentale, 6 Avenue Victor le Gorgeu, CS93837, Brest-Cedex 3, 29238 Brest, France
| | - Federica Arrigoni
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Philippe Schollhammer
- UMR CNRS 6521 Chimie, Electrochimie Moléculaires et Chimie Analytique, Université de Bretagne Occidentale, 6 Avenue Victor le Gorgeu, CS93837, Brest-Cedex 3, 29238 Brest, France
| | - Giuseppe Zampella
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
14
|
Bourrez M, Gloaguen F. Electrochemical reduction and protonation of a biomimetic diiron azadithiolate hexacarbonyl complex: Mechanistic insights. Bioelectrochemistry 2023; 153:108488. [PMID: 37329847 DOI: 10.1016/j.bioelechem.2023.108488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/19/2023]
Abstract
The electrochemical reduction and protonation of [Fe2(adtH)(CO)6] (1, adtH = SCH2N(H)CH2S) and [Fe2(pdt)(CO)6] (2, pdt = SCH2CH2CH2S) in the presence of moderately strong acid in acetonitrile was investigated by cyclic voltammetry (CV), focusing on the catalysis of hydrogen evolution reaction (HER) by a {2e-,2H+} pathway. The turnover frequencies at zero overpotential (TOF0) of the N-protonated product 1(H)+ and 2 for the HER were estimated from simulations of the catalytic CV responses at low acid concentration using a simple ECEC mechanism (two electrochemical and chemical steps). This approach confirmed that 1(H)+ is clearly a better catalyst than 2, pointing to a possible role of the protonable and biologically relevant adtH ligand in the enhancement of the catalytic performances. Density functional theory (DFT) calculations further suggested that, owing to a strong structural rearrangement in the course of the catalytic cycle, the HER catalysis by 1(H)+ only involves the iron center adjacent to the amine group in adtH and not the two iron centers as in 2. Since terminal hydride species (FeFe-H) are known to more easily undergo protonolyse to H2 than their bridging hydride isomers (Fe-H-Fe), this may explain here the enhanced activity of 1(H)+ over 2 for the HER.
Collapse
Affiliation(s)
- Marc Bourrez
- CNRS, Univ Brest, CEMCA UMR 6521, 6 av Le Gorgeu, F-29238 Brest, France
| | - Frederic Gloaguen
- CNRS, Univ Brest, CEMCA UMR 6521, 6 av Le Gorgeu, F-29238 Brest, France.
| |
Collapse
|
15
|
Zamader A, Reuillard B, Pérard J, Billon L, Berggren G, Artero V. Synthetic styrene-based bioinspired model of the [FeFe]-hydrogenase active site for electrocatalytic hydrogen evolution. SUSTAINABLE ENERGY & FUELS 2023; 7:4967-4976. [PMID: 38013894 PMCID: PMC10521030 DOI: 10.1039/d3se00409k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/30/2023] [Indexed: 11/29/2023]
Abstract
Integration of molecular catalysts inside polymeric scaffolds has gained substantial attention over the past decade, as it provides a path towards generating systems with enhanced stability as well as enzyme-like morphologies and properties. In the context of solar fuels research and chemical energy conversion, this approach has been found to improve both rates and energy efficiencies of a range of catalytic reactions. However, system performance still needs to be improved to reach technologically relevant currents and stability, parameters that are heavily influenced by the nature of the incorporated molecular catalyst. Here, we have focused on the integration of a biomimetic {Fe2(μ-adt)(CO)6} (-CH2NHCH2S-, azadithiolate or adt2-) based active site ("[2Fe2S]adt"), inspired by the catalytic cofactor of [FeFe] hydrogenases, within a synthetic polymeric scaffold using free radical polymerization. The resulting metallopolymers [2Fe2S]adtk[DMAEMA]l[PyBMA]m (DMAEMA = dimethylaminoethyl methacrylate as water soluble monomer; PyBMA = 4-(pyren-1-yl)-butyl methacrylate as hydrophobic anchor for heterogenization) were found to be active for electrochemical H2 production in neutral aqueous media. The pyrene content was varied to optimize durability and activity. Following immobilization on multiwalled carbon nanotubes (MWNT) the most active metallopolymer, containing ∼2.3 mol% of PyBMA, could reach a turnover number for hydrogen production (TONH2) of ∼0.4 ×105 over 20 hours of electrolysis at an overpotential of 0.49 V, two orders of magnitude higher than the isolated catalyst counterpart. The study provides a synthetic methodology for incorporating catalytic units featuring second coordination sphere functional groups, and highlights the benefit of the confinement within the polymer matrix for catalytic performance.
