1
|
Nieboer V, Odelius K, Olsén P. Improving Circularity via Chemical Recycling to all Rings. Angew Chem Int Ed Engl 2025; 64:e202502436. [PMID: 40017097 PMCID: PMC12051835 DOI: 10.1002/anie.202502436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/01/2025]
Abstract
Aliphatic polyesters synthesized via ring-opening polymerization (ROP) have properties competitive to incumbent plastic (PE, PP), while simultaneously opening up for chemical recycling to monomer (CRM). However, not all aliphatic polyesters are prone to undergo CRM, and the ability to shift the equilibrium between polymer and monomer is tightly associated with the initial monomer structure. The standard strategy to measure CRM is to evaluate the change in free energy during polymerization (∆GROP). However, ∆GROP is only one-dimensional by assessing the equilibrium between initial monomer and polymer. But under active catalytic conditions, the depolymerization of polymers can lead to formation of larger rings, such as dimers, trimers, tetramers, and so on, via the ring-chain equilibrium (RCE), meaning that the real thermodynamic recycling landscape is multi-dimensional. This work introduces a multi-dimensional chemical recycling to all rings (CRR) via a highly active catalytic system to reach RCE. Thermodynamically ∆GRCE is completely different from ∆GROP. Using ∆GRCE instead of ∆GROP allows us to achieve CRR for polymers notoriously difficult to achieve CRM for, as exemplified within by CRR for poly(ε-caprolactone), poly(pentadecalactone), and mixed polymer systems. Overall, this work provides a new general concept of closing the material loop.
Collapse
Affiliation(s)
- Vincent Nieboer
- Department of Fibre and Polymer TechnologyKTH Royal Institute of TechnologyStockholmSweden
| | - Karin Odelius
- Department of Fibre and Polymer TechnologyKTH Royal Institute of TechnologyStockholmSweden
- Wallenberg Wood Science CenterStockholmSweden
| | - Peter Olsén
- Wallenberg Wood Science CenterStockholmSweden
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköpingSweden
| |
Collapse
|
2
|
Young JB, Bowman JI, Lott ME, Diodati LA, Stevens KC, Hughes RW, Mann LE, Balzer AH, Korley LTJ, Sumerlin BS. Bulk Depolymerization of Polystyrene with Comonomer Radical Triggers. ACS Macro Lett 2025:576-581. [PMID: 40267035 DOI: 10.1021/acsmacrolett.5c00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
This study introduces a novel approach to depolymerize polystyrene in the absence of solvent at significantly reduced temperatures through the incorporation of a thermally labile comonomer. Specifically, we employ N-(methacryloxy)phthalimide (PhthMA) as a comonomer with an activated ester capable of thermally triggered decarboxylation. Thermal treatment enables the generation of backbone radicals that promote β-scission and subsequent unzipping. These polystyrene analogs depolymerize with up to 91% reversion to monomer in under 2 h at temperatures significantly lower than those required for conventional polystyrene. As compared to depolymerization triggered by decarboxylation at the ω-chain end, this pendent-group approach was considerably more efficient. The recovered styrene monomer from the bulk depolymerization of poly(styrene-co-PhthMA) copolymers can undergo direct repolymerization, yielding new styrenic materials. This comonomer strategy extends across various styrenic copolymers, highlighting its potential as a broadly applicable method for initiating depolymerization among vinyl polymer classes.
