1
|
Miao X, He J, Zhai H, Jin Z. Synergistic regulation of d-band center photocatalytic hydrogen evolution at S-scheme heterojunction reduction sites through defect engineering and interface electric field. J Colloid Interface Sci 2025; 677:1016-1028. [PMID: 39128285 DOI: 10.1016/j.jcis.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
The efficiency of photocatalytic hydrogen evolution can be significantly enhanced while maintaining cost-effectiveness through the synergistic effect of defect surface engineering and multi-component heterojunctions. The structure and properties of NiCo2O4 nanorods were modified by inducing oxygen vacancies at different temperatures in this study, resulting in improved optical properties and electron adsorption capacity. The presence of oxygen vacancies leads to a reduction in the band gap of NiCo2O4, thereby enhancing electron transport efficiency through band gap engineering. Simultaneously, surface properties undergo changes, and vacancy defects serve as electron trapping centers, facilitating an increased participation of electrons in the hydrogen evolution reaction process. The dodecahedron KMP with a cavity structure is additionally introduced to form an S-scheme heterojunction with NiCo2O4. This establishes a novel mechanism for electron transport, which effectively enhances the separation of electron-hole pairs and improves the redox capacity of the photocatalytic system. The adsorption of intermediates in the hydrogen production process is enhanced through synergistic regulation of d-band centers via surface defect engineering and S-scheme heterojunction. Additionally, this approach improves the separation efficiency of electron-hole pairs and accelerates electron transfer dynamics, significantly enhancing hydrogen production efficiency.
Collapse
Affiliation(s)
- Xinyu Miao
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China
| | - Jie He
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China.
| | - Haiyang Zhai
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China
| | - Zhiliang Jin
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China.
| |
Collapse
|
2
|
Cheng X, Nie S, Huang Y, Liu Q, Wu L, Wang X. Electron-Delocalization Across High Surface Entropy Sub-1 nm Nanobelts Toward Enhanced Electrocatalytic Urea Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404595. [PMID: 38966880 DOI: 10.1002/smll.202404595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 06/26/2024] [Indexed: 07/06/2024]
Abstract
Integration of inherently incompatible elements into a single sublattice, resulting in the formation of monophasic metal oxide, holds great scientific promise; it unveils that the overlooked surface entropy in subnanometer materials can thermodynamically facilitate the formation of homogeneous single-phase structures. Here a facile approach is proposed for synthesizing multimetallic oxide subnanometer nanobelts (MMO-PMA SNBs) by harnessing the potential of phosphomolybdic acid (PMA) clusters to capture inorganic nuclei and inhibiting their subsequent growth in solvothermal reactions. Experimental and theoretical analyses show that PMA in MMO-PMA SNBs not only aids subnanometer structure formation but also induces in situ modifications to catalytic sites. The electron transfer from PMA, coupled with the loss of elemental identity of transition metals, leads to electron delocalization, jointly activating the reaction sites. The unique structure makes pentametallic oxide (PMO-PMA SNBs) achieve a current density of 10 mA cm-2 at a low potential of 1.34 V and remain stable for 24 h at 10 mA cm-2 on urea oxidation reaction (UOR). The exceptional UOR catalytic activity suggests a potential for utilizing multimetallic subnanometer nanostructures in energy conversion and environmental remediation.
Collapse
Affiliation(s)
- Xijun Cheng
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Siyang Nie
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yuan Huang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qingda Liu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Liang Wu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Sheriff K, Sulejmanovic D, Jun J, Cannon W, Petta L, Phillips J, McMillen C, Hwu SJ. Electrochemically Assisted Single Crystal Growth of Reduced Preyssler Polyoxometalates Decorated with M2+ ( M = Co, Ni) and Cubane-Like Ni 4O 4 Units. Inorg Chem 2024. [PMID: 39230942 DOI: 10.1021/acs.inorgchem.4c02267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Polyoxometalates (POMs) are of great interest to the scientific community, and their reduction and nucleation have been well-established by multi-step techniques. The present study develops an electrochemical approach for simultaneous reduction and nucleation of polyoxometalate-containing solids. Herein we report crystal growth of reduced Preyssler polyoxotungstate-based (anionic formula [NaP5W30O110]14-) new crystalline solids made of Preyssler anions interlinked by Co2+ and Ni2+ ions. Crystal nucleation and in situ reduction were achieved at room temperature using a two silver wire electrode setup in various aqueous solutions under constant applied potentials. The POM material was deposited on the cathode, and its structure was characterized by X-ray diffraction techniques. The primary structure type observed involves POMs decorated by disordered Co2+/Ni2+ octahedra and fused into 1-D pillars by additional Co2+/Ni2+ octahedra. A secondary phase was observed in the Ni-based reactions, where reduced Preyssler anions are decorated by Ni4O4 cubane-like units. To understand the electrochemical process, polarization curves of the electrolyte solutions are presented, suggesting an applied potential best suited for crystal growth. The work highlights the effectiveness of an electrochemical pathway where nucleation and simultaneous reduction of POMs can make novel reduced POM solids.
