1
|
Wang M, Chen C, Ying K, Sha L, Kuang D, Huang Y, Yang J, Yin T. Peptide-DNA conjugate-assisted DNA cyclization for highly efficient and sensitive detection of furin. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:3570-3578. [PMID: 40259668 DOI: 10.1039/d5ay00370a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Furin, a critical regulatory protease, plays a crucial role in significant physiological processes such as oncogenic signaling pathways. Accurate detection of furin is essential for disease diagnosis and precise medical interventions. Herein, we leverage the proximity effect of the engineered peptide-DNA conjugate (PDC) to induce DNA cyclization, enabling efficient and sensitive detection of furin. The PDC is synthesized through chemical reactions that link peptides and DNA molecules, strategically structured with a peptide moiety containing the specific recognition and cleavage site for furin, sandwiched between two DNA sequences. Meanwhile, the proximity effect-mediated DNA hybridization of the PDC achieves the complementation of Padlock DNA, thereby ensuring circular DNA formation. Subsequently, the cyclized DNA serves as a template to initiate the rolling circle amplification reaction, generating numerous G-quadruplex structures that yield a fluorescence signal upon thioflavin T intercalation. While furin-catalyzed peptide cleavage disrupts the proximity effect, DNA cyclization and subsequent reactions are inhibited. The multifunctional PDC probe which can assist DNA cyclization facilitates furin recognition through peptide embedding, thus providing a new way for sensitive detection of furin, with a detection limit of 1.5 pM. Additionally, our method demonstrates efficacy in inhibitor determination, showing great potential across biomedical research, clinical diagnostics, and therapeutic development.
Collapse
Affiliation(s)
- Minghui Wang
- College of Science, Nanjing Forestry University, Nanjing, 210037, P. R. China.
| | - Cuifei Chen
- College of Science, Nanjing Forestry University, Nanjing, 210037, P. R. China.
| | - Keqin Ying
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Lingjun Sha
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Deqi Kuang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Yue Huang
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Jie Yang
- College of Science, Nanjing Forestry University, Nanjing, 210037, P. R. China.
| | - Tingting Yin
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China.
| |
Collapse
|
2
|
Li H, Li Y, Li K, Wang Q, Yang J, Qiu L, Lin J. Positron Emission Tomography Imaging of Cathepsin B in Tumors with Activable Small Molecule Tracers. J Med Chem 2024; 67:21292-21302. [PMID: 39587460 DOI: 10.1021/acs.jmedchem.4c02178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Cathepsin B (CTB) is overexpressed in several types of tumors, and precise evaluation of the CTB activity can offer a promising method for the early diagnosis of tumors. In this study, two CTB-activated positron emission tomography (PET) tracers, [68Ga]NOTA-SFCVM and [68Ga]NOTA-SFCVHEM, were developed for sensitive and specific detection of CTB. Both tracers undergo a click condensation between 2-cyano-6-aminobenzothiazole (CBT) and cysteine (Cys) to form a cyclization product, thereby enhancing and prolonging the PET signal in tumors. In vitro cellular experiments showed that the tracers could differentiate tumor cells with different expression levels of CTB. In vivo PET imaging further revealed that the tracers selectively accumulated in the CTB-positive tumors. Compared with [68Ga]NOTA-SFCVM, [68Ga]NOTA-SFCVHEM containing a morpholine group and a histidine-glutamate-histidine-glutamate-histidine-glutamate sequence exhibited faster catalytic efficiency toward CTB, higher tumor uptake, and reduced liver uptake. These findings suggest that [68Ga]NOTA-SFCVHEM holds potential for clinical use in the early diagnosis of CTB-related tumors.
Collapse
Affiliation(s)
- Huirong Li
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Yuelin Li
- McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Ke Li
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Qianhui Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Jichen Yang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| |
Collapse
|
3
|
Moreno-Alcántar G, Drexler M, Casini A. Assembling a new generation of radiopharmaceuticals with supramolecular theranostics. Nat Rev Chem 2024; 8:893-914. [PMID: 39468298 DOI: 10.1038/s41570-024-00657-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 10/30/2024]
Abstract
Supramolecular chemistry has been used to tackle some of the major challenges in modern science, including cancer therapy and diagnosis. Supramolecular platforms provide synthetic flexibility, rapid generation through self-assembly, facile labelling, unique topologies, tunable reversibility of the enabling noncovalent interactions, and opportunities for host-guest chemistry and mechanical bonding. In this Review, we summarize recent advances in the design and radiopharmaceutical application of discrete self-assembled coordination complexes and mechanically interlocked molecules - namely, metallacages and rotaxanes, respectively - as well as in situ-forming supramolecular aggregates, specifically pinpointing their potential as next-generation radiotheranostic agents. The outlook of such supramolecular constructs for potential applications in the clinic is discussed.
Collapse
Affiliation(s)
- Guillermo Moreno-Alcántar
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching bei München, Germany
| | - Marike Drexler
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching bei München, Germany
| | - Angela Casini
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching bei München, Germany.
- Munich Data Science Institute (MDSI), Technical University of Munich, Garching bei München, Germany.
| |
Collapse
|
4
|
Wang WJ, Zhang R, Zhang L, Hao L, Cai XM, Wu Q, Qiu Z, Han R, Feng J, Wang S, Alam P, Zhang G, Zhao Z, Tang BZ. Enzymatically catalyzed molecular aggregation. Nat Commun 2024; 15:9999. [PMID: 39557870 PMCID: PMC11574095 DOI: 10.1038/s41467-024-54291-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024] Open
Abstract
The dynamic modulation of the aggregation process of small molecules represents an important research objective for scientists. However, the complex and dynamic nature of internal environments in vivo impedes controllable aggregation processes of single molecules. In this study, we successfully achieve tumor-targeted aggregation of an aggregation-induced emission photosensitizer (AIE-PS), TBmA, with the catalysis of a tumor-overexpressed enzyme, γ-Glutamyl Transferase (GGT). Mechanistic investigations reveal that TBmA-Glu can be activated by GGT through cleavage of the γ-glutamyl bond and releasing TBmA. The poor water solubility of TBmA induces its aggregation, leading to aggregation-enhanced emission and photodynamic activities. The TBmA-Glu not only induces glutathione (GSH) depletion through GGT photo-degradation but also triggers lipid peroxidation accumulation and ferroptosis in cancer cells through photodynamic therapy. Finally, the in vivo studies conducted on female mice using both tumor xenograft and orthotopic liver cancer models have also demonstrated the significant anti-cancer effects of TBmA-Glu. The exceptional cancer-targeting ability and therapeutic efficiency demonstrated by this GGT activatable AIE-PS highlights enzymatic-mediated modulation as an effective approach for regulating small molecule aggregation intracellularly, thereby advancing innovative therapeutic strategies for various diseases.
