1
|
Hostetler T, Chen TY, Chang WC. Bioinformatic, structural, and biochemical analysis leads to the discovery of novel isonitrilases and decodes their substrate selectivity. RSC Chem Biol 2025; 6:583-589. [PMID: 39944535 PMCID: PMC11811631 DOI: 10.1039/d4cb00304g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/28/2025] [Indexed: 04/04/2025] Open
Abstract
Bacterial species, such as Mycobacterium tuberculosis, utilize isonitrile-containing peptides (INPs) for trace metal trafficking, e.g., copper or zinc. Despite their importance, very few INP structures have been characterized to date. Reported INPs consist of a peptide backbone and β-isonitrile amide moieties. While the peptide backbone can be annotated using an adenylation domain predictor of non-ribosomal peptide synthetase (NRPS), determining the alkyl chain of β-isonitrile amide moieties remains challenging via conventional analytical techniques. In this study, we focus on non-heme iron and 2-oxoglutarate (Fe/2OG) dependent isonitrilases that exhibit inherent selectivity toward the alkyl chain length of the substrate, thus enabling the structural elucidation of INPs. Based on two known isonitrilase structures, we identified eight residue positions that control substrate selectivity. Using a custom Python program that we developed, BioSynthNexus, over 350 Fe/2OG isonitrilase genes were identified. One of these enzymes was engineered through mutations at eight selected positions, effectively modifying its substrate preference to favor either a shorter or a longer alkyl chain. Furthermore, by examining several annotated isonitrilases at eight selected positions, substrate preferences of several isonitrilases were predicted and validated through biochemical assays. Together, these findings allow for effective identification of isonitrilases and INPs, and establish a predictive framework for determining the preferred alkyl chain of β-isonitrile amide moieties.
Collapse
Affiliation(s)
- Tyler Hostetler
- Department of Chemistry, North Carolina State University Raleigh NC 27695 USA
| | - Tzu-Yu Chen
- Department of Chemistry, North Carolina State University Raleigh NC 27695 USA
| | - Wei-Chen Chang
- Department of Chemistry, North Carolina State University Raleigh NC 27695 USA
| |
Collapse
|
2
|
Manley OM, Rosenzweig AC. Copper-chelating natural products. J Biol Inorg Chem 2025; 30:111-124. [PMID: 39960524 PMCID: PMC11932072 DOI: 10.1007/s00775-025-02099-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 01/27/2025] [Indexed: 03/22/2025]
Abstract
Bacteria and fungi produce natural products that coordinate copper for a variety of functions. Many copper-binding natural products function as copper-chelating metallophores, or chalkophores, that scavenge copper from the environment to meet cellular needs. By contrast, some compounds sequester toxic levels of environmental copper to protect the producing microorganism. These copper-binding compounds often have antimicrobial activities as well. In recent years, a number of new copper-coordinating natural products have been reported, including both ribosomally and non-ribosomally synthesized molecules. There have also been significant advances in understanding the biosynthesis of these and previously known copper chelators, leading to the discovery of new enzyme families. This review summarizes the recently discovered copper-binding natural products, their biosynthetic pathways, and their functions. By highlighting key biosynthetic enzymes, we hope to inspire the discovery of new copper-coordinating natural products that may be used as therapeutics and antimicrobial agents.
Collapse
Affiliation(s)
- Olivia M Manley
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Amy C Rosenzweig
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
3
|
Flores ADR, Khosla C. Characterization of the Flavin-Dependent Monooxygenase Involved in the Biosynthesis of the Nocardiosis-Associated Polyketide†. Biochemistry 2024; 63:2868-2877. [PMID: 39433512 PMCID: PMC11872153 DOI: 10.1021/acs.biochem.4c00480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Some species of the Nocardia genus harbor a highly conserved biosynthetic gene cluster designated as the NOCardiosis-Associated Polyketide (NOCAP) synthase that produces a unique glycolipid natural product. The NOCAP glycolipid is composed of a fully substituted benzaldehyde headgroup linked to a polyfunctional alkyl tail and an O-linked disaccharide composed of 3-α-epimycarose and 2-O-methyl-α-rhamnose. Incorporation of the disaccharide unit is preceded by a critical step involving hydroxylation by NocapM, a flavin monooxygenase. In this study, we employed biochemical, spectroscopic, and kinetic analyses to explore the substrate scope of NocapM. Our findings indicate that NocapM catalyzes hydroxylation of diverse aromatic substrates, although the observed coupling between NADPH oxidation and substrate hydroxylation varies widely from substrate to substrate. Our in-depth biochemical characterization of NocapM provides a solid foundation for future mechanistic studies of this enzyme as well as its utilization as a practical biocatalyst.