Collapse
Affiliation(s)
- James B Young
- George & Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science &Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Jared I Bowman
- George & Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science &Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Megan E Lott
- George & Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science &Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Lily A Diodati
- George & Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science &Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Kaden C Stevens
- George & Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science &Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Rhys W Hughes
- George & Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science &Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Lauren E Mann
- George & Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science &Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Alex H Balzer
- Center for Plastics Innovation (CPI), University of Delaware, Newark, Delaware 19716, United States
| | - LaShanda T J Korley
- Center for Plastics Innovation (CPI), University of Delaware, Newark, Delaware 19716, United States
| | - Brent S Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science &Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
3
|
Felician F, Antonopoulou MN, Truong NP, Kroeger AA, Coote ML, Jones GR, Anastasaki A. Unravelling the effect of side chain on RAFT depolymerization; identifying the rate determining step. Polym Chem 2025; 16:1822-1828. [PMID: 40160482 PMCID: PMC11938419 DOI: 10.1039/d5py00212e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Accepted: 03/14/2025] [Indexed: 04/02/2025]
Abstract
Reversible addition-fragmentation chain-transfer (RAFT) depolymerization represents an attractive and low-temperature chemical recycling methodology enabling the near-quantitative regeneration of pristine monomer. Yet, several mechanistic aspects of the process remain elusive. Herein, we shine a light on the RAFT depolymerization mechanism by elucidating the effect of pendant side chains on the depolymerization kinetics. A systematic increase of the number of carbons on the side chain, or the number of ethylene glycol units, revealed a significant rate acceleration. Notably, radical initiator addition during the depolymerization of poly(methyl methacrylate) and poly(hexyl methacrylate) resulted in rate equilibration, indicating that chain activation is the rate-determining step in RAFT depolymerization. Moreover, incorporation of a low DP of hexyl monomer as the second block of poly(methyl methacrylate) led to comparable rates with poly(hexyl methacrylate) homopolymer, confirming the rate determining step. Computational investigations further corroborate this finding, revealing that chain-end fragmentation is energetically more favorable in longer-side-chain methacrylates, which accounts for the experimentally observed rate acceleration. These insights not only deepen our understanding of depolymerization but also pave the way for developing more efficient and customizable depolymerization systems.
Collapse
Affiliation(s)
- Francesco Felician
- Laboratory of Sustainable Polymers, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| | - Maria-Nefeli Antonopoulou
- Laboratory of Sustainable Polymers, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| | - Nghia P Truong
- Laboratory of Sustainable Polymers, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| | - Asja A Kroeger
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park South Australia 5042 Australia
| | - Michelle L Coote
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park South Australia 5042 Australia
| | - Glen R Jones
- Laboratory of Sustainable Polymers, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| | - Athina Anastasaki
- Laboratory of Sustainable Polymers, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| |
Collapse
|
4
|
Zhang R, Chin MT, Diao T. Dual Feedstock Upcycling of α-Methylstyrene-Doped Poly(methyl methacrylate) and Biomass via the Telescope of Depolymerization and Diels-Alder Reaction. Org Lett 2025; 27:3590-3594. [PMID: 40175301 PMCID: PMC11998077 DOI: 10.1021/acs.orglett.5c00645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/20/2025] [Accepted: 03/31/2025] [Indexed: 04/04/2025]
Abstract
Nearly 90% of poly(methyl methacrylate) (PMMA) is not recycled and instead ends up in landfills. Conventional pyrolysis of PMMA recovers impure methyl methacrylate (MMA) with low economic value. Here, we present a telescoped dual upcycling strategy that integrates PMMA depolymerization, Diels-Alder cycloaddition, and aromatization to convert AMS-doped PMMA and biomass-derived 2,5-dimethylfuran (DMF) into 1,2,4-trimethylbenzene (pseudocumene), a valuable chemical feedstock. BBr3 proved effective in promoting the challenging Diels-Alder reaction between MMA and DMF under high pressure of argon.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Mason T. Chin
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Tianning Diao
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
5
|
Takahashi R, Sugawara-Narutaki A. Observing Depolymerization of a RAFT Polymer by Time-Resolved Small-Angle X ray Scattering. ACS POLYMERS AU 2025; 5:129-133. [PMID: 40226341 PMCID: PMC11986722 DOI: 10.1021/acspolymersau.4c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 04/15/2025]
Abstract
Recently, it has been reported that various polymethacrylates synthesized via reversible addition-fragmentation chain-transfer (RAFT) polymerization may be depolymerized by heating them to 120 °C in solution. However, insights into the mechanisms and kinetics remain limited. In this work, we monitored the depolymerization process of poly(benzyl methacrylate) in p-xylene using time-resolved small-angle X-ray scattering (SAXS). The results revealed that the weight-average molecular weight gradually decreased, while the z-average radius of gyration remained almost unchanged until approximately half of the repeating units were converted. This unexpected behavior could be well-reproduced by a kinetic model of end-to-end depolymerization (unzipping). This study provides the first direct observation of the structural evolution during depolymerization via an unzipping mechanism.