Collapse
Affiliation(s)
- Wen-Jin Wang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Rongyuan Zhang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China
| | - Liping Zhang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China
| | - Liang Hao
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China
| | - Xu-Min Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Qian Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zijie Qiu
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China
| | - Ruijuan Han
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China
| | - Jing Feng
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China
| | - Shaojuan Wang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China.
| | - Parvej Alam
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China
| | - Guoqing Zhang
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zheng Zhao
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China.
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China.
| | - Ben Zhong Tang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China.
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China.
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
5
|
Huang Y, Yu Z, Peng J, Yu Q, Xu H, Yang M, Yuan S, Zhang Q, Yang Y, Gao J, Yuan Y. Amino-Acid-Encoded Supramolecular Nanostructures for Persistent Bioluminescence Imaging of Tumor. Adv Healthc Mater 2024; 13:e2401244. [PMID: 38934340 DOI: 10.1002/adhm.202401244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/16/2024] [Indexed: 06/28/2024]
Abstract
Bioluminescence imaging (BLI) is a powerful technique for noninvasive monitoring of biological processes and cell transplantation. Nonetheless, the application of D-luciferin, which is widely employed as a bioluminescent probe, is restricted in long-term in vivo tracking due to its short half-life. This study presents a novel approach using amino acid-encoded building blocks to accumulate and preserve luciferin within tumor cells, through a supramolecular self-assembly strategy. The building block platform called Cys(SEt)-X-CBT (CXCBT, with X representing any amino acid) utilizes a covalent-noncovalent hybrid self-assembly mechanism to generate diverse luciferin-containing nanostructures in tumor cells after glutathione reduction. These nanostructures exhibit efficient tumor-targeted delivery as well as sequence-dependent well-designed morphologies and prolonged bioluminescence performance. Among the selected amino acids (X = Glu, Lys, Leu, Phe), Cys(SEt)-Lys-CBT (CKCBT) exhibits the superior long-lasting bioluminescence signal (up to 72 h) and good biocompatibility. This study demonstrates the potential of amino-acid-encoded supramolecular self-assembly as a convenient and effective method for developing BLI probes for long-term biological tracking and disease imaging.
Collapse
Affiliation(s)
- Yifan Huang
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zian Yu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jiancheng Peng
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Qin Yu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hao Xu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Miaomiao Yang
- Clinical Pathology Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Sijie Yuan
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Qianzijing Zhang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yanyun Yang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jin Gao
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Hefei Ion Medical Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230088, China
| | - Yue Yuan
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Hefei Ion Medical Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230088, China
| |
Collapse
|
6
|
Jin C, Cao Z, Zhu HL, Li Z. γ-Glutamyltranspeptidase fluorescence lifetime response probe for precision tumor detection unveiling A549 cancer cell specificity. Biosens Bioelectron 2024; 261:116484. [PMID: 38878698 DOI: 10.1016/j.bios.2024.116484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024]
Abstract
γ-Glutamyltranspeptidase (γ-GGT), as a key enzyme, exhibits markedly higher expression levels in tumor cells compared to normal cells. Under normal conditions, γ-GGT activity on the cell membrane is relatively low, but it undergoes a significant upregulation in cancer cells, making it a potential cancer biomarker. Particularly in A549 cells, a prominent cancer cell line, the pronounced upregulation of γ-GGT expression emphasizes its potential as a unique recognition target and a robust marker for A549 cells. This study successfully synthesized a highly selective γ-GGT fluorescent probe, the exhibits commendable sensitivity (LOD = 0.0021U/mL) and selectivity, achieving efficient detection at the cellular level and providing accurate insights into differential expression between normal and cancer cells. The alterations in fluorescence lifetime observed before and after the probe's reaction with γ-GGT serve as a crucial foundation for fluorescence lifetime imaging on living cells. The probe has become a powerful tool for precise localization of tumor cells, particularly demonstrating its capability for specific recognition in A549 cells. Overall, this research highlights the potential of γ-GGT as a target for fluorescent probes, emphasizing its prospects in specific recognition, particularly in A549 cells, with profound implications for advancing early cancer diagnosis and treatment methods.
Collapse
Affiliation(s)
- Chen Jin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No.163 Xianlin Avenue, Nanjing, 210023, China
| | - Zhijia Cao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No.163 Xianlin Avenue, Nanjing, 210023, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No.163 Xianlin Avenue, Nanjing, 210023, China
| | - Zhen Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No.163 Xianlin Avenue, Nanjing, 210023, China.
| |
Collapse
|
7
|
Wang Y, Niu H, Wang K, Yang L, Wang G, James TD, Fan J, Zhang H. Fluorescence-plane polarization for the real-time monitoring of transferase migration in living cells. Chem Sci 2024; 15:d4sc03387f. [PMID: 39309085 PMCID: PMC11409853 DOI: 10.1039/d4sc03387f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024] Open
Abstract
Transferases are enzymes that exhibit multisite migration characteristics. Significantly, enzyme activity undergoes changes during this migration process, which inevitably impacts the physiological function of living organisms and can even lead to related malignant diseases. However, research in this field has been severely hindered by the lack of tools for the simultaneous and differential monitoring of site-specific transferase activity. Herein, we propose a novel strategy that integrates a fluorescence signal response with high sensitivity and an optical rotation signal response with superior spatial resolution. To validate the feasibility of this strategy, transferase γ-glutamyltransferase (GGT) was used as a model system to develop dual-mode chiral probes ACx-GGTB (AC17-GGTB and AC15-GGTB) using chiral amino acids as specific bifunctional recognition groups. The probes undergo structural changes under GGT, resulting in the release of bifunctional recognition groups (chiral amino acids) and simultaneously generate fluorescence signals and optical rotation signals. This dual-mode output exhibits high sensitivity and facilitates differentiation of sites. Furthermore, it enables simultaneous and differential detection of GGT activity at different sites during migration. We anticipate that probes developed based on this strategy will facilitate imaging-based monitoring of the activity for other transferases, thus providing an imaging platform suitable for the real-time tracking of transferase activity changes during migration.