Collapse
Affiliation(s)
- Afridi Zamader
- Univ Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux 17 rue des Martyrs 38000 Grenoble France
- Department of Chemistry - Ångström Laboratory, Uppsala University Box 523 SE-75120 Uppsala Sweden
| | - Bertrand Reuillard
- Univ Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux 17 rue des Martyrs 38000 Grenoble France
| | - Julien Pérard
- Univ Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux 17 rue des Martyrs 38000 Grenoble France
| | - Laurent Billon
- Universite de Pau et Pays de l'Adour, E2S UPPA, IPREM, Bio-inspired Materials Group: Functionalities & Self-Assembly 2 avenue Angot 64053 Pau France
| | - Gustav Berggren
- Department of Chemistry - Ångström Laboratory, Uppsala University Box 523 SE-75120 Uppsala Sweden
| | - Vincent Artero
- Univ Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux 17 rue des Martyrs 38000 Grenoble France
| |
Collapse
|
16
|
Yamamoto M, Takamura Y, Kokubo Y, Urushihara M, Horiuchi N, Dai W, Hayasaka Y, Kita E, Takao K. Solid-State Schikorr Reaction from Ferrous Chloride to Magnetite with Hydrogen Evolution as the Kinetic Bottleneck. Inorg Chem 2023; 62:14580-14589. [PMID: 37638697 DOI: 10.1021/acs.inorgchem.3c01676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
The selective formation of meta-stable Fe3O4 from ferrous sources by suppressing its oxidative conversion to the most stable hematite (α-Fe2O3) is challenging under oxidative conditions for solid-state synthesis. In this work, we investigated the conversion of iron(II) chloride (FeCl2) to magnetite (Fe3O4) under inert atmosphere in the presence of steam, and the obtained oxides were analyzed by atomic-resolution TEM, 57Fe Mössbauer spectroscopy, and the Verwey transition temperature (Tv). The reaction proceeded in two steps, with H2O as the oxide source in the initial step and as an oxidant in the second step. The initial hydrolysis occurred at temperatures higher than 120 °C to release gaseous HCl, via substituting lattice chloride Cl- with oxide O2-, to give iron oxide intermediates. In the first step, the construction of the intermediate oxides was not topotactic. The second step as a kinetic bottleneck occurred at temperatures higher than 350 °C to generate gaseous H2 through the oxidation of FeII by H+. A substantially large kinetic isotope effect (KIE) was observed for the second step at 500 °C, and this indicates the rate-determining step is the hydrogen evolution. Quantitative analysis of evolved H2 revealed that full conversion of ferrous chloride to magnetite at 500 °C was followed by additional oxidation of the outer sphere of magnetite to give a Fe2O3 phase, as supported by X-ray photoelectron spectroscopy (XPS), and the outer phase confined the conductive magnetite phase within the insulating layers, enabling kinetic control of magnetite synthesis. As such, the reaction stopped at meta-stable magnetite with an excellent saturation magnetization (σs) of 86 emu g-1 and Tv > 120 K without affording the thermodynamically stable α-Fe2O3 as the major final product. The study also discusses the influence of parameters such as reaction temperature, initial grain size of FeCl2, the extent of hydration, and partial pressure of H2O.