Collapse
Affiliation(s)
- Kirkland Sheriff
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Dino Sulejmanovic
- Enrichment Science and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Jiheon Jun
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - William Cannon
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Lauren Petta
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Johnathan Phillips
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Colin McMillen
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Shiou Jyh Hwu
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
4
|
Maeno Z, Koiso H, Shitori T, Hiraoka K, Seki S, Namiki N. Syngas Production by Chemical Looping Dry Reforming of Methane over Ni-modified MoO 3/ZrO 2. Chem Asian J 2024; 19:e202301096. [PMID: 38146061 DOI: 10.1002/asia.202301096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 12/27/2023]
Abstract
We investigated supported-MoO3 materials effective for the chemical looping dry reforming of methane (CL-DRM) to decrease the reaction temperature. Ni-modified molybdenum zirconia (Ni/MoO3/ZrO2) showed CL-DRM activity under isothermal reaction conditions of 650 °C, which was 100-200 °C lower than the previously reported oxide-based materials. Ni/MoO3/ZrO2 activity strongly depends on the MoO3 loading amount. The optimal loading amount was 9.0 wt.% (Ni/MoO3(9.0)/ZrO2), wherein two-dimensional polymolybdate species were dominantly formed. Increasing the loading amount to more than 12.0 wt.% resulted in a loss of activity owing to the formation of bulk Zr(MoO4)2 and/or MoO3. In situ Mo K-edge XANES studies revealed that the surface polymolybdate species serve as oxygen storage sites. The Mo6+ species were reduced to Mo4+ species by CH4 to produce CO and H2. The reduced Mo species reoxidized by CO2 with the concomitant formation of CO. The developed Ni/MoO3(9.0)/ZrO2 was applied to the long-term CL-DRM under high concentration conditions (20 % CH4 and 20 % CO2) at 650 °C, with two pathways possible for converting CH4 and CO2 to CO and H2 via the redox reaction of the Mo species and coke formation.
Collapse
Affiliation(s)
- Zen Maeno
- School of Advanced Engineering, Kogakuin University, 2665-1, Nakano-machi, 192-0015, Hachioji, Tokyo, Japan
| | - Hiroki Koiso
- School of Advanced Engineering, Kogakuin University, 2665-1, Nakano-machi, 192-0015, Hachioji, Tokyo, Japan
| | - Toshiki Shitori
- School of Advanced Engineering, Kogakuin University, 2665-1, Nakano-machi, 192-0015, Hachioji, Tokyo, Japan
| | - Koji Hiraoka
- School of Advanced Engineering, Kogakuin University, 2665-1, Nakano-machi, 192-0015, Hachioji, Tokyo, Japan
| | - Shiro Seki
- School of Advanced Engineering, Kogakuin University, 2665-1, Nakano-machi, 192-0015, Hachioji, Tokyo, Japan
| | - Norikazu Namiki
- School of Advanced Engineering, Kogakuin University, 2665-1, Nakano-machi, 192-0015, Hachioji, Tokyo, Japan
| |
Collapse
|
5
|
Schacht-Hernández P, Miranda-Olvera AD, Jiménez-Cruz F, Morelos-Santos O, García-Gutiérrez JL, Quintana-Solórzano R. Processing and Recovery of Heavy Crude Oil Using an HPA-Ni Catalyst and Natural Gas. ACS OMEGA 2024; 9:34089-34097. [PMID: 39130572 PMCID: PMC11307308 DOI: 10.1021/acsomega.4c04801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024]
Abstract