Collapse
Affiliation(s)
- Rintaro Takahashi
- Department
of Macromolecular Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Ayae Sugawara-Narutaki
- Laboratory
for Biomaterials and Bioengineering, Institute
of Integrated Research, Institute of Science Tokyo, 2-3-10, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
- Department
of Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
6
|
Fan H, Hu C, Niu M, Zhang Q, Li B, Pang X, Chen X. Modular Access from Acrylate to a Sustainable Polyester Platform with Large-Span Tunability and Chemical Circularity under Mild Conditions. J Am Chem Soc 2025; 147:9836-9843. [PMID: 40037633 DOI: 10.1021/jacs.5c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Making polyesters with conventional vinyl monomers is one of the most economical ways to develop sustainable polymeric materials. For polar vinyls, while their transformation into lactones has been studied extensively, there exists no further access to synthesizing polyesters, presumably due to the nonstrained and nonpolymerizable nature of the obtained lactones. Herein, we report the first facile synthesis of polyesters that originated from one of the most critical classes of polar vinyls-acrylates. Specifically, a series of modular six-membered lactones were rationally designed and synthesized from methyl acrylate together with malonic esters containing diverse functional groups and formaldehyde. The monomers underwent ring-opening polymerization (ROP) to yield the first acrylate-derived polyesters, which further constitute a unique polymer platform with a large scope of potential functionalities and performances as well as easy chemical circularity under mild conditions. Notably, the obtained polyesters are a rare example featuring tunable functionalities on the side ester groups whose impact on certain material properties (e.g., glass transition temperature) is similar to that of polyacrylates, implying potential replacement between polyesters and polyacrylates. In addition, by presenting the special geminal disubstitutions originally from the monomers' γ-position for the first time, polyesters also exhibited unprecedentedly enhanced thermal and recycling properties: Variation of the geminal disubstitutions offers a unique access to large-span modulation from completely amorphous to high-level crystalline materials, and the melting temperature of the polymer with high crystallinity was drastically increased by 84 °C compared with the reported monosubstituted counterpart. At the same time, compared with polyesters synthesized from other six-membered lactones whose chemical recycling required harsh conditions (>150 °C and high vacuum), the gem-disubstituted polyesters in this work can undergo complete chemical recycling to monomers under much milder conditions (80 °C and ambient pressure). This study informs the design of future high-performance polyesters derived from polar vinyls.
Collapse
Affiliation(s)
- Haoyu Fan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Chenyang Hu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Mingxin Niu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Qi Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Bokun Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| |
Collapse
|
7
|
Mantzara D, Whitfield R, Wang HS, Truong NP, Anastasaki A. Ultrafast Thermal RAFT Depolymerization at Higher Solid Contents. ACS Macro Lett 2025; 14:235-240. [PMID: 39927986 PMCID: PMC11924316 DOI: 10.1021/acsmacrolett.5c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Although thermal solution RAFT depolymerization has recently emerged as an efficient chemical recycling methodology, current approaches require specialized solvents (i.e., dioxane), typically suffer from extended reaction times, and operate exclusively under highly dilute conditions (i.e., 5 mM repeat unit concentration). To circumvent these limitations, a commercial radical initiator is introduced to kinetically untrap the depolymerization and promote chain-end activation. By varying the initiator concentration, a remarkable rate acceleration (up to 72 times faster) can be observed, enabling the completion of the depolymerization within 5 min. Notably, a 20-fold increase in the repeat unit concentration did not appreciably compromise the final depolymerization yield, while very high percentages of monomer could be recovered in a wide range of solvents, including dimethyl sulfoxide, anisole, xylene, acetonitrile, toluene, and trichlorobenzene. Our findings not only offer intriguing mechanistic aspects, but also significantly expand the scope and applications of thermal RAFT depolymerization.