Collapse
Affiliation(s)
- Masanori Yamamoto
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Yota Takamura
- Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Yoshiaki Kokubo
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Makoto Urushihara
- Innovation Center, Mitsubishi Materials Corporation, 1002-14 Mukohyama, Naka, Ibaraki 311-0102, Japan
| | - Nobutake Horiuchi
- Innovation Center, Mitsubishi Materials Corporation, 1002-14 Mukohyama, Naka, Ibaraki 311-0102, Japan
| | - Wenbin Dai
- Innovation Center, Mitsubishi Materials Corporation, 1002-14 Mukohyama, Naka, Ibaraki 311-0102, Japan
| | - Yuichiro Hayasaka
- The Electron Microscopy Center, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Eiji Kita
- Institute of Applied Physics, University of Tsukuba, Tsukuba 305-8573, Japan
| | - Koichiro Takao
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| |
Collapse
|
17
|
Peng X, Han J, Li X, Liu G, Xu Y, Peng Y, Nie S, Li W, Li X, Chen Z, Peng H, Cao R, Fang Y. Electrocatalytic hydrogen evolution with a copper porphyrin bearing meso-( o-carborane) substituents. Chem Commun (Camb) 2023; 59:10777-10780. [PMID: 37593777 DOI: 10.1039/d3cc03104g] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
A newly designed copper complex of 5,15-bis(pentafluorophenyl)-10,20-bis(o-carborane)porphyrin (1) was synthesized and tested for the electrocatalytic hydrogen evolution reaction (HER). In acetonitrile, 1 was much more efficient than Cu 5,15-bis(pentafluorophenyl)-10,20-diphenylporphyrin (2) for electrocatalytic HER by shifting the catalytic wave to the anodic direction by 190 mV. In aqueous media, 1 also outperformed 2 by achieving higher current densities under smaller overpotentials. This enhancement was attributed to the aromatic and the strong electron-withdrawing properties of o-carborane groups. This work is significant to address the crucial effects of meso-(o-carborane) substituents of metal porphyrins on boosting the electrocatalytic HER.
Collapse
Affiliation(s)
- Xinyang Peng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Jinxiu Han
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Guijun Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yuhan Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yuxin Peng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Shuai Nie
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Wenzi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Xinrui Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Zhuo Chen
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
18
|
Reuillard B, Costentin C, Artero V. Deciphering Reversible Homogeneous Catalysis of the Electrochemical H 2 Evolution and Oxidation: Role of Proton Relays and Local Concentration Effects. Angew Chem Int Ed Engl 2023; 62:e202302779. [PMID: 37073946 DOI: 10.1002/anie.202302779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 04/20/2023]
Abstract
Nickel bisdiphosphine complexes bearing pendant amines form a unique series of catalysts (so-called DuBois' catalysts) capable of bidirectional/reversible electrocatalytic oxidation and production of dihydrogen. This unique behaviour is directly linked to the presence of proton relays installed close to the metal center. We report here for the arginine derivative [Ni(P2 Cy N2 Arg )2 ]6+ on a mechanistic model and its kinetic treatment that may apply to all DuBois' catalysts and show that it allows for a good fit of experimental data measured at different pH values, catalyst concentrations and partial hydrogen pressures. The bidirectionality of catalysis results from balanced equilibria related to hydrogen uptake/evolution on one side and (metal)-hydride installation/capture on the other side, both controlled by concentration effects resulting from the presence of proton relays and connected by two square schemes corresponding to proton-coupled electron transfer processes. We show that the catalytic bias is controlled by the kinetic of the H2 uptake/evolution step. Reversibility does not require that the energy landscape be flat, with redox transitions occurring at potentials up to 250 mV away for the equilibrium potential, although such large deviations from a flat energy landscape can negatively impacts the rate of catalysis when coupled with slow interfacial electron transfer kinetics.