To maintain economic profitability and stabilize fuel prices, refineries actively explore alternatives for efficiently processing (extra) heavy crude oils. These oils are challenging to process due to their complex composition, which includes significant quantities of asphaltenes, resins, and sulfur and nitrogen heteroatoms. A critical initial step in upgrading these oils is the hydrogenation of polyaromatic compounds, requiring substantial hydrogen sources. Methane from natural gas streams is known to act as an effective hydrogen donor. This study investigates the use of a heteropolyacid (HPA) catalyst modified with nickel and methane to enhance the quality of heavy crude oil with an initial 8.0°API (at 15.5 °C) and 2200 cSt viscosity (at 37.5 °C). After treatment in a batch reactor at 380 °C and 4.4 MPa for 2 h, the oil properties markedly improved: API gravity increased from 8.0 to 16.0 (at 15.5 °C), and kinematic viscosity reduced from 2200 to 125 cSt (at 37.5 °C). Additionally, there was a significant decrease in asphaltenes (from 38.7 to 16.4% by weight), sulfur (from 5.9 to 4.0% by weight), and nitrogen (from 971 to 695 ppm). This was accompanied by an increase in the volume of light distillates from 1.3 to 4.9%, and middle distillates from 8.8 to 21.0%. These results suggest that nickel-modified HPA catalysts, combined with methane as a hydrogen donor, are a promising option for upgrading heavy crude oils.
Collapse
Affiliation(s)
- Persi Schacht-Hernández
- Instituto
Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte
152, Ciudad de México 07730, México
| | - Alma Delia Miranda-Olvera
- Instituto
Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte
152, Ciudad de México 07730, México
| | - Federico Jiménez-Cruz
- Instituto
Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte
152, Ciudad de México 07730, México
| | - Oscar Morelos-Santos
- Tecnológico
Nacional de México/Instituto Tecnológico de Ciudad Madero, Ciencias Básicas, Av. 1°
de Mayo s/n, Los Mangos, Ciudad Madero, Tamaulipas 89440, México
| | | | | |
Collapse
|
6
|
Sukmana NC, Sugiarto, Shinogi J, Minato T, Kojima T, Fujibayashi M, Nishihara S, Inoue K, Cao Y, Zhu T, Ubukata H, Higashiura A, Yamamoto A, Tassel C, Kageyama H, Sakaguchi T, Sadakane M. Structure Transformation of Methylammonium Polyoxomolybdates via In-Solution Acidification and Solid-State Heating from Methylammonium Monomolybdate and Application as Negative Staining Reagents for Coronavirus Observation. Inorg Chem 2024; 63:10207-10220. [PMID: 38767574 DOI: 10.1021/acs.inorgchem.4c00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
We prepared polyoxomolybdates with methylammonium countercations from methylammonium monomolybdate, (CH3NH3)2[MoO4], through two dehydrative condensation methods, acidifying in the aqueous solution and solid-state heating. Discrete (CH3NH3)10[Mo36O112(OH)2(H2O)14], polymeric ((CH3NH3)8[Mo36O112(H2O)14])n, and polymeric ((CH3NH3)4[γ-Mo8O26])n were selectively isolated via pH control of the aqueous (CH3NH3)2[MoO4] solution. The H2SO4-acidified solution of pH < 1 produced "sulfonated α-MoO3", polymeric ((CH3NH3)2[(MoO3)3(SO4)])n. The solid-state heating of (CH3NH3)2[MoO4] in air released methylamine and water to produce several methylammonium polyoxomolybdates in the sequence of discrete (CH3NH3)8[Mo7O24-MoO4], discrete (CH3NH3)6[Mo7O24], discrete (CH3NH3)8[Mo10O34], and polymeric ((CH3NH3)4[γ-Mo8O26])n, before their transformation into molybdenum oxides such as hexagonal-MoO3 and α-MoO3. Notably, some of their polyoxomolybdate structures were different from polyoxomolybdates produced from ammonium molybdates, such as (NH4)2[MoO4] or (NH4)6[Mo7O24], indicating that countercation affected the polyoxomolybdate structure. Moreover, among the tested polyoxomolybdates, (CH3NH3)6[Mo7O24] was the best negative staining reagent for the observation of the SARS-CoV-2 virus using transmission electron microscopy.