Collapse
Affiliation(s)
- Yafu Wang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China +86-373-3329030 +86-373-3329030
| | - Huiyu Niu
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China +86-373-3329030 +86-373-3329030
| | - Kui Wang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China +86-373-3329030 +86-373-3329030
| | - Liu Yang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China +86-373-3329030 +86-373-3329030
| | - Ge Wang
- Xinxiang Medical University Xinxiang 453000 P. R. China
| | - Tony D James
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China +86-373-3329030 +86-373-3329030
- Department of Chemistry, University of Bath Bath BA2 7AY UK
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology Dalian Liaoning 116024 P. R. China
| | - Hua Zhang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China +86-373-3329030 +86-373-3329030
| |
Collapse
|
8
|
Hong Y, Yang Y, Wang C, Huang Y, Shen W, Shen Z, Lun Z, Zhang J, Wang C, Yuan Y. Luciferase-Loaded Calcium Phosphate Nanoparticles for Persistent Bioluminescence Imaging of Orthotopic Breast Tumors. Anal Chem 2024; 96:14320-14325. [PMID: 39208257 DOI: 10.1021/acs.analchem.4c02289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Bioluminescence imaging (BLI) is an important noninvasive optical imaging technique that has been widely used to monitor many biological processes due to its high sensitivity, resolution, and signal-to-noise ratio. However, the BLI technique based on the firefly luciferin-luciferase system is limited by the expression of exogenous luciferase and the short half-life of firefly luciferin, which pose challenges for long-term tracking in vivo. To solve the problems, here we rationally designed an intelligent strategy for persistent BLI in tumors by combining luciferase-loaded calcium phosphate nanoparticles (Luc@CaP NPs) to provide luciferase and the probe Cys(SEt)-Lys-CBT (CKCBT) to slowly produce the luciferase substrate amino luciferin (Am-luciferin). Luc@CaP NPs constructed with CaP as a carrier could enable luciferase activity to be maintained in vivo for at least 12 h. And compared to the conventional substrate luciferin, CKCBT apparently prolonged the BL time by up to 2 h through GSH-induced intracellular self-assembly and subsequent protease degradation-induced release of Am-luciferin. We anticipate that this strategy could be applied for clinical translation in more disease diagnosis and treatment in the near future.
Collapse
Affiliation(s)
- Yajian Hong
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yanyun Yang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chenchen Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yifan Huang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Weicheng Shen
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhiqiang Shen
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhiyou Lun
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jia Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Congxiao Wang
- Department of the Interventional Medical Center, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Yue Yuan
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
9
|
Karan S, Cho JH, Tran CTN, Cho MY, Lee H, Naskar R, Hwang I, Pradhan S, Park HS, Han EH, Sessler JL, Hong KS. Activatable near-infrared fluorescence and chemical exchange saturation transfer MRI multimodal imaging probe for tumor detection in vitro and in vivo. SENSORS AND ACTUATORS. B, CHEMICAL 2024; 413:135839. [PMID: 40160437 PMCID: PMC11952121 DOI: 10.1016/j.snb.2024.135839] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Multimodal imaging has emerged as a powerful tool in biomedical research and clinical diagnostics. Ideally, it combines multiple imaging techniques to provide complementary anatomical and molecular information in living subjects. Particularly desirable are multimodal imaging probes capable of providing differential diagnostic signals upon interaction with specific molecular targets. Hydrogen peroxide (H2O2) is a key target in this regard, since it is typically overexpressed in cancer cells. In this study, we present a small-molecule probe that not only selectively detects endogenous H2O2 through multimodal imaging, with a significant H2O2-triggered 15-fold fluorescence enhancement but also turns "on" a chemical exchange saturation transfer (CEST) magnetic resonance (MR) response with 60-fold signal enhancement at pH 7.4. Excellent selectivity against various other biologically relevant species is seen. Using this probe, we observed 3.4-4.5-fold and 2.8-5.8-fold higher H2O2 levels in cancerous cell lines and tumor tissues compared to normal cell lines and tissues, respectively. Time-dependent in vivo fluorescence and CEST imaging in a HeLa (Henrietta Lacks) tumor xenograft mouse model revealed probe-dependent tumor detection by fluorescence and CEST MRI contrast in the tumor area. These observations are attributed to the relatively high endogenous H2O2 levels produced during mitosis. This newly developed probe holds promise for advancing our understanding of H2O2-related biology and for cancer detection both in vitro and in vivo.