Collapse
Affiliation(s)
| | | | - Vincent Artero
- Univ Grenoble Alpes, CNRS, CEA, IRIG, LCBM, 38000, Grenoble, France
| |
Collapse
|
19
|
T Waffo AF, Lorent C, Katz S, Schoknecht J, Lenz O, Zebger I, Caserta G. Structural Determinants of the Catalytic Ni a-L Intermediate of [NiFe]-Hydrogenase. J Am Chem Soc 2023. [PMID: 37328284 DOI: 10.1021/jacs.3c01625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
[NiFe]-hydrogenases catalyze the reversible cleavage of H2 into two protons and two electrons at the inorganic heterobimetallic NiFe center of the enzyme. Their catalytic cycle involves at least four intermediates, some of which are still under debate. While the core reaction, including H2/H- binding, takes place at the inorganic cofactor, a major challenge lies in identifying those amino acid residues that contribute to the reactivity and how they stabilize (short-lived) intermediate states. Using cryogenic infrared and electron paramagnetic resonance spectroscopy on the regulatory [NiFe]-hydrogenase from Cupriavidus necator, a model enzyme for the analysis of catalytic intermediates, we deciphered the structural basis of the hitherto elusive Nia-L intermediates. We unveiled the protonation states of a proton-accepting glutamate and a Ni-bound cysteine residue in the Nia-L1, Nia-L2, and the hydride-binding Nia-C intermediates as well as previously unknown conformational changes of amino acid residues in proximity of the bimetallic active site. As such, this study unravels the complexity of the Nia-L intermediate and reveals the importance of the protein scaffold in fine-tuning proton and electron dynamics in [NiFe]-hydrogenase.
Collapse
Affiliation(s)
- Armel F T Waffo
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Christian Lorent
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Sagie Katz
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Janna Schoknecht
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Oliver Lenz
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Ingo Zebger
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Giorgio Caserta
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
20
|
Leone L, Sgueglia G, La Gatta S, Chino M, Nastri F, Lombardi A. Enzymatic and Bioinspired Systems for Hydrogen Production. Int J Mol Sci 2023; 24:ijms24108605. [PMID: 37239950 DOI: 10.3390/ijms24108605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The extraordinary potential of hydrogen as a clean and sustainable fuel has sparked the interest of the scientific community to find environmentally friendly methods for its production. Biological catalysts are the most attractive solution, as they usually operate under mild conditions and do not produce carbon-containing byproducts. Hydrogenases promote reversible proton reduction to hydrogen in a variety of anoxic bacteria and algae, displaying unparallel catalytic performances. Attempts to use these sophisticated enzymes in scalable hydrogen production have been hampered by limitations associated with their production and stability. Inspired by nature, significant efforts have been made in the development of artificial systems able to promote the hydrogen evolution reaction, via either electrochemical or light-driven catalysis. Starting from small-molecule coordination compounds, peptide- and protein-based architectures have been constructed around the catalytic center with the aim of reproducing hydrogenase function into robust, efficient, and cost-effective catalysts. In this review, we first provide an overview of the structural and functional properties of hydrogenases, along with their integration in devices for hydrogen and energy production. Then, we describe the most recent advances in the development of homogeneous hydrogen evolution catalysts envisioned to mimic hydrogenases.