Collapse
Affiliation(s)
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Sarafan ChEM-H, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
4
|
de Visser SP, Wong HPH, Zhang Y, Yadav R, Sastri CV. Tutorial Review on the Set-Up and Running of Quantum Mechanical Cluster Models for Enzymatic Reaction Mechanisms. Chemistry 2024; 30:e202402468. [PMID: 39109881 DOI: 10.1002/chem.202402468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/07/2024] [Indexed: 10/09/2024]
Abstract
Enzymes turnover substrates into products with amazing efficiency and selectivity and as such have great potential for use in biotechnology and pharmaceutical applications. However, details of their catalytic cycles and the origins surrounding the regio- and chemoselectivity of enzymatic reaction processes remain unknown, which makes the engineering of enzymes and their use in biotechnology challenging. Computational modelling can assist experimental work in the field and establish the factors that influence the reaction rates and the product distributions. A popular approach in modelling is the use of quantum mechanical cluster models of enzymes that take the first- and second coordination sphere of the enzyme active site into consideration. These QM cluster models are widely applied but often the results obtained are dependent on model choice and model selection. Herein, we show that QM cluster models can give highly accurate results that reproduce experimental product distributions and free energies of activation within several kcal mol-1, regarded that large cluster models with >300 atoms are used that include key hydrogen bonding interactions and charged residues. In this tutorial review, we give general guidelines on the set-up and applications of the QM cluster method and discuss its accuracy and reproducibility. Finally, several representative QM cluster model examples on metal-containing enzymes are presented, which highlight the strength of the approach.
Collapse
Affiliation(s)
- Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Henrik P H Wong
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Yi Zhang
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Rolly Yadav
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| |
Collapse
|
5
|
Kudo F. Biosynthesis of macrolactam antibiotics with β-amino acid polyketide starter units. J Antibiot (Tokyo) 2024; 77:486-498. [PMID: 38816450 PMCID: PMC11284099 DOI: 10.1038/s41429-024-00742-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/04/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024]
Abstract
Macrolactam antibiotics incorporating β-amino acid polyketide starter units, isolated primarily from Actinomycetes species, show significant biological activities. This review provides a detailed analysis into the biosynthetic studies of vicenistatin, a macrolactam antibiotic with a 3-aminoisobutyrate starter unit, as well as biosynthetic research on related macrolactam compounds. Firstly, the elucidation of a common mechanism for the incorporation of β-amino acid starter units into the polyketide synthase (PKS) is described. Secondly, the unique biosynthetic mechanisms of the β-amino acids that are used to supply the main macrolactam biosynthetic pathways with starter units are discussed. Thirdly, some distinctive post-PKS modification mechanisms that complete macrolactam antibiotic biosynthesis are summarized. Finally, future directions for creating new macrolactam compounds through engineered biosynthesis pathways are described.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8551, Japan.
| |
Collapse
|
6
|
Jia K, Sun H, Zhou Y, Zhang W. Biosynthesis of isonitrile lipopeptides. Curr Opin Chem Biol 2024; 81:102470. [PMID: 38788523 PMCID: PMC11323250 DOI: 10.1016/j.cbpa.2024.102470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024]
Abstract
Isonitrile lipopeptides discovered from Actinobacteria have attracted wide attention due to their fascinating biosynthetic pathways and relevance to the virulence of many human pathogens including Mycobacterium tuberculosis. Specifically, the identification of the new class of isonitrile-forming enzymes that belong to non-heme iron (II) and α-ketoglutarate dependent dioxygenases has intrigued several research groups to investigate their catalytic mechanism. Here we summarize the recent studies on the biosynthesis of isonitrile lipopeptides from Streptomyces and Mycobacterium. The latest research on the core and tailoring enzymes involved in the pathway as well as the isonitrile metabolic enzymes are discussed in this review.
Collapse
Affiliation(s)
- Kaimin Jia
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA 94720, United States; California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA 94720, United States
| | - Helen Sun
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA 94720, United States
| | - Yiyan Zhou
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, United States
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA 94720, United States; California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA 94720, United States.