Collapse
Affiliation(s)
- Dimitra Mantzara
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Richard Whitfield
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Hyun Suk Wang
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Nghia P Truong
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Athina Anastasaki
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| |
Collapse
|
8
|
Kim D, Yu C, Kwon MS. Degradable Adhesives as Sustainable Alternatives to Acrylics via Ring-Opening Radical Polymerization of Vinylcyclopropanes. Angew Chem Int Ed Engl 2025; 64:e202419498. [PMID: 39930925 DOI: 10.1002/anie.202419498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Indexed: 02/20/2025]
Abstract
Acrylic pressure-sensitive adhesives (PSAs) are loosely crosslinked polymer networks widely used across various industries. However, the network structure and inert nature of the acrylic polymer backbone present sustainability challenges. To address these issues, efforts are being made to incorporate degradable units into the polymer backbone. Yet, two key obstacles remain: i) the polymer does not degrade into sufficiently small fragments, and ii) the adhesive and viscoelastic properties are often inferior to those of conventional acrylic polymers. In this study, we developed a PSA utilizing vinylcyclopropane (VCP)-based monomers and a VCP-based crosslinker, achieving molecular-level degradation while maintaining adhesive performance and viscoelastic properties comparable to traditional acrylic PSAs. Under optimized polymerization conditions, the polymer incorporates ozone-labile double bonds into its backbone, enabling controlled molecular degradation without compromising its properties. By synthesizing and strategically combining various VCP-based monomers, we developed PSAs with tailored adhesion and viscoelastic behavior on par with conventional acrylic PSAs. These advancements indicate that the degradable polymers and PSAs developed in this study are poised for practical application in the near future.
Collapse
Affiliation(s)
- Daewhan Kim
- Department of Material Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Changhoon Yu
- Department of Material Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min Sang Kwon
- Department of Material Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
9
|
Yang Y, Hu Q, Shao Q, Peng Y, Yu B, Luo F, Chen J, Xu C, Li Z, Tam M, Ju Z, Zhang R, Xing F, Zha Z, Zhang H. A Baicalin-Based Functional Polymer in Dynamic Reversible Networks Alleviates Osteoarthritis by Cellular Interactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410951. [PMID: 39840483 PMCID: PMC11904974 DOI: 10.1002/advs.202410951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/07/2024] [Indexed: 01/23/2025]
Abstract
Osteoarthritis (OA) is increasingly recognized as a whole-organ disease predominantly affecting the elderly, characterized by typical alterations in subchondral bone and cartilage, along with recurrent synovial inflammation. Despite the availability of various therapeutics and medications, a complete resolution of OA remains elusive. In this study, novel functional hydrogels are developed by integrating natural bioactive molecules for OA treatment. Specifically, baicalin (Bai) is combined with 2-hydroxyethyl acrylate (HEA) to form a polymerizable monomer (HEA-Bai) through esterification, which is subjected to reversible addition-fragmentation chain transfer (RAFT) polymerization to produce Bai-based polymer (Pm). These macromolecules are incorporated into Schiff-base hydrogels, which demonstrate excellent mechanical properties and self-healing performance. Notably, the Bai-based formulations are taken up by fibroblast-like synoviocytes (FLSs), where they regulate glycolysis. Mechanistically, inhibition of yes-associated protein 1 (YAP1) by the formulations suppressed the FLSs glycolysis and reduced the secretion of inflammatory factors, including interleukin 1β (IL-1β), IL-6, and IL-8. Furthermore, the functional hydrogel (AG-Pm)-OC, severing as a lubricant and nutrient, prolonged joint retention of Bai, thereby reducing cartilage degradation and synovial inflammation. Meanwhile, (AG-Pm)-OC alleviated joint pain by targeting the YAP1 signaling and inhibiting macrophage recruitment and polarization. Taken together, this flavonoid-based injectable hydrogel exhibits enhanced biocompatibility and efficacy against OA.