Collapse
Affiliation(s)
- Linda Leone
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Gianmattia Sgueglia
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Salvatore La Gatta
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Marco Chino
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| |
Collapse
|
21
|
Costabel D, Nabiyan A, Chettri A, Jacobi F, Heiland M, Guthmuller J, Kupfer S, Wächtler M, Dietzek-Ivanšić B, Streb C, Schacher FH, Peneva K. Diiodo-BODIPY Sensitizing of the [Mo 3S 13] 2- Cluster for Noble-Metal-Free Visible-Light-Driven Hydrogen Evolution within a Polyampholytic Matrix. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20833-20842. [PMID: 37026740 DOI: 10.1021/acsami.2c18529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We report on a photocatalytic setup that utilizes the organic photosensitizer (PS) diiodo-BODIPY and the non-precious-metal-based hydrogen evolution reaction (HER) catalyst (NH4)2[Mo3S13] together with a polyampholytic unimolecular matrix poly(dehydroalanine)-graft-poly(ethylene glycol) (PDha-g-PEG) in aqueous media. The system shows exceptionally high performance with turnover numbers (TON > 7300) and turnover frequencies (TOF > 450 h-1) that are typical for noble-metal-containing systems. Excited-state absorption spectra reveal the formation of a long-lived triplet state of the PS in both aqueous and organic media. The system is a blueprint for developing noble-metal-free HER in water. Component optimization, e.g., by modification of the meso substituent of the PS and the composition of the HER catalyst, is further possible.
Collapse
Affiliation(s)
- Daniel Costabel
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany
| | - Afshin Nabiyan
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany
| | - Avinash Chettri
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Franz Jacobi
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany
| | - Magdalena Heiland
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Julien Guthmuller
- Institute of Physics and Applied Computer Science, Faculty of Applied Physics and Mathematics, Gdansk University of Technology, 80233 Gdańsk, Poland
| | - Stephan Kupfer
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Maria Wächtler
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Benjamin Dietzek-Ivanšić
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, 07745 Jena, Germany
- Center for Energy and Environmental Chemistry and Jena Center of Soft Matter, Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| | - Carsten Streb
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany
- Center for Energy and Environmental Chemistry and Jena Center of Soft Matter, Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| | - Kalina Peneva
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany
- Center for Energy and Environmental Chemistry and Jena Center of Soft Matter, Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| |
Collapse
|
22
|
Tang HM, Fan WY. Transition Metal Pyrithione Complexes (Ni, Mn, Fe, and Co) as Electrocatalysts for Proton Reduction of Acetic Acid. ACS OMEGA 2023; 8:7234-7241. [PMID: 36844539 PMCID: PMC9948554 DOI: 10.1021/acsomega.3c00412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 06/01/2023]
Abstract
A series of mononuclear first-row transition metal pyrithione M(pyr) n complexes (M = Ni(II), Mn(II), n = 2; M = Co(III), Fe(III), n = 3) have been prepared from the reaction of the corresponding metal salt with the sodium salt of pyrithione. Using cyclic voltammetry, the complexes have been shown to behave as proton reduction electrocatalysts albeit with varying efficiencies in the presence of acetic acid as the proton source in acetonitrile. The nickel complex displays the optimal overall catalytic performance with an overpotential of 0.44 V. An ECEC mechanism is suggested for the nickel-catalyzed system based on the experimental data and supported by density functional theory calculations.
Collapse
|
23
|
Wang N, Zhang XP, Han J, Lei H, Zhang Q, Zhang H, Zhang W, Apfel UP, Cao R. Promoting hydrogen evolution reaction with a sulfonic proton relay. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64183-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
24
|
Zamader A, Reuillard B, Pécaut J, Billon L, Bousquet A, Berggren G, Artero V. Non-Covalent Integration of a [FeFe]-Hydrogenase Mimic to Multiwalled Carbon Nanotubes for Electrocatalytic Hydrogen Evolution. Chemistry 2022; 28:e202202260. [PMID: 36069308 PMCID: PMC10092503 DOI: 10.1002/chem.202202260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 12/14/2022]
Abstract
Surface integration of molecular catalysts inspired from the active sites of hydrogenase enzymes represents a promising route towards developing noble metal-free and sustainable technologies for H2 production. Efficient and stable catalyst anchoring is a key aspect to enable this approach. Herein, we report the preparation and electrochemical characterization of an original diironhexacarbonyl complex including two pyrene groups per catalytic unit in order to allow for its smooth integration, through π-interactions, onto multiwalled carbon nanotube-based electrodes. In this configuration, the grafted catalyst could reach turnover numbers for H2 production (TONH2 ) of up to 4±2×103 within 20 h of bulk electrolysis, operating at neutral pH. Post operando analysis of catalyst functionalized electrodes revealed the degradation of the catalytic unit occurred via loss of the iron carbonyl units, while the anchoring groups and most part of the ligand remained attached onto multiwalled carbon nanotubes.