Collapse
Affiliation(s)
- Ndaru Candra Sukmana
- Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Sugiarto
- Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Jun Shinogi
- Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Takuo Minato
- Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Tatsuhiro Kojima
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Osaka, Toyonaka 560-0043, Japan
| | - Masaru Fujibayashi
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- CResCent, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Sadafumi Nishihara
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- CResCent, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Katsuya Inoue
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- CResCent, WPI SKCM2, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Yu Cao
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Tong Zhu
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Hiroki Ubukata
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Akifumi Higashiura
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Akima Yamamoto
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Cédric Tassel
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Hiroshi Kageyama
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Takemasa Sakaguchi
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Masahiro Sadakane
- Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| |
Collapse
|
7
|
Hao X, Liu T, Li Y, Ying J, Tian A, Yang M, Wang X. Four POM-Viologen Color-Changing Materials with Fast Color Response under Various External Stimuli. Inorg Chem 2024; 63:5852-5864. [PMID: 38507718 DOI: 10.1021/acs.inorgchem.3c04282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Four kinds of polyoxometalate (POM)-viologen compounds were synthesized by hydrothermal method, namely (1-cby)2·[H2(SiMo12O40)]·2H2O (1), (1-cby)2·[H2(SiW12O40)]·2H2O (2), (1-cby)2·(1,1'-bcby)2·{H4[Co4(H2O)2(PW9O34)2]}·12H2O (3), (1-cby)·(1,1'-bcby)·[H(α-PW11O39)CoII(1-cby)]·8H2O (4) (1-cby·Br = 1-Cyclopropylmethyl-[4,4']bipyridinyl-1-ium bromide, 1,1'-bcby·Br = 1,1'-Bis-cyclopropylmethyl-[4,4']bipyridinyl-1-ium bromide). These four POM-viologen compounds exhibit one-dimensional supramolecular network structures. Especially, compound 3 contains a rare sandwich POM subunit {Co4(H2O)2(PW9O34)2}10-. These four compounds can be used as color-changing materials, and they all exhibit noticeable color changes upon exposure to light, heat, and electricity. The discoloration mechanism involves viologen derivatives with electron-deficient properties accepting electrons from POM with electron-rich properties under external stimulation, leading to the formation of viologen free radicals. Among them, compounds 1 and 2 also have good properties for ink-free erasable printing, double anticounterfeiting, and ultraviolet detector because of their rapid color response to ultraviolet (UV) light. In addition, compounds 1-4 also show different color changes in the detection of volatile amines.
Collapse
Affiliation(s)
- Xinxin Hao
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Tao Liu
- College of Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Yang Li
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Jun Ying
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Aixiang Tian
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Mengle Yang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Xiuli Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| |
Collapse
|
8
|
Chao H, Luo X, Yan X, Wang S, Zhang J. Carbon nanofibers confined polyoxometalate derivatives as flexible self-supporting electrodes for robust sodium storage. J Colloid Interface Sci 2024; 654:107-113. [PMID: 37837847 DOI: 10.1016/j.jcis.2023.09.178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/16/2023]
Abstract
Flexible self-supporting film electrodes, which eliminate the need for additional adhesive, conductive agents, or current collectors, offer significant advantages in terms of mechanical properties, specific capacity, and energy density for energy storage applications. In this study, we successfully developed a flexible film electrode by incorporating derivatives of Mo and Fe-based polyoxometalates (POMs-D) into carbon nanofibers (CNFs). The integration of CNFs significantly enhanced the structural stability of POMs-D, while the internally formed electrical field facilitated efficient electron transfer, resulting in good performance in sodium storage. The film electrode demonstrated a high capacitive contribution of 90.0 % for sodium uptake/release at a scan rate of 1.0 mV s-1. It maintained a capacity of approximately 170 mA h g-1 even after 8000 cycles at a current density of 3.0 A g-1. Moreover, the film electrode exhibited a decent capacity with a 40.0-fold increase in current density, along with high power capability and energy density in sodium-ion hybrid supercapacitors, showcasing the versatility. These findings unveil the structure-functionality relationship and offer an advanced approach for developing high-performance film electrode materials, opening new possibilities in the fields of material science and energy storage.