Collapse
Affiliation(s)
- Yili Yang
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
- Department of Immunobiology, College of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Qinxiao Hu
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
| | - Qingfeng Shao
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
| | - Yachen Peng
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
| | - Bo Yu
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
| | - Fangji Luo
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
| | - Jiajing Chen
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
| | - Chenhao Xu
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
| | - Zhenyan Li
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
| | - Manseng Tam
- Macau Medical Science and Technology Research AssociationMacao999078China
| | - Zhenyu Ju
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
| | - Ronghua Zhang
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine InformatizationCollege of PharmacyJinan UniversityGuangzhouGuangdong510630China
| | - Feiyue Xing
- Department of ImmunobiologyCollege of Life Science and TechnologyJinan UniversityGuangzhouGuangdong510632China
- Department of ImmunobiologyMOE Key Laboratory of Tumor Molecular BiologyJinan UniversityGuangzhou510632China
| | - Zhengang Zha
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
| | - Huan‐Tian Zhang
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
| |
Collapse
|
10
|
Mountaki SA, Whitfield R, Anastasaki A. Oxygen-Tolerant ATRP Depolymerization Enabled by an External Radical Source. Macromol Rapid Commun 2025:e2401067. [PMID: 39985425 DOI: 10.1002/marc.202401067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/07/2025] [Indexed: 02/24/2025]
Abstract
Although the chemical recycling of polymers synthesized by controlled radical polymerization enables the recovery of pristine monomer at low temperatures, it operates efficiently under strictly anaerobic conditions. Instead, oxygen-tolerant depolymerizations are scarce, and are either restricted to the use of a boiling co-solvent or are performed in closed vessels, often suffering from low conversions. Here, an open-vessel, oxygen-tolerant depolymerization of atom transfer radical polymerization (ATRP)-synthesized polymers is introduced, leading to high percentages of monomer regeneration (>90% depolymerization efficiency). Dissolved oxygen is eliminated by either utilizing high catalyst loadings, or lower catalyst loadings combined with a radical initiator. Notably, the methodology is compatible with various solvents (i.e., anisole, 1,2,4-trichlorobenzene (TCB), 1,2-dichlorobenzene (DCB), etc.) and a range of commercially available ligands including tris 2-(dimethylamino)ethylamine (Me6TREN) and tris(2-pyridylmethyl)amine (TPMA), as well as more inexpensive alternatives such as tris(2-aminoethyl)amine (TREN) and N,N,N',N'',N''-pentamethyldiethylenetriamine (PMDETA).
Collapse
Affiliation(s)
- Stella Afroditi Mountaki
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Richard Whitfield
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Athina Anastasaki
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| |
Collapse
|
11
|
Wang HS, Agrachev M, Kim H, Truong NP, Choi TL, Jeschke G, Anastasaki A. Visible light-triggered depolymerization of commercial polymethacrylates. Science 2025; 387:874-880. [PMID: 39977516 DOI: 10.1126/science.adr1637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 01/13/2025] [Indexed: 02/22/2025]
Abstract
The reversion of vinyl polymers with carbon-carbon backbones to their monomers represents an ideal path to alleviate the growing plastic waste stream. However, depolymerizing such stable materials remains a challenge, with state-of-the-art methods relying on "designer" polymers that are neither commercially produced nor suitable for real-world applications. In this work, we report a main chain-initiated, visible light-triggered depolymerization directly applicable to commercial polymers containing undisclosed impurities (e.g., comonomers, additives, or dyes). By in situ generation of chlorine radicals directly from the solvent, near-quantitative (>98%) depolymerization of polymethacrylates could be achieved regardless of their synthetic route (e.g., radical or ionic polymerization), end group, and molecular weight (up to 1.6 million daltons). The possibility to perform multigram-scale depolymerizations and confer temporal control renders this methodology a versatile and general route to recycling.
