1
|
Zuieva S, Chen X. Synthetic Approaches to Molecule-2D Transition Metal Dichalcogenide Heterostructures. Angew Chem Int Ed Engl 2025; 64:e202424932. [PMID: 40052880 PMCID: PMC12036816 DOI: 10.1002/anie.202424932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/22/2025] [Accepted: 02/10/2025] [Indexed: 04/02/2025]
Abstract
The integration of 2D materials with molecular chemistry to create molecule-2D material heterostructures presents a compelling strategy for advancing material design and applications. This approach provides precise control over the structure and properties of 2D materials, effectively addressing challenges in their production and fabrication. Among these, molecule-2D transition metal dichalcogenide (mTMD) heterostructures have garnered significant attention due to their distinctive electronic, optical, and catalytic properties, as well as the intriguing emergent states and phenomena resulting from interactions with adjacent molecular and material layers. Achieving the desired electronic and optical properties in these heterostructures hinges on carefully controlling the interactions at the molecule/TMD interfaces. This minireview highlights recent progress in mTMD heterostructures, emphasizing the principles underlying interface interactions, molecular arrangement, and innovative synthetic methodologies.
Collapse
Affiliation(s)
- Sofiia Zuieva
- Institute of Chemistry and BiochemistryFreie Universität BerlinAltensteinstraße 23a14195BerlinGermany
| | - Xin Chen
- Institute of Chemistry and BiochemistryFreie Universität BerlinAltensteinstraße 23a14195BerlinGermany
| |
Collapse
|
2
|
Liu M, Yang W, Xiao R, Li J, Tan R, Qin Y, Bai Y, Zheng L, Hu L, Gu W, Zhu C. Lattice atom-bridged chemical bond interface facilitates charge transfer for boosted photoelectric response. Natl Sci Rev 2025; 12:nwae465. [PMID: 39926201 PMCID: PMC11804805 DOI: 10.1093/nsr/nwae465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/06/2024] [Accepted: 11/29/2024] [Indexed: 02/11/2025] Open
Abstract
The construction of chemical bonds at heterojunction interfaces currently presents a promising avenue for enhancing photogenerated carrier interfacial transfer. However, the deliberate modulation of these interfacial chemical bonds remains a significant challenge. In this study, we successfully established a p-n junction composed of atomic-level Pt-doped CeO2 and 2D metalloporphyrins metal-organic framework nanosheets (Pt-CeO2/CuTCPP(Fe)), which enables the realization of photoelectric enhancement by regulating the interfacial Fe-O bond and optimizing the built-in electric field. Atomic-level Pt doping in CeO2 leads to an increased density of oxygen vacancies and lattice mutation, which induces a transition in interfacial Fe-O bonds from adsorbed oxygen (Fe-OA) to lattice oxygen (Fe-OL). This transition changes the interfacial charge flow pathway from Fe-OA-Ce to Fe-OL, effectively reducing the carrier transport distance along the atomic-level charge transport highway. This results in a 2.5-fold enhancement in photoelectric performance compared with the CeO2/CuTCPP(Fe). Furthermore, leveraging the peroxidase-like activity of the p-n junction, we employed this functional heterojunction interface to develop a photoelectrochemical immunoassay for the sensitive detection of prostate-specific antigens.
Collapse
Affiliation(s)
- Mingwang Liu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Wenhong Yang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Runshi Xiao
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jinli Li
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Rong Tan
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Ying Qin
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yuxuan Bai
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Liuyong Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, China
| | - Wenling Gu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Chengzhou Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
3
|
Cao Q, Dai J, Hao Z, Paulus B, Eigler S, Chen X. Controllable Graphene/MoS 2 Heterointerfaces by Perpendicular Surface Functionalization. Angew Chem Int Ed Engl 2024; 63:e202415922. [PMID: 39513943 DOI: 10.1002/anie.202415922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/29/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Surface chemistry and interface interactions profoundly influence the properties of two-dimensional (2D) materials and heterostructures. Therefore, developing methods to precisely control surfaces and interfaces is crucial for harnessing the properties and functions of 2D materials and heterostructures. Here, we developed a facile approach to tuning the interface distance and properties of graphene/MoS2 heterostructures (G/MoS2) by varying the functional groups attached to the surface of graphene bottom layer. We systematically investigated how different functionalized graphene bottom layers affect the interlayer distance, coupling between the interlayers, and optical properties of resulting G/MoS2 heterostructures. Our findings indicate that both the size and electron-withdrawing/donating properties of functional groups are pivotal in regulating charge transport properties, with size playing a particularly decisive role. Our approach demonstrates an efficient and flexible pathway to regulate the interlayer spacing and charge transport, highlighting the potential of engineering interface chemistry in optimizing properties of van der Waals heterostructures.