Collapse
Affiliation(s)
- Sanu Karan
- Biopharmaceutical Research Center, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Jee-Hyun Cho
- Center for Bio-imaging and Translational Research, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Chau Thi Ngoc Tran
- Biopharmaceutical Research Center, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Mi Young Cho
- Biopharmaceutical Research Center, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Hyunseung Lee
- Biopharmaceutical Research Center, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Rema Naskar
- Immunology and Immunopharmacology Laboratory, College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Inkyu Hwang
- Immunology and Immunopharmacology Laboratory, College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sourav Pradhan
- Department of Chemistry, Korea Advance Institute of Science and Technology (KAIST), Daejeon 34134, Republic of Korea
| | - Hye Sun Park
- Biopharmaceutical Research Center, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Eun Hee Han
- Biopharmaceutical Research Center, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712-1224, USA
| | - Kwan Soo Hong
- Biopharmaceutical Research Center, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
10
|
Lauwerys L, Beroske L, Solania A, Vangestel C, Miranda A, Van Giel N, Adhikari K, Lambeir AM, Wyffels L, Wolan D, Van der Veken P, Elvas F. Development of caspase-3-selective activity-based probes for PET imaging of apoptosis. EJNMMI Radiopharm Chem 2024; 9:58. [PMID: 39117920 PMCID: PMC11310375 DOI: 10.1186/s41181-024-00291-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND The cysteine-aspartic acid protease caspase-3 is recognized as the main executioner of apoptosis in cells responding to specific extrinsic and intrinsic stimuli. Caspase-3 represents an interesting biomarker to evaluate treatment response, as many cancer therapies exert their effect by inducing tumour cell death. Previously developed caspase-3 PET tracers were unable to reach routine clinical use due to low tumour uptake or lack of target selectivity, which are two important requirements for effective treatment response evaluation in cancer patients. Therefore, the goal of this study was to develop and preclinically evaluate novel caspase-3-selective activity-based probes (ABPs) for apoptosis imaging. RESULTS A library of caspase-3-selective ABPs was developed for tumour apoptosis detection. In a first attempt, the inhibitor Ac-DW3-KE (Ac-3Pal-Asp-βhLeu-Phe-Asp-KE) was 18F-labelled on the N-terminus to generate a radiotracer that was incapable of adequately detecting an increase in apoptosis in vivo. The inability to effectively detect active caspase-3 in vivo was likely attributable to slow binding, as demonstrated with in vitro inhibition kinetics. Hence, a second generation of caspase-3 selective ABPs was developed based on the Ac-ATS010-KE (Ac-3Pal-Asp-Phe(F5)-Phe-Asp-KE) with greatly improved binding kinetics over Ac-DW3-KE. Our probes based on Ac-ATS010-KE were made by modifying the N-terminus with 6 different linkers. All the linker modifications had limited effect on the binding kinetics, target selectivity, and pharmacokinetic profile in healthy mice. In an in vitro apoptosis model, the least hydrophilic tracer [18F]MICA-316 showed an increased uptake in apoptotic cells in comparison to the control group. Finally, [18F]MICA-316 was tested in an in vivo colorectal cancer model, where it showed a limited tumour uptake and was unable to discriminate treated tumours from the untreated group, despite demonstrating that the radiotracer was able to bind caspase-3 in complex mixtures in vitro. In contrast, the phosphatidylethanolamine (PE)-binding radiotracer [99mTc]Tc-duramycin was able to recognize the increased cell death in the disease model, making it the best performing treatment response assessment tracer developed thus far. CONCLUSIONS In conclusion, a novel library of caspase-3-binding PET tracers retaining similar binding kinetics as the original inhibitor was developed. The most promising tracer, [18F]MICA-316, showed an increase uptake in an in vitro apoptosis model and was able to selectively bind caspase-3 in apoptotic tumour cells. In order to distinguish therapy-responsive from non-responsive tumours, the next generation of caspase-3-selective ABPs will be developed with higher tumour accumulation and in vivo stability.
Collapse
Affiliation(s)
- Louis Lauwerys
- Molecular Imaging and Radiology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Lucas Beroske
- Molecular Imaging and Radiology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Angelo Solania
- Departments of Molecular Medicine and Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Christel Vangestel
- Molecular Imaging and Radiology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Alan Miranda
- Molecular Imaging and Radiology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Nele Van Giel
- Molecular Imaging and Radiology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Karuna Adhikari
- Molecular Imaging and Radiology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| | - Leonie Wyffels
- Molecular Imaging and Radiology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Dennis Wolan
- Departments of Molecular Medicine and Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Filipe Elvas
- Molecular Imaging and Radiology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium.
| |
Collapse
|
11
|
Huang Y, Yang G, Yu Z, Tong T, Huang Y, Zhang Q, Hong Y, Jiang J, Zhang G, Yuan Y. Amino-Acid-Encoded Bioinspired Supramolecular Self-Assembly of Multimorphological Nanocarriers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311351. [PMID: 38453673 DOI: 10.1002/smll.202311351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/19/2024] [Indexed: 03/09/2024]
Abstract
Supramolecular self-assembly has emerged as an efficient tool to construct well-organized nanostructures for biomedical applications by small organic molecules. However, the physicochemical properties of self-assembled nanoarchitectures are greatly influenced by their morphologies, mechanical properties, and working mechanisms, making it challenging to design and screen ideal building blocks. Herein, using a biocompatible firefly-sourced click reaction between the cyano group of 2-cyano-benzothiazole (CBT) and the 1,2-aminothiol group of cysteine (Cys), an amino-acid-encoded supramolecular self-assembly platform Cys(SEt)-X-CBT (X represents any amino acid) is developed to incorporate both covalent and noncovalent interactions for building diverse morphologies of nanostructures with bioinspired response mechanism, providing a convenient and rapid strategy to construct site-specific nanocarriers for drug delivery, cell imaging, and enzyme encapsulation. Additionally, it is worth noting that the biodegradation of Cys(SEt)-X-CBT generated nanocarriers can be easily tracked via bioluminescence imaging. By caging either the thiol or amino groups in Cys with other stimulus-responsive sites and modifying X with probes or drugs, a variety of multi-morphological and multifunctional nanomedicines can be readily prepared for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Yifan Huang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Guokun Yang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zian Yu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Tong Tong
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Yan Huang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Qianzijing Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yajian Hong
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Jun Jiang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Guozhen Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yue Yuan
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
| |
Collapse
|
12
|
Fu J, Xi H, Cai S, Peng Y, Liu Q, Qiu L, Lin J. Development of Granzyme B-targeted Smart Positron Emission Tomography Probes for Monitoring Tumor Early Response to Immunotherapy. ACS NANO 2024; 18:18910-18921. [PMID: 39001856 DOI: 10.1021/acsnano.4c01157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Granzyme B is an immune-related biomarker that closely correlates with cytotoxic T lymphocytes (CTLs), and hence detecting the expression level of granzyme B can provide a dependable scheme for clinical immune response assessment. In this study, two positron emission tomography (PET) probes [18F]SF-M-14 and [18F]SF-H-14 targeting granzyme B are designed based on the intramolecular cyclization scaffold SF. [18F]SF-M-14 and [18F]SF-H-14 can respond to granzyme B and glutathione (GSH) to conduct intramolecular cyclization and self-assemble into nanoaggregates to enhance the retention of probe at the target site. Both probes are prepared with high radiochemical purity (>98%) and high stability in PBS and mouse serum. In 4T1 cells cocultured with T lymphocytes, [18F]SF-M-14 and [18F]SF-H-14 reach the maximum uptake of 6.71 ± 0.29 and 3.47 ± 0.09% ID/mg at 0.5 h, respectively, but they remain below 1.95 ± 0.22 and 1.47 ± 0.21% ID/mg in 4T1 cells without coculture of T lymphocytes. In vivo PET imaging shows that the tumor uptake in 4T1-tumor-bearing mice after immunotherapy is significantly higher (3.5 times) than that in the untreated group. The maximum tumor uptake of [18F]SF-M-14 and [18F]SF-H-14 in the mice treated with BEC was 4.08 ± 0.16 and 3.43 ± 0.12% ID/g, respectively, while that in the untreated mice was 1.04 ± 0.79 and 1.41 ± 0.11% ID/g, respectively. These results indicate that both probes have great potential in the early evaluation of clinical immunotherapy efficacy.