Collapse
Affiliation(s)
- Hyun Suk Wang
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich, Switzerland
| | - Mikhail Agrachev
- Institute for Molecular Physical Science, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, Zurich, Switzerland
| | - Hongsik Kim
- Laboratory of Polymer Chemistry, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich, Switzerland
| | - Nghia P Truong
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich, Switzerland
| | - Tae-Lim Choi
- Laboratory of Polymer Chemistry, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich, Switzerland
| | - Gunnar Jeschke
- Institute for Molecular Physical Science, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, Zurich, Switzerland
| | - Athina Anastasaki
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich, Switzerland
| |
Collapse
|
12
|
De Alwis Watuthanthrige N, Moskalenko A, Kroeger AA, Coote ML, Truong NP, Anastasaki A. Low temperature thermal RAFT depolymerization: the effect of Z-group substituents on molecular weight control and yield. Chem Sci 2025; 16:3516-3522. [PMID: 39882565 PMCID: PMC11774200 DOI: 10.1039/d4sc07518h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/17/2024] [Indexed: 01/31/2025] Open
Abstract
The labile end-groups inherent to many controlled radical polymerization methodologies, including atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain-transfer (RAFT) polymerization, can trigger the efficient chemical recycling of polymethacrylates yielding high percentages of pristine monomer. Yet, current thermal solution ATRP and RAFT depolymerization strategies require relatively high temperatures (i.e. 120-170 °C) to proceed, with slower depolymerization rates, and moderate yields often reported under milder reaction conditions (i.e. lower temperatures). In this work, we seek to promote the low temperature RAFT depolymerization of polymethacrylates via regulating the Z-group substitution of dithiobenzoate. While electron-withdrawing meta and para substituents, including trifluoromethyl (CF3) and trifluoromethoxy (OCF3), compromised the percentage of monomer recovery at 90 °C (e.g. 18% of conversion), instead the incorporation of electron-donating groups in the benzene ring, such as methoxy (OMe) and tertiary butoxy (OtBu), had a remarkable effect leading to up to four times higher conversions (e.g. 75%). Notably, electron-withdrawing Z-groups imposed control over depolymerization, reflected in the gradual decrease of the molecular weight during the reaction, as opposed to electron-donating groups which underwent a more uncontrolled depolymerization pathway. Density Functional Theory (DFT) calculations revealed accelerated bond fragmentation for electron-donating Z-groups, further supporting our findings. Taken altogether, this work highlights the importance of RAFT agent selection to either lower the reaction's temperature while maintaining high conversions, or induce control over the depolymerization.
Collapse
Affiliation(s)
| | - Anastasiia Moskalenko
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir Prelog Weg 5 8093 Zurich Switzerland
| | - Asja A Kroeger
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park South Australia 5042 Australia
| | - Michelle L Coote
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park South Australia 5042 Australia
| | - Nghia P Truong
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir Prelog Weg 5 8093 Zurich Switzerland
| | - Athina Anastasaki
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir Prelog Weg 5 8093 Zurich Switzerland
| |
Collapse
|
13
|
Tamura AM, Stewart KA, Young JB, Wei NB, Cantor AJ, Sumerlin BS. Selective Depolymerization for Sculpting Polymethacrylate Molecular Weight Distributions. J Am Chem Soc 2025; 147:5220-5227. [PMID: 39879111 DOI: 10.1021/jacs.4c15553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Chain-end reactivation of polymethacrylates generated by reversible-deactivation radical polymerization (RDRP) has emerged as a powerful tool for triggering depolymerization at significantly milder temperatures than those traditionally employed. In this study, we demonstrate how the facile depolymerization of poly(butyl methacrylate) (PBMA) can be leveraged to selectively skew the molecular weight distribution (MWD) and predictably alter the viscoelastic properties of blended PBMA mixtures. By mixing polymers with thermally active chain ends with polymers of different molecular weights and inactive chain ends, the MWD of the blends can be skewed to be high or low by selective depolymerization. This approach leads to the counterintuitive principle of the "destructive strengthening" of a material. Finally, we demonstrate, as a proof of concept, the encryption of information within polymer mixtures by linking Morse code with the MWDs before and after selective depolymerization, allowing for the encoding of data within blends of synthetic macromolecules.