Collapse
Affiliation(s)
- Afridi Zamader
- Univ. Grenoble AlpesCNRSCEAIRIGLaboratoire de Chimie et Biologie des Métaux17 rue des MartyrsF-38054Grenoble, CedexFrance
- Molecular BiomimeticsDepartment of Chemistry – Ångström LaboratoryUppsala UniversityBox 523SE-75120UppsalaSweden
| | - Bertrand Reuillard
- Univ. Grenoble AlpesCNRSCEAIRIGLaboratoire de Chimie et Biologie des Métaux17 rue des MartyrsF-38054Grenoble, CedexFrance
| | - Jacques Pécaut
- Univ. Grenoble AlpesCEACNRSIRIG-SyMMESUMR 581938000GrenobleFrance
| | - Laurent Billon
- Universite Pau et des Pays de l'AdourE2S UPPACNRSIPREM64000PauFrance
- Bio-inspired Materials Group: Functionalities & Self-AssemblyUniversite de Pau et Pays de l'AdourE2S UPPA64053PauFrance
| | - Antoine Bousquet
- Bio-inspired Materials Group: Functionalities & Self-AssemblyUniversite de Pau et Pays de l'AdourE2S UPPA64053PauFrance
| | - Gustav Berggren
- Molecular BiomimeticsDepartment of Chemistry – Ångström LaboratoryUppsala UniversityBox 523SE-75120UppsalaSweden
| | - Vincent Artero
- Univ. Grenoble AlpesCNRSCEAIRIGLaboratoire de Chimie et Biologie des Métaux17 rue des MartyrsF-38054Grenoble, CedexFrance
| |
Collapse
|
25
|
Liu XF. Tetrairon Complex with Bridging 1,2-Bis(diphenylphosphino)ethane: Synthesis, Structure, and Electrochemistry. CRYSTALLOGR REP+ 2022. [DOI: 10.1134/s1063774522070240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
26
|
McCool JD, Zhang S, Cheng I, Zhao X. Rational development of molecular earth-abundant metal complexes for electrocatalytic hydrogen production. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64150-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Nayek A, Ahmed ME, Samanta S, Dinda S, Patra S, Dey SG, Dey A. Bioinorganic Chemistry on Electrodes: Methods to Functional Modeling. J Am Chem Soc 2022; 144:8402-8429. [PMID: 35503922 DOI: 10.1021/jacs.2c01842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
One of the major goals of bioinorganic chemistry has been to mimic the function of elegant metalloenzymes. Such functional modeling has been difficult to attain in solution, in particular, for reactions that require multiple protons and multiple electrons (nH+/ne-). Using a combination of heterogeneous electrochemistry, electrode and molecule design one may control both electron transfer (ET) and proton transfer (PT) of these nH+/ne- reactions. Such control can allow functional modeling of hydrogenases (H+ + e- → 1/2 H2), cytochrome c oxidase (O2 + 4 e- + 4 H+ → 2 H2O), monooxygenases (RR'CH2 + O2 + 2 e- + 2 H+ → RR'CHOH + H2O) and dioxygenases (S + O2 → SO2; S = organic substrate) in aqueous medium and at room temperatures. In addition, these heterogeneous constructs allow probing unnatural bioinspired reactions and estimation of the inner- and outer-sphere reorganization energy of small molecules and proteins.
Collapse
Affiliation(s)
- Abhijit Nayek
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Md Estak Ahmed
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Soumya Samanta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Souvik Dinda
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Suman Patra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| |
Collapse
|