Collapse
Affiliation(s)
- Jiayu Fu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Hongjie Xi
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Shuyue Cai
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ying Peng
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Qingzhu Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
13
|
Wen X, Zhang C, Tian Y, Miao Y, Liu S, Xu JJ, Ye D, He J. Smart Molecular Imaging and Theranostic Probes by Enzymatic Molecular In Situ Self-Assembly. JACS AU 2024; 4:2426-2450. [PMID: 39055152 PMCID: PMC11267545 DOI: 10.1021/jacsau.4c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
Enzymatic molecular in situ self-assembly (E-MISA) that enables the synthesis of high-order nanostructures from synthetic small molecules inside a living subject has emerged as a promising strategy for molecular imaging and theranostics. This strategy leverages the catalytic activity of an enzyme to trigger probe substrate conversion and assembly in situ, permitting prolonging retention and congregating many molecules of probes in the targeted cells or tissues. Enhanced imaging signals or therapeutic functions can be achieved by responding to a specific enzyme. This E-MISA strategy has been successfully applied for the development of enzyme-activated smart molecular imaging or theranostic probes for in vivo applications. In this Perspective, we discuss the general principle of controlling in situ self-assembly of synthetic small molecules by an enzyme and then discuss the applications for the construction of "smart" imaging and theranostic probes against cancers and bacteria. Finally, we discuss the current challenges and perspectives in utilizing the E-MISA strategy for disease diagnoses and therapies, particularly for clinical translation.
Collapse
Affiliation(s)
- Xidan Wen
- Department
of Nuclear Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital
of Medical School, Nanjing University, Nanjing 210008, China
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Chao Zhang
- Department
of Neurosurgery, Zhujiang Hospital, Southern
Medical University, Guangzhou 510282, China
| | - Yuyang Tian
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Yinxing Miao
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Shaohai Liu
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Jing-Juan Xu
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Deju Ye
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Jian He
- Department
of Nuclear Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital
of Medical School, Nanjing University, Nanjing 210008, China
| |
Collapse
|
14
|
Gao X, Wang Q, Yang X, Fang J, Li H, Xi H, Lin J, Qiu L. Legumain-Triggered Macrocyclization of Radiofluorinated Tracer for Enhanced PET Imaging. Bioconjug Chem 2024; 35:665-673. [PMID: 38598424 DOI: 10.1021/acs.bioconjchem.4c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Enhancing the accumulation and retention of small-molecule probes in tumors is an important way to achieve accurate cancer diagnosis and therapy. Enzyme-stimulated macrocyclization of small molecules possesses great potential for enhanced positron emission tomography (PET) imaging of tumors. Herein, we reported an 18F-labeled radiotracer [18F]AlF-RSM for legumain detection in vivo. The tracer was prepared by a one-step aluminum-fluoride-restrained complexing agent ([18F]AlF-RESCA) method with high radiochemical yield (RCY) (88.35 ± 3.93%) and radiochemical purity (RCP) (>95%). More notably, the tracer can be transformed into a hydrophobic macrocyclic molecule under the joint action of legumain and reductant. Simultaneously, the tracer could target legumain-positive tumors and enhance accumulation and retention in tumors, resulting in the amplification of PET imaging signals. The enhancement of radioactivity enables PET imaging of legumain activity with high specificity. We envision that, by combining this highly efficient 18F-labeled strategy with our intramolecular macrocyclization reaction, a range of radiofluorinated tracers can be designed for tumor PET imaging and early cancer diagnosis in the future.
Collapse
Affiliation(s)
- Xiaoqing Gao
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Qianhui Wang
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Xiaofeng Yang
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Jing Fang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Huirong Li
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Hongjie Xi
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Ling Qiu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| |
Collapse
|
15
|
Mo X, Zhang Z, Song J, Wang Y, Yu Z. Self-assembly of peptides in living cells for disease theranostics. J Mater Chem B 2024; 12:4289-4306. [PMID: 38595070 DOI: 10.1039/d4tb00365a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The past few decades have witnessed substantial progress in biomedical materials for addressing health concerns and improving disease therapeutic and diagnostic efficacy. Conventional biomedical materials are typically created through an ex vivo approach and are usually utilized under physiological environments via transfer from preparative media. This transfer potentially gives rise to challenges for the efficient preservation of the bioactivity and implementation of theranostic goals on site. To overcome these issues, the in situ synthesis of biomedical materials on site has attracted great attention in the past few years. Peptides, which exhibit remarkable biocompability and reliable noncovalent interactions, can be tailored via tunable assembly to precisely create biomedical materials. In this review, we summarize the progress in the self-assembly of peptides in living cells for disease diagnosis and therapy. After a brief introduction to the basic design principles of peptide assembly systems in living cells, the applications of peptide assemblies for bioimaging and disease treatment are highlighted. The challenges in the field of peptide self-assembly in living cells and the prospects for novel peptide assembly systems towards next-generation biomaterials are also discussed, which will hopefully help elucidate the great potential of peptide assembly in living cells for future healthcare applications.