Collapse
Affiliation(s)
- Ariana M Tamura
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Kevin A Stewart
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - James B Young
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Nathan B Wei
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Alexander J Cantor
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Brent S Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
14
|
Yang XM, Wang XY, Tang Y. The Chemical Recovery of PMMA into Monomer. Chemistry 2025; 31:e202404030. [PMID: 39663826 DOI: 10.1002/chem.202404030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/29/2024] [Accepted: 12/10/2024] [Indexed: 12/13/2024]
Abstract
Polymethyl methacrylate (PMMA), commonly known as plexiglass, is widely used in the areas of aircraft, automobile, construction and transplants, due to its high mechanical strength, good corrosion resistance, and excellent compatibility with human tissue. With the increase in production and usage of PMMA, the vast accumulation of PMMA waste has posed a challenge to the recycling of PMMA waste. However, at present, only less than 10 % of PMMA is recycled each year. The cost-effective chemical recovery of PMMA into monomer with high efficiency has attracted wide attention and has become one of the hot research subjects. The chemical recovery of PMMA into monomer are realized mainly via two approaches, including the pyrolysis of common PMMA at high temperature and the depolymerization of end-functionalized PMMA under mild conditions. The second approach has emerged and achieved significant progresses in the past several years. Herein, we provide a review about the researches of chemical recovery of PMMA into monomer. Firstly, the pyrolysis of general PMMA at high temperature is illustrated by typical research works. Subsequently, the depolymerization of end-functionalized PMMA under mild conditions is highlighted and discussed, as this approach is more in line with the green and sustainable development of polymer chemistry.
Collapse
Affiliation(s)
- Xi-Man Yang
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiao-Yan Wang
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yong Tang
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
15
|
Yan Q, Ma J, Pei W, Zhang Y, Zhong R, Liu S, Shen Y, Li Z. Chemoselective Ring-Opening Polymerization of α-Methylene-δ-valerolactone Catalyzed by a Simple Organoaluminum Complex to Prepare Closed-Loop Recyclable Functional Polyester. Angew Chem Int Ed Engl 2025; 64:e202418488. [PMID: 39475354 DOI: 10.1002/anie.202418488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Indexed: 11/17/2024]
Abstract
α-Methylene-δ-valerolactone (MVL) as a bio-renewable bifunctional monomer has shown great promise to prepare closed-loop recyclable polyester with pendent functionalizable double bond. However, the chemoselective ring-opening polymerization (ROP) of MVL still faces challenges including low polymerization temperature, expensive catalyst as well as high catalyst loading. In this contribution, we present the chemoselective and controlled ROP of MVL using a simple organoaluminum complex [MeAl(BHT)2] (BHT=2,6-di-tert-butyl-4-methylphenoxy), which can be easily prepared from commercially available trimethylaluminum and 2,6-di-tert-butyl-4-methylphenol without purification. MeAl(BHT)2 exhibits much higher catalytic activity (TOF=668 h-1) than that of MeAl[Salen] (TOF=89 h-1), a commonly used organoaluminum catalyst. The high chemoselectivity and activity of MeAl(BHT)2 is proposed to originate from the cooperative activation of propagating chain-ends and monomers via the "coordination-insertion" mechanism. Remarkably, high-molecular-weight P(MVL)ROP can be prepared in bulk using MeAl(BHT)2, which is not accessible by the previous catalysts. This study may advance the development of closed-loop recyclable polymers considering the easy preparation, low cost and good catalytic performance of MeAl(BHT)2.