Collapse
Affiliation(s)
- Huixia Chao
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535000, China
| | - Xiangsheng Luo
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535000, China
| | - Ximing Yan
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535000, China
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Jinqiang Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
9
|
Matono T, Ueno S, Kato Y, Umehara N, Lang Z, Li Y, Ninomiya W, Elhallal M, Gonzales-Yañez EO, Capron M, Ishikawa S, Ueda W, Sano T, Sadakane M. Preparation and isolation of mono-Nb substituted Keggin-type phosphomolybdic acid and its application as an oxidation catalyst for isobutylaldehyde and Wacker-type oxidation. Dalton Trans 2023. [PMID: 37971057 DOI: 10.1039/d3dt02451b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The potassium and proton mixed salt of mono-Nb substituted Keggin-type phosphomolybdate, KH3[PMo11NbO40], was isolated in a pure form by reacting Keggin-type phosphomolybdic acid (H3[PMo12O40]) and potassium hexaniobate (K8Nb6O19) in water, followed by freeze-drying. The all protonic form, H4[PMo11NbO40], was isolated via proton exchange with H-resin and subsequent freeze-drying. The most crucial factor to isolate KH3[PMo11NbO40] and H4[PMo11NbO40] in pure forms is the evaporation of water using the freeze-drying method. Using a similar procedure, the potassium salt of the di-Nb substituted compound K5[PMo10Nb2O40] was isolated. H4[PMo11NbO40] exhibited high catalytic activity for oxidizing isobutylaldehyde to methacrolein and moderate catalytic activity for the Wacker-type oxidation of allyl phenyl ether when combined with Pd(OAc)2.
Collapse
Affiliation(s)
- Takashi Matono
- Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima, 739-8527, Japan.
| | - Shinsuke Ueno
- Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima, 739-8527, Japan.
| | - Yuki Kato
- MMA R&D Center, Mitsubishi Chemical Corporation, 20-1, Miyuki-cho, Ootake, Hiroshima 739-0693, Japan
| | - Naoya Umehara
- Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima, 739-8527, Japan.
| | - Zhongling Lang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yangguang Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Wataru Ninomiya
- MMA R&D Center, Mitsubishi Chemical Corporation, 20-1, Miyuki-cho, Ootake, Hiroshima 739-0693, Japan
| | - Maher Elhallal
- Université de Lille, CNRS, Centrale Lille, ENSCL, Université Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Edgar Osiris Gonzales-Yañez
- Université de Lille, CNRS, Centrale Lille, ENSCL, Université Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Mickael Capron
- Université de Lille, CNRS, Centrale Lille, ENSCL, Université Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Satoshi Ishikawa
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Wataru Ueda
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Tsuneji Sano
- Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima, 739-8527, Japan.
| | - Masahiro Sadakane
- Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima, 739-8527, Japan.
| |
Collapse
|
10
|
Cao YD, Mu WX, Gong M, Fan LL, Han J, Liu H, Qi B, Gao GG. Enhanced catalysis of a vanadium-substituted Keggin-type polyoxomolybdate supported on the M 3O 4/C (M = Fe or Co) surface enables efficient and recyclable oxidation of HMF to DFF. Dalton Trans 2023; 52:16303-16314. [PMID: 37855372 DOI: 10.1039/d3dt02935b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
In the reaction of oxidizing 5-hydroxymethylfurfural (HMF), attaining high efficiency and selectivity in the conversion of HMF into DFF presents a challenge due to the possibility of forming multiple products. Polyoxometalates are considered highly active catalysts for HMF oxidation. However, the over-oxidation of products poses a challenge, leading to decreased purity and yield. In this work, metal-organic framework-derived Fe3O4/C and Co3O4/C were designed as carriers for the vanadium-substituted Keggin-type polyoxomolybdate H5PMo10V2O40·35H2O (PMo10V2). In this complex system, spinel oxides can effectively adsorb HMF molecules and cooperate with PMo10V2 to catalyze the aerobic oxidation of HMF. As a result, the as-prepared PMo10V2@Fe3O4/C and PMo10V2@Co3O4/C catalysts can achieve efficient conversion of HMF into DFF with almost 100% selectivity. Among them, PMo10V2@Fe3O4/C exhibits a higher conversion rate (99.1%) under milder reaction conditions (oxygen pressure of 0.8 MPa). Both catalysts exhibited exceptional stability and retained their activity and selectivity even after undergoing multiple cycles. Studies on mechanisms by in situ diffuse reflectance infrared Fourier transform spectroscopy and X-ray photoelectron spectroscopy revealed that the V5+ and Mo6+ in PMo10V2, together with the metal ions in the spinel oxides, act as active centers for the catalytic conversion of HMF. Therefore, it is proposed that PMo10V2 and M3O4/C (M = Fe, Co) cooperatively catalyze the transformation of HMF into DFF via a proton-coupled electron transfer mechanism. This study offers an innovative approach for designing highly selective and recyclable biomass oxidation catalysts.