| |
Collapse
|
7
|
Del Rio Flores A, Zhai R, Zhang W. Isonitrile biosynthesis by non-heme iron(II)-dependent oxidases/decarboxylases. Methods Enzymol 2024; 704:143-172. [PMID: 39300646 PMCID: PMC11424024 DOI: 10.1016/bs.mie.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The isonitrile group is a compact, electron-rich moiety coveted for its commonplace as a building block and bioorthogonal functionality in synthetic chemistry and chemical biology. Hundreds of natural products containing an isonitrile group with intriguing bioactive properties have been isolated from diverse organisms. Our recent discovery of a conserved biosynthetic gene cluster in some Actinobacteria species highlighted a novel enzymatic pathway to isonitrile formation involving a non-heme iron(II) and α-ketoglutarate-dependent dioxygenase. Here, we focus this chapter on recent advances in understanding and probing the biosynthetic machinery for isonitrile synthesis by non-heme iron(II) and α-ketoglutarate-dependent dioxygenases. We will begin by describing how to harness isonitrile enzymatic machinery through heterologous expression, purification, synthetic strategies, and in vitro biochemical/kinetic characterization. We will then describe a generalizable strategy to probe the mechanism for isonitrile formation by combining various spectroscopic methods. The chapter will also cover strategies to study other enzyme homologs by implementing coupled assays using biosynthetic pathway enzymes. We will conclude this chapter by addressing current challenges and future directions in understanding and engineering isonitrile synthesis.
Collapse
Affiliation(s)
- Antonio Del Rio Flores
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, United States
| | - Rui Zhai
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, United States
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, United States.
| |
Collapse
|
8
|
Rothchild KW, Hagar M, Berry D, Ryan KS. Two Iron(II), α-Ketoglutarate-Dependent Enzymes Encoded by the PPZ Gene Cluster of Metarhizium majus Enable Production of 8-Hydroxyperamine. J Am Chem Soc 2024; 146:10263-10267. [PMID: 38578094 DOI: 10.1021/jacs.4c01419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Entomopathogenic fungus Metarhizium majus contains the nine-gene PPZ cluster, with ppzA, encoding a peramine-producing nonribosomal peptide synthetase, as the central component. In this work, the roles of two α-ketoglutarate, iron-dependent oxygenases encoded by the PPZ genes ppzC and ppzD were elucidated. PpzD was found to produce both trans-4-hydroxy-l-proline and trans-3-hydroxy-l-proline in a 13.1:1 ratio, yielding a key precursor for peramine biosynthesis. PpzC was found to act directly on peramine, yielding the novel analogue 8-hydroxyperamine.
Collapse
Affiliation(s)
- Kristina W Rothchild
- Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Mostafa Hagar
- Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Daniel Berry
- Ferrier Research Institute, Victoria University of Wellington, Wellington, 6012, New Zealand
| | - Katherine S Ryan
- Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
9
|
Chen TY, Chen J, Ruszczycky MW, Hilovsky D, Hostetler T, Liu X, Zhou J, Chang WC. Variation in biosynthesis and metal-binding properties of isonitrile-containing peptides produced by Mycobacteria versus Streptomyces. ACS Catal 2024; 14:4975-4983. [PMID: 38895101 PMCID: PMC11185824 DOI: 10.1021/acscatal.4c00645] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A number of bacteria are known to produce isonitrile-containing peptides (INPs) that facilitate metal transport and are important for cell survival; however, considerable structural variation is observed among INPs depending on the producing organism. While non-heme iron 2-oxoglutarate dependent isonitrilases catalyze isonitrile formation, how the natural variation in INP structure is controlled and its implications for INP bioactivity remain open questions. Herein, total chemical synthesis is utilized with X-Ray crystallographic analysis of mycobacterial isonitrilases to provide a structural model of substrate specificity that explains the longer alkyl chains observed in mycobacterial versus Streptomyces INPs. Moreover, proton NMR titration experiments demonstrate that INPs regardless of alkyl chain length are specific for binding copper instead of zinc. These results suggest that isonitrilases may act as gatekeepers in modulating the observed biological distribution of INP structures and this distribution may be primarily related to differing metal transport requirements among the producing strains.
Collapse
Affiliation(s)
- Tzu-Yu Chen
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Jinfeng Chen
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Mark W Ruszczycky
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Dalton Hilovsky
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Tyler Hostetler
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Xiaojing Liu
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Jiahai Zhou
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wei-Chen Chang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States
| |
Collapse
|
10
|
Wang B, Lu Y, Cha L, Chen TY, Palacios PM, Li L, Guo Y, Chang WC, Chen C. Repurposing Iron- and 2-Oxoglutarate-Dependent Oxygenases to Catalyze Olefin Hydration. Angew Chem Int Ed Engl 2023; 62:e202311099. [PMID: 37639670 PMCID: PMC10592062 DOI: 10.1002/anie.202311099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
Mononuclear nonheme iron(II) and 2-oxoglutarate (Fe/2OG)-dependent oxygenases and halogenases are known to catalyze a diverse set of oxidative reactions, including hydroxylation, halogenation, epoxidation, and desaturation in primary metabolism and natural product maturation. However, their use in abiotic transformations has mainly been limited to C-H oxidation. Herein, we show that various enzymes of this family, when reconstituted with Fe(II) or Fe(III), can catalyze Mukaiyama hydration-a redox neutral transformation. Distinct from the native reactions of the Fe/2OG enzymes, wherein oxygen atom transfer (OAT) catalyzed by an iron-oxo species is involved, this nonnative transformation proceeds through a hydrogen atom transfer (HAT) pathway in a 2OG-independent manner. Additionally, in contrast to conventional inorganic catalysts, wherein a dinuclear iron species is responsible for HAT, the Fe/2OG enzymes exploit a mononuclear iron center to support this reaction. Collectively, our work demonstrates that Fe/2OG enzymes have utility in catalysis beyond the current scope of catalytic oxidation.