Collapse
Affiliation(s)
- Qing Cao
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Altensteinstraße 23a, 14195, Berlin, Germany
| | - Jiajun Dai
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Zhuting Hao
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Altensteinstraße 23a, 14195, Berlin, Germany
| | - Beate Paulus
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Siegfried Eigler
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Altensteinstraße 23a, 14195, Berlin, Germany
| | - Xin Chen
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Altensteinstraße 23a, 14195, Berlin, Germany
| |
Collapse
|
4
|
Tran TH, Rodriguez RD, Villa NE, Shchadenko S, Averkiev A, Hou Y, Zhang T, Matkovic A, Sheremet E. Laser-Induced photothermal activation of multilayer MoS 2 with spatially controlled catalytic activity. J Colloid Interface Sci 2024; 654:114-123. [PMID: 37837848 DOI: 10.1016/j.jcis.2023.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/28/2023] [Accepted: 10/07/2023] [Indexed: 10/16/2023]
Abstract
This study investigates the effects of high-power laser irradiation on multilayer MoS2, a promising material for catalysis, optoelectronics, and energy applications. In addition to previously reported sculpting of MoS2 layers, we discovered a novel effect of laser-induced photothermal heating that drives the chemical activation of MoS2. The photothermal effect was confirmed by temperature-dependent experiments, in situ temperature measurements with nanolocalized probes, and simulations. Remarkably, we observed the reduction of Ag+ ions on laser-irradiated MoS2 layers, forming plasmonic nanostructures without external stimuli such as photons or chemical reducing agents. We attribute this phenomenon to the significant defect density within the laser-carved region and the surrounding area induced by photothermal effects. Further functionalization of the laser-modified MoS2 with 4-nitrobenzenethiol self-assembled monolayers demonstrated a significant increase in photocatalytic activity, close to 100% yield compared to the negligible activity of pristine material. Our findings contribute to a deeper understanding of the light-induced modification of MoS2 properties and introduce a novel method for spatially controlling the chemical activation of MoS2. This advancement holds significant potential in developing high-performance 2D semiconductors as nano-engineered catalytic materials.
Collapse
Affiliation(s)
- Tuan-Hoang Tran
- Tomsk Polytechnic University, Lenin ave. 30, Tomsk 634050, Russia
| | - Raul D Rodriguez
- Tomsk Polytechnic University, Lenin ave. 30, Tomsk 634050, Russia.
| | - Nelson E Villa
- Tomsk Polytechnic University, Lenin ave. 30, Tomsk 634050, Russia
| | | | - Andrey Averkiev
- Tomsk Polytechnic University, Lenin ave. 30, Tomsk 634050, Russia
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Aleksandar Matkovic
- Chair of Physics, Department Physics, Mechanics and Electrical Engineering, Montanuniversität Leoben, Leoben, Austria
| | | |
Collapse
|
5
|
Huang Z. Chemical Patterning on Nanocarbons: Functionality Typewriting. Molecules 2023; 28:8104. [PMID: 38138593 PMCID: PMC10745949 DOI: 10.3390/molecules28248104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Nanocarbon materials have become extraordinarily compelling for their significant potential in the cutting-edge science and technology. These materials exhibit exceptional physicochemical properties due to their distinctive low-dimensional structures and tailored surface characteristics. An attractive direction at the forefront of this field involves the spatially resolved chemical functionalization of a diverse range of nanocarbons, encompassing carbon nanotubes, graphene, and a myriad of derivative structures. In tandem with the technological leaps in lithography, these endeavors have fostered the creation of a novel class of nanocarbon materials with finely tunable physical and chemical attributes, and programmable multi-functionalities, paving the way for new applications in fields such as nanoelectronics, sensing, photonics, and quantum technologies. Our review examines the swift and dynamic advancements in nanocarbon chemical patterning. Key breakthroughs and future opportunities are highlighted. This review not only provides an in-depth understanding of this fast-paced field but also helps to catalyze the rational design of advanced next-generation nanocarbon-based materials and devices.