Collapse
Affiliation(s)
- Yun-Dong Cao
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Wen-Xia Mu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Mengdi Gong
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Lin-Lin Fan
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Jie Han
- School of Science and Technology, Hong Kong Metropolitan University, Homantin, Kowloon, Hong Kong, China
| | - Hong Liu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Bin Qi
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Guang-Gang Gao
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| |
Collapse
|
11
|
Zhang B, Deng D, Chen J, Li Y, Yuan M, Xiao W, Wang S, Wang X, Zhang P, Shu Y, Shi S, Chen C. Defect Engineering of High-Entropy Oxides for Superior Catalytic Oxidation Performance. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37922463 DOI: 10.1021/acsami.3c15235] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
High-entropy oxides (HEOs) are crucial in various fields (power storage/conversion, electronic devices, and catalysis) owing to their adjustable structural characteristics, fabulous stability, and massive components. However, the current strategies for synthesizing HEOs suffer from low surface area and limited active sites. Herein, we present a salt-assisted strategy with remarkable universality for the preparation of HEOs with high surface area [e.g., HP-(FeCrCoNiCu)xOy: 59 m2/g, HP-(ZnMgNiCuCo)xOy: 49 m2/g, and HP-(CrMnFeNiZn)xOy: 11 m2/g], where HP means high porosity. Especially, HP-(FeCrCoNiCu)xOy with rich-oxygen vacancies promotes catalytic efficiency for hydrocarbon and alcohol oxidation owing to its hierarchical texture and massive oxygen vacancies. Furthermore, density functional theory is utilized to well illustrate the relationship of the structure and catalytic efficiency within the catalysts. This work offers realistic pathway for the large-scale application of HEOs in catalytic areas.
Collapse
Affiliation(s)
- Bingzhen Zhang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
- School of Power and Mechanical Engineering, The Institute of Technological Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Dan Deng
- College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Jian Chen
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Ying Li
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Mingwei Yuan
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Weiming Xiao
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Shuhua Wang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Xiaolei Wang
- College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Pengfei Zhang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yuan Shu
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Shunli Shi
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Chao Chen
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| |
Collapse
|
12
|
Nie S, Wu L, Wang X. Electron-Delocalization-Stabilized Photoelectrocatalytic Coupling of Methane by NiO-Polyoxometalate Sub-1 nm Heterostructures. J Am Chem Soc 2023; 145:23681-23690. [PMID: 37861371 DOI: 10.1021/jacs.3c07984] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
The oxidative coupling of methane to C2 oxygenates merits great scientific and technological potential yet remains a challenge due to its inferior selectivity. Subnanomaterials (SNMs) with "p-n-p-n"-type heteroconstructions feature enhanced external field coupling properties and tunable electronic structures, serving as promising catalysts for the selective partial oxidation of methane. Here we develop NiO-polyoxometalate (POM) subnanocoils with a thickness of 1.8 nm, showing excellent catalytic activity toward photoelectrochemical coupling of methane into a C2 product under mild conditions (1 bar, 25 °C) with a notable productivity (up to 4.48 mmol gcat-1 h-1) and a high selectivity (>99%). Under photoelectrochemical coupling, C-H bonds can be activated by NiO, and the resulted *COOH intermediates are stabilized by the delocalized electrons in POM clusters. The contiguous active sites of NiO and POM at the molecular level allow the in situ coupling of *COOH into oxalate. This work points out an economic way for the oxidation of methane under mild conditions and may enlighten the design of functional SNMs from fundamental standpoints.