Collapse
Affiliation(s)
- Xiaowei Mo
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Zeyu Zhang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Jinyan Song
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Yushi Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
- Haihe Laboratory of Synthetic Biology, 21 West 15th Avenue, Tianjin 300308, China
| |
Collapse
|
16
|
Zhang L, Wang X, Zhao J, Sun B, Wang W. Construction of Targeting-Peptide-Based Imaging Reagents and Their Application in Bioimaging. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:233-249. [PMID: 39473775 PMCID: PMC11503909 DOI: 10.1021/cbmi.3c00104] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 06/17/2025]
Abstract
Molecular imaging was developed from basic molecular recognition. It can visualize not only the expression levels of specific molecules in a living system but also specific biological processes, thus providing guidance for early detection and treatment of diseases. As a noninvasive method, imaging agents are one of the foundations of high spatial resolution imaging, and their sensitivity and specificity can be improved by coupling targeting ligands to imaging probes. Among the various targeting ligands (antibodies, aptamers, etc.), targeting peptides are widely used in various modalities of molecular imaging due to their high affinities toward the molecular target and their excellent physicochemical properties. In this review, we summarize the design concepts and methods of targeting peptides in molecular imaging, introduce the combination of targeting peptides and imaging probes in different imaging modalities (e.g., fluorescence imaging, radionuclide imaging), and provide examples of their applications in bioimaging. Finally, the challenges and strategies for clinical translation and practical application of targeting peptide-based imaging reagents are briefly discussed.
Collapse
Affiliation(s)
- Limin Zhang
- Key Laboratory of Medical
Molecule Science and Pharmaceutics Engineering, Ministry of Industry
and Information Technology, Key Laboratory of Cluster Science of Ministry
of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic
Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute
of Technology, Beijing 100081, PR China
| | - Xin Wang
- Key Laboratory of Medical
Molecule Science and Pharmaceutics Engineering, Ministry of Industry
and Information Technology, Key Laboratory of Cluster Science of Ministry
of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic
Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute
of Technology, Beijing 100081, PR China
| | - Jinge Zhao
- Key Laboratory of Medical
Molecule Science and Pharmaceutics Engineering, Ministry of Industry
and Information Technology, Key Laboratory of Cluster Science of Ministry
of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic
Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute
of Technology, Beijing 100081, PR China
| | - Beilei Sun
- Key Laboratory of Medical
Molecule Science and Pharmaceutics Engineering, Ministry of Industry
and Information Technology, Key Laboratory of Cluster Science of Ministry
of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic
Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute
of Technology, Beijing 100081, PR China
| | - Weizhi Wang
- Key Laboratory of Medical
Molecule Science and Pharmaceutics Engineering, Ministry of Industry
and Information Technology, Key Laboratory of Cluster Science of Ministry
of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic
Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute
of Technology, Beijing 100081, PR China
| |
Collapse
|
17
|
Hua D, Xi H, Xie Q, Cai S, Zhou Y, Hu X, Qiu L, Lin J. Lysosome-targeting and legumain-triggered 68Ga-labeled probe for enhanced tumor PET imaging. Biochem Biophys Res Commun 2024; 703:149646. [PMID: 38350212 DOI: 10.1016/j.bbrc.2024.149646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
Legumain is overexpressed in diverse tumors, serving as a significant tumor biomarker. Our study aimed to develop a new positron emission tomography (PET) probe [68Ga]Ga-NOTA-SF-AANM for imaging the expression level of legumain in vivo. The radio-labeling of [68Ga]Ga-NOTA-SF-AANM was accomplished within 15 min. The probe has good stability in vitro. NOTA-SF-AANM exhibited rapid response to recombinant human legumain enzyme, enabling intramolecular condensation cyclization. Cellular uptake and lysosomal co-localization experiments demonstrated that the probe was able to differentiate specifically between MDA-MB-468 and PC-3 cancer cells with varying degrees of legumain expression. PET imaging displayed a significant and persistent signal (3.59 ± 0.30 %ID/mL at 60 min) in MDA-MB-468 tumors, while PC-3 tumors exhibited lower radioactivity (1.08 ± 0.35 %ID/mL at 60 min), further validating the specific targeting of [68Ga]Ga-NOTA-SF-AANM towards legumain. [68Ga]Ga-NOTA-SF-AANM is a promising tool for precise diagnosis of legumain-related diseases due to its advantages in radio-labeling and accurate monitoring of legumain expression levels.
Collapse
Affiliation(s)
- Di Hua
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Hongjie Xi
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Quan Xie
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Shuyue Cai
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Yuxuan Zhou
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Xin Hu
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Ling Qiu
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Jianguo Lin
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China.
| |
Collapse
|
18
|
Li H, Liang B, Gao X, Peng Y, Liu Q, Qiu L, Lin J. Cathepsin B-Activated PET Tracer for In Vivo Tumor Imaging. Mol Pharm 2024; 21:1382-1389. [PMID: 38372213 DOI: 10.1021/acs.molpharmaceut.3c01034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Cathepsin B, a lysosomal protease, is considered as a crucial biomarker for tumor diagnosis and treatment as it is overexpressed in numerous cancers. A stimulus-responsive SF scaffold has been reported to detect the activity of a variety of tumor-associated enzymes. In this work, a small-molecule PET tracer ([68Ga]NOTA-SF-CV) was developed by combining an SF scaffold with a cathepsin B-specific recognition substrate Cit-Val. Upon activation by cathepsin B, [68Ga]NOTA-SF-CV could form the cyclization product in a reduction environment, resulting in reduced hydrophilicity. This unique property could effectively prevent exocytosis of the tracer in cathepsin B-overexpressing tumor cells, leading to prolonged retention and amplified PET imaging signal. Moreover, [68Ga]NOTA-SF-CV had great targeting specificity to cathepsin B. In vivo microPET imaging results showed that [68Ga]NOTA-SF-CV was able to effectively visualize the expression level of cathepsin B in various tumors. Hence, [68Ga]NOTA-SF-CV may be served as a potential tracer for diagnosing cathepsin B-related diseases.