Collapse
Affiliation(s)
- Bingnan Wang
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Yong Lu
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Lide Cha
- Department of Chemistry, NC State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA
| | - Tzu-Yu Chen
- Department of Chemistry, NC State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA
| | - Philip M Palacios
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Liping Li
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Wei-Chen Chang
- Department of Chemistry, NC State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA
| | - Chuo Chen
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
11
|
Del Rio Flores A, Narayanamoorthy M, Cai W, Zhai R, Yang S, Shen Y, Seshadri K, De Matias K, Xue Z, Zhang W. Biosynthesis of Isonitrile Lipopeptide Metallophores from Pathogenic Mycobacteria. Biochemistry 2023; 62:824-834. [PMID: 36638317 PMCID: PMC9905339 DOI: 10.1021/acs.biochem.2c00611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Isonitrile lipopeptides (INLPs) are known to be related to the virulence of pathogenic mycobacteria by mediating metal transport, but their biosynthesis remains obscure. In this work, we use in vitro biochemical assays, site-directed mutagenesis, chemical synthesis, and spectroscopy techniques to scrutinize the activity of core enzymes required for INLP biosynthesis in mycobacteria. Compared to environmental Streptomyces, pathogenic Mycobacterium employ a similar chemical logic and enzymatic machinery in INLP biosynthesis, differing mainly in the fatty-acyl chain length, which is controlled by multiple enzymes in the pathway. Our in-depth study on the non-heme iron(II) and α-ketoglutarate-dependent dioxygenase for isonitrile generation, including Rv0097 from Mycobacterium tuberculosis (Mtb), demonstrates that it recognizes a free-standing small molecule substrate, different from the recent hypothesis that a carrier protein is required for Rv0097 in Mtb. A key residue in Rv0097 is further identified to dictate the varied fatty-acyl chain length specificity between Streptomyces and Mycobacterium.
Collapse
Affiliation(s)
- Antonio Del Rio Flores
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Maanasa Narayanamoorthy
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Wenlong Cai
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Rui Zhai
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Siyue Yang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Yuanbo Shen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Kaushik Seshadri
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Kyle De Matias
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Zhaoqiang Xue
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
12
|
Kastner DW, Nandy A, Mehmood R, Kulik HJ. Mechanistic Insights into Substrate Positioning That Distinguish Non-heme Fe(II)/α-Ketoglutarate-Dependent Halogenases and Hydroxylases. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- David W. Kastner
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Rimsha Mehmood
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
13
|
Ushimaru R, Abe I. Unusual Dioxygen-Dependent Reactions Catalyzed by Nonheme Iron Enzymes in Natural Product Biosynthesis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- ACT-X, Japan Science and Technology Agency (JST), Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
14
|
Nandy A, Adamji H, Kastner DW, Vennelakanti V, Nazemi A, Liu M, Kulik HJ. Using Computational Chemistry To Reveal Nature’s Blueprints for Single-Site Catalysis of C–H Activation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Husain Adamji
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - David W. Kastner
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Vyshnavi Vennelakanti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Azadeh Nazemi
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mingjie Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
15
|
Wong HPH, Mokkawes T, de Visser SP. Can the isonitrile biosynthesis enzyme ScoE assist with the biosynthesis of isonitrile groups in drug molecules? A computational study. Phys Chem Chem Phys 2022; 24:27250-27262. [DOI: 10.1039/d2cp03409c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Computational studies show that the isonitrile synthesizing enzyme ScoE can catalyse the conversion of γ-Gly substituents in substrates to isonitrile. This enables efficient isonitrile substitution into target molecules such as axisonitrile-1.
Collapse
Affiliation(s)
- Henrik P. H. Wong
- Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK
- Department of Chemical Engineering, Oxford Road, Manchester M13 9PL, UK
| | - Thirakorn Mokkawes
- Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK
- Department of Chemical Engineering, Oxford Road, Manchester M13 9PL, UK
| | - Sam P. de Visser
- Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK
- Department of Chemical Engineering, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|