Collapse
Affiliation(s)
- Siyang Nie
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Liang Wu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Zhang M, Duan X, Gao Y, Zhang S, Lu X, Luo K, Ye J, Wang X, Niu Q, Zhang P, Dai S. Tuning Oxygen Vacancies in Oxides by Configurational Entropy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45774-45789. [PMID: 37740720 DOI: 10.1021/acsami.3c07268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Tuning surface oxygen vacancies is important for oxide catalysts. Doping elements with different chemical valence states or different atomic radii into host oxides is a common method to create oxygen vacancies. However, the concentration of oxygen vacancies in oxide catalysts is still limited to the amount of foreign dopants that can be tolerated (generally less than 10% atoms). Herein, a principle of engineering the configurational entropy to tune oxygen vacancies was proposed. First, the positive relationship between the configuration entropy and the formation energy of oxygen vacancies (Eov) in 16 model oxides was estimated by a DFT calculation. To verify this, single binary oxides and high-entropy quinary oxides (HEOs) were prepared. Indeed, the concentration of oxygen vacancies in HEOs (Oβ/α = 3.66) was higher compared to those of single or binary oxides (Oβ/α = 0.22-0.75) by O1s XPS, O2-TPD, and EPR. Interestingly, the reduction temperatures of transition metal ions in HEOs were generally lower than that in single-metal oxides by H2-TPR. The lower Eov of HEOs may contribute to this feature, which was confirmed by in situ XPS and in situ XRD. Moreover, with catalytic CO/C3H6 oxidation as a model, the high-entropy (MnCuCo3NiFe)xOy catalyst showed higher catalytic activity than single and binary oxides, which experimentally verified the hypothesis of the DFT calculation. This work may inspire more oxide catalysts with preferred oxygen vacancies.
Collapse
Affiliation(s)
- Mengyuan Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolan Duan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Gao
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Shuangshuang Zhang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Xiaoyan Lu
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Kongliang Luo
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Jian Ye
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Xiaopeng Wang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Qiang Niu
- National Enterprise Technology Center, Inner Mongolia Erdos Electric Power and Metallurgy Group Co., Ltd., Ordos 016064, Inner Mongolia, China
| | - Pengfei Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Sheng Dai
- Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge 37830, Tennessee, United States
| |
Collapse
|
14
|
Polyoxometalate-Encapsulated Metal-Organic Frameworks with Diverse Cages for the C–H Bond Oxidation of Alkylbenzenes. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2023. [DOI: 10.1016/j.cjsc.2023.100011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
15
|
Facile synthesis of polyoxometalate supported on magnetic graphene oxide as a hybrid catalyst for efficient oxidation of aldehydes. Sci Rep 2022; 12:18491. [PMID: 36323774 PMCID: PMC9630420 DOI: 10.1038/s41598-022-21991-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
In the present study, Anderson-type polyoxometalate [N(C4H9)4] [FeMo6O18(OH)6] (FeMo6) was immobilized on amino-modified magnetic graphene oxide and employed as a new hybrid catalyst in oxidation of aldehydes to carboxylic acids. The synthesized hybrid catalyst Fe3O4/GO/[FeMo6] was characterized using thermogravimetric analysis (TGA), scanning electron microscopies (SEM), Fourier transform infrared (FT-IR), vibrating sample magnetometry (VSM), energy-dispersive X-ray analysis (EDX), Raman spectroscopy and inductively coupled plasma atomic emission spectroscopy (ICP-OES). The results indicated that our catalyst was quite active in oxidizing the aldehydes to their corresponding carboxylic acids in the presence of hydrogen peroxide. The synthesized catalyst can be easily separated from the reaction medium and reused for six consecutive runs without a significant reduction in reaction efficiency.
Collapse
|
16
|
Bao J, Liu M, Yin X, Alimaje K, Ma Y, Han Z. Polyoxotungstate-based supramolecular complexes as multifunctional electrocatalysts for sensing water contaminants. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|