Collapse
Affiliation(s)
- Huirong Li
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Beibei Liang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Xiaoqing Gao
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Ying Peng
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Qingzhu Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Ling Qiu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Jianguo Lin
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| |
Collapse
|
19
|
Xu L, Gao H, Zhan W, Deng Y, Liu X, Jiang Q, Sun X, Xu JJ, Liang G. Dual Aggregations of a Near-Infrared Aggregation-Induced Emission Luminogen for Enhanced Imaging of Alzheimer's Disease. J Am Chem Soc 2023; 145:27748-27756. [PMID: 38052046 DOI: 10.1021/jacs.3c10255] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Aggregation-induced emission (AIE) enables "Turn-On" imaging generally through single aggregation of the AIE luminogen (AIEgen). Dual aggregrations of the AIEgen might further enhance the imaging intensity and the consequent sensitivity. Herein, we rationally designed a near-infrared (NIR) AIEgen Ac-Trp-Glu-His-Asp-Cys(StBu)-Pra(QMT)-CBT (QMT-CBT) which, upon caspase1 (Cas1) activation, underwent a CBT-Cys click reaction to form cyclic dimers QMT-Dimer (the first aggregation) and assembled into nanoparticles (the second aggregation), turning the AIE signal "on" for enhanced imaging of Alzheimer's disease (AD). Molecular dynamics simulations validated that the fluorogen QMT in QMT-NPs stacked much tighter with each other than in the single aggregates of the control compound Ac-Trp-Glu-His-Asp-Cys(tBu)-Pra(QMT)-CBT (QMT-CBT-Ctrl). Dual aggregations of QMT rendered 1.9-, 1.7-, and 1.4-fold enhanced fluorescence intensities of its single aggregation in vitro, in cells, and in a living AD mouse model, respectively. We anticipate this smart fluorogen to be used for sensitive diagnosis of AD in the clinic in the near future.
Collapse
Affiliation(s)
- Lingling Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Hang Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenjun Zhan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yu Deng
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xiaoyang Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Qiaochu Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xianbao Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
20
|
Lu C, Li K, Xi H, Hua D, Li H, Gao F, Qiu L, Lin J. Dual-Targeting PET Tracers Enable Enzyme-Mediated Self-Assembly for the PET Imaging of Legumain Activity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44654-44664. [PMID: 37704192 DOI: 10.1021/acsami.3c07479] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Legumain, a lysosomal cysteine protease overexpressed in a variety of tumors, has been considered a promising biomarker for various cancers. Precise detection of legumain activity in the lysosome represents an important strategy for early diagnosis and prognosis of tumors. Small-molecule probes with the property of target-enabled self-assembly hold great potential for molecular imaging. In this study, we reported two dual-targeting radiotracers ([18F]SF-AAN-M and [18F]SF-AAN-HEM) with a property of legumain-mediated self-assembly for positron emission tomography (PET) imaging. Both the radiotracers were synthesized with high labeling yield (>50%) and the radiochemical purity was over 99% via one-step straightforward 18F-labeling. Both tracers were efficiently activated by the reducing agent and legumain to self-assemble into aggregates and showed enhanced retention in legumain-overexpressed MDA-MB-468 cells and tumors, indicating that the introduction of lysosome-targeting morpholine increased the tumor uptake and extended the retention of radiotracers in legumain-overexpressed tumors. In addition, [18F]SF-AAN-HEM with a hydrophilic (histidine-glutamate)3 tag displayed significantly reduced liver uptake with no conspicuous reduction in tumor uptake, affording high signal-to-noise ratios (tumor/liver and tumor/muscle). All of these results suggest that dual-targeting tracer [18F]SF-AAN-HEM could provide a promising tool for in vivo monitoring legumain activity in tumors.
Collapse
Affiliation(s)
- Chunmei Lu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Ke Li
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Hongjie Xi
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Di Hua
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Huirong Li
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Feng Gao
- Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| |
Collapse
|
21
|
Ma X, Mao M, He J, Liang C, Xie HY. Nanoprobe-based molecular imaging for tumor stratification. Chem Soc Rev 2023; 52:6447-6496. [PMID: 37615588 DOI: 10.1039/d3cs00063j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The responses of patients to tumor therapies vary due to tumor heterogeneity. Tumor stratification has been attracting increasing attention for accurately distinguishing between responders to treatment and non-responders. Nanoprobes with unique physical and chemical properties have great potential for patient stratification. This review begins by describing the features and design principles of nanoprobes that can visualize specific cell types and biomarkers and release inflammatory factors during or before tumor treatment. Then, we focus on the recent advancements in using nanoprobes to stratify various therapeutic modalities, including chemotherapy, radiotherapy (RT), photothermal therapy (PTT), photodynamic therapy (PDT), chemodynamic therapy (CDT), ferroptosis, and immunotherapy. The main challenges and perspectives of nanoprobes in cancer stratification are also discussed to facilitate probe development and clinical applications.
Collapse
Affiliation(s)
- Xianbin Ma
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Mingchuan Mao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jiaqi He
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chao Liang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Hai-Yan Xie
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Chemical Biology Center, Peking University, Beijing, 100191, P. R. China.
| |
Collapse
|
22
|
Yan Z, Liu Y, Zhao L, Hu J, Du Y, Peng X, Liu Z. In situ stimulus-responsive self-assembled nanomaterials for drug delivery and disease treatment. MATERIALS HORIZONS 2023; 10:3197-3217. [PMID: 37376926 DOI: 10.1039/d3mh00592e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The individual motifs that respond to specific stimuli for the self-assembly of nanomaterials play important roles. In situ constructed nanomaterials are formed spontaneously without human intervention and have promising applications in bioscience. However, due to the complex physiological environment of the human body, designing stimulus-responsive self-assembled nanomaterials in vivo is a challenging problem for researchers. In this article, we discuss the self-assembly principles of various nanomaterials in response to the tissue microenvironment, cell membrane, and intracellular stimuli. We propose the applications and advantages of in situ self-assembly in drug delivery and disease diagnosis and treatment, with a focus on in situ self-assembly at the lesion site, especially in cancer. Additionally, we introduce the significance of introducing exogenous stimulation to construct self-assembly in vivo. Based on this foundation, we put forward the prospects and possible challenges in the field of in situ self-assembly. This review uncovers the relationship between the structure and properties of in situ self-assembled nanomaterials and provides new ideas for innovative drug molecular design and development to solve the problems in the targeted delivery and precision medicine.