Collapse
Affiliation(s)
- Zhongjie Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
6
|
Li X, Xie Y, Xiong J, Zhu B, Zhang X, Duan X, Dong B, Zhang Z. Superior high-temperature capacitive performance of polyaryl ether ketone copolymer composites enabled by interfacial engineered charge traps. MATERIALS HORIZONS 2023; 10:5881-5891. [PMID: 37861652 DOI: 10.1039/d3mh01257c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Metalized film capacitors with high-temperature capacitive performance are crucial components in contemporary electromagnetic energy systems. However, the fabrication of polymer-based dielectric composites with designed structures faces the challenge of balancing high energy density (Ue) and low energy loss induced by electric field distortion at the interfaces. Here, BN nanoparticles coated with a thin layer of aminobenzoic acid (ABA) voltage stabilizer are introduced into a copolymer of aryletherketone and 2,6-bis(2-benzimidazolyl)pyridine (P(AEK-BBP)). Our results demonstrate that the ABA voltage stabilizer, possessing high electron affinity, significantly improves the dispersion of BN particles within the matrix, mitigates electric field distortion, and creates effective charge traps. This, in turn, effectively suppresses high-temperature-induced Schottky emission and P-F emission, leading to a dramatic decrease in leakage loss. As a result, the optimized composite film, filled with 0.3 vol% m-ABA-BN particles, exhibites a Ue of 10.1 J cm-3 and a η of 90% at 150 °C and 600 MV m-1, surpassing the majority of previously reported materials. Furthermore, even after undergoing 100 000 cycles at 150 °C and 250 MV m-1, the composite dielectric films demonstrate favorable charge-discharge characteristics. This work offers a novel approach to fabricate polymer-based dielectric materials with high-temperature resistance and high discharging efficiency for long-term high energy storage applications.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Applied Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Yunchuan Xie
- Department of Applied Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Jie Xiong
- Department of Applied Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Bofeng Zhu
- National Key Laboratory of Science and Technology on Vessel Integrated Power System, Naval University of Engineering, Wuhan 430034, P. R. China.
| | - Xiao Zhang
- National Key Laboratory of Science and Technology on Vessel Integrated Power System, Naval University of Engineering, Wuhan 430034, P. R. China.
| | - Xinhua Duan
- Department of Applied Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Bo Dong
- Shandong Chambroad Holding Group Co., Ltd, Binzhou, Shandong Province, 256500, P. R. China.
| | - Zhicheng Zhang
- Department of Applied Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| |
Collapse
|
7
|
Wetzl C, Silvestri A, Garrido M, Hou HL, Criado A, Prato M. The Covalent Functionalization of Surface-Supported Graphene: An Update. Angew Chem Int Ed Engl 2023; 62:e202212857. [PMID: 36279191 DOI: 10.1002/anie.202212857] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Indexed: 12/12/2022]
Abstract
In the last decade, the use of graphene supported on solid surfaces has broadened its scope and applications, and graphene has acquire a promising role as a major component of high-performance electronic devices. In this context, the chemical modification of graphene has become essential. In particular, covalent modification offers key benefits, including controllability, stability, and the facility to be integrated into manufacturing operations. In this Review, we critically comment on the latest advances in the covalent modification of supported graphene on substrates. We analyze the different chemical modifications with special attention to radical reactions. In this context, we review the latest achievements in reactivity control, tailoring electronic properties, and introducing active functionalities. Finally, we extended our analysis to other emerging 2D materials supported on surfaces, such as transition metal dichalcogenides, transition metal oxides, and elemental analogs of graphene.
Collapse
Affiliation(s)
- Cecilia Wetzl
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia, San Sebastián, Spain.,University of the Basque Country UPV-EHU, 20018, Donostia-San Sebastián, Spain
| | - Alessandro Silvestri
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia, San Sebastián, Spain
| | - Marina Garrido
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Hui-Lei Hou
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia, San Sebastián, Spain
| | - Alejandro Criado
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA), Rúa as Carballeiras, 15071, A Coruña, Spain
| | - Maurizio Prato
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia, San Sebastián, Spain.,Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy.,Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| |
Collapse
|