Collapse
Affiliation(s)
- Ziling Yan
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, P. R. China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, P. R. China
| | - Licheng Zhao
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, P. R. China
| | - Jiaxin Hu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, P. R. China.
| | - Yimin Du
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, P. R. China.
| | - Xingxing Peng
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, P. R. China.
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, P. R. China.
- Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan Province, P. R. China
| |
Collapse
|
23
|
Yang J, Zhu B, Ran C. The Application of Bio-orthogonality for In Vivo Animal Imaging. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:434-447. [PMID: 37655167 PMCID: PMC10466453 DOI: 10.1021/cbmi.3c00033] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 09/02/2023]
Abstract
The application of bio-orthogonality has greatly facilitated numerous aspects of biological studies in recent years. In particular, bio-orthogonal chemistry has transformed biological research, including in vitro conjugate chemistry, target identification, and biomedical imaging. In this review, we highlighted examples of bio-orthogonal in vivo imaging published in recent years. We grouped the references into two major categories: bio-orthogonal chemistry-related imaging and in vivo imaging with bio-orthogonal nonconjugated pairing. Lastly, we discussed the challenges and opportunities of bio-orthogonality for in vivo imaging.
Collapse
Affiliation(s)
- Jun Yang
- Athinoula
A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129, United States
| | - Biyue Zhu
- Athinoula
A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129, United States
| | - Chongzhao Ran
- Athinoula
A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129, United States
| |
Collapse
|
24
|
Dohmen C, Ihmels H. Switching between DNA binding modes with a photo- and redox-active DNA-targeting ligand, part II: the influence of the substitution pattern. Org Biomol Chem 2023. [PMID: 37401249 DOI: 10.1039/d3ob00879g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
A disulfide-functionalized photoactive DNA ligand is presented that enables the control of its DNA-binding properties by a combination of a photocycloaddition reaction and the redox reactivity of the sulfide/disulfide functionalities. In particular, the initially applied ligand binds to DNA by a combination of intercalation and groove-binding of separate benzo[b]quinolizinium units. The association to DNA is interrupted by an intramolecular [4 + 4] photocycloaddition to the non-binding head-to-head cyclomers. In turn, the subsequent cleavage of these cyclomers with dithiothreitol (DTT) regains temporarily a DNA-intercalating benzoquinolizinium ligand that is eventually converted into a non-binding benzothiophene. As a special feature, this sequence of controlled deactivation, recovery and internal shut-off of DNA-binding properties can be performed directly in the presence of DNA.
Collapse
Affiliation(s)
- Christoph Dohmen
- Department of Chemistry - Biology, University of Siegen, and Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - Heiko Ihmels
- Department of Chemistry - Biology, University of Siegen, and Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| |
Collapse
|
25
|
Chen L, Lyu Y, Zhang X, Zheng L, Li Q, Ding D, Chen F, Liu Y, Li W, Zhang Y, Huang Q, Wang Z, Xie T, Zhang Q, Sima Y, Li K, Xu S, Ren T, Xiong M, Wu Y, Song J, Yuan L, Yang H, Zhang XB, Tan W. Molecular imaging: design mechanism and bioapplications. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1461-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
26
|
Liang X, Zhang Y, Zhou J, Bu Z, Liu J, Zhang K. Tumor microenvironment-triggered intratumoral in situ construction of theranostic supramolecular self-assembly. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
27
|
Xu L, Liu N, Zhan W, Deng Y, Chen Z, Liu X, Gao G, Chen Q, Liu Z, Liang G. Granzyme B Turns Nanoparticle Fluorescence "On" for Imaging Cytotoxic T Lymphocyte Activity in Vivo. ACS NANO 2022; 16:19328-19334. [PMID: 36282211 DOI: 10.1021/acsnano.2c08896] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cytotoxic T lymphocytes (CTLs) are important immune cells, and their activation is a key step for cancer immunotherapy. Precise evaluation of CTL activity in vivo provides a powerful tool for monitoring cancer-immunotherapeutic outcomes, yet it faces tremendous challenges. Herein, by rationally designing a near-infrared (NIR) fluorescence probe Cys(StBu)-Ile-Glu-Phe-Asp-Lys(Cy5.5)-CBT (Cy5.5-CBT) and employing a reduction-instructed CBT-Cys click condensation reaction, we developed the fluorescence "dual quenched" nanoparticles Cy5.5-CBT-NPs for imaging of granzyme B (GraB), a biomarker tightly associated with the tumoricidal activity of CTLs. Upon GraB cleavage, Cy5.5-CBT-NPs disassembled, subtly turning the fluorescence signal "on". With this fluorescence "turn-on" property, Cy5.5-CBT-NPs enabled sensitive and real-time monitoring of GraB-mediated CTL responses against cancer cells in vitro. Animal experiments demonstrated that, at 16 h post injection, the fluorescence imaging signal of Cy5.5-CBT-NPs showed a 3.1-fold increase on the tumor sites of mice treated by an immune-activating drug S-(2-boronoethyl)-L-cysteine hydrochloride. We envision that Cy5.5-CBT-NPs may provide a powerful tool for noninvasive and sensitive evaluation of immunotherapeutic efficacy of cancer in the near future.
Collapse
Affiliation(s)
- Lingling Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| | - Nanhui Liu
- Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Wenjun Zhan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| | - Yu Deng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| | - Zhaoxia Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| | - Xiaoyang Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| | - Ge Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| | - Qian Chen
- Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Zhuang Liu
- Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Gaolin Liang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| |
Collapse
|
28
|
A caspase-3-activatable bimodal probe for photoacoustic and magnetic resonance imaging of tumor apoptosis in vivo. Biosens Bioelectron 2022; 216:114648. [DOI: 10.1016/j.bios.2022.114648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/22/2022]
|