Collapse
Affiliation(s)
- Qin Yan
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jiashu Ma
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Weijie Pei
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yaxin Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Ronglin Zhong
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Shaofeng Liu
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yong Shen
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
16
|
Jäger KSC, Ammini GD, Voorter PJ, Subramanian P, Kumar A, Anastasaki A, Junkers T. Accelerated Continuous Flow Depolymerization of Poly(Methyl Methacrylate). J Am Chem Soc 2025; 147:594-602. [PMID: 39699062 DOI: 10.1021/jacs.4c12455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
A continuous flow setup comprising an inline dialysis unit for immediate monomer removal is used for the depolymerization of poly(methyl methacrylate) (pMMA), synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. The approach used allows one to carry out solution depolymerizations at much higher polymer content compared to batch processes while maintaining high depolymerization conversions. pMMA is efficiently depolymerized in the flow reactor, yielding up to 68% monomer recovery under catalyst-free reaction conditions at 160 °C, starting from a 1 molar repeat unit concentration, which is a 20-fold improvement compared to previous batch studies. This was achieved by using the inline dialysis to continuously remove monomer from the depolymerization solution and hence continuously shifting of the depolymerization equilibrium to the recycling side. Depolymerizations at various temperatures, starting polymer concentrations, and reactor setup modifications are investigated, clearly showing the highly advantageous effect of the monomer removal on the reaction. The employed approach represents a significant advancement toward the industrial feasibility of depolymerization of methacrylates by lowering the solvent use, expanding its temperature operation window, and bringing polymer contents to a practically relevant level.
Collapse
Affiliation(s)
- Katharina S C Jäger
- Polymer Reaction Design Group, School of Chemistry, Monash University, 19 Rainforest Walk, Building 23, Clayton, VIC 3800, Australia
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich 8093, Switzerland
| | - Gayathri Dev Ammini
- Polymer Reaction Design Group, School of Chemistry, Monash University, 19 Rainforest Walk, Building 23, Clayton, VIC 3800, Australia
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Pieter-Jan Voorter
- Polymer Reaction Design Group, School of Chemistry, Monash University, 19 Rainforest Walk, Building 23, Clayton, VIC 3800, Australia
- Dulux Australia, 1956 Dandenong Road, Clayton, VIC 3168, Australia
| | | | - Anil Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Athina Anastasaki
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich 8093, Switzerland
| | - Tanja Junkers
- Polymer Reaction Design Group, School of Chemistry, Monash University, 19 Rainforest Walk, Building 23, Clayton, VIC 3800, Australia
| |
Collapse
|
17
|
Jones GR, Antonopoulou MN, Truong NP, Anastasaki A. Initiators for Continuous Activator Regeneration (ICAR) Depolymerization. J Am Chem Soc 2024; 146:35023-35028. [PMID: 39663797 DOI: 10.1021/jacs.4c13785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Chemical recycling of polymers synthesized by atom transfer radical polymerization (ATRP) typically requires high temperatures (i.e., 170 °C) to operate effectively, not only consuming unnecessary energy but also compromising depolymerization yields due to unavoidable end-group deterioration. To overcome this, the concept of initiators for continuous activator regeneration (ICAR) depolymerization is introduced herein as a broadly applicable approach to significantly reduce reaction temperatures for ATRP depolymerizations. Addition of commercially available free radical initiators enables the on-demand increase of depolymerization efficiency from <1% to 96%, achieving monomer generation at 120 °C, with conversions on par with thermal reversible addition-fragmentation chain transfer (RAFT) depolymerizations. Incubation studies confirm the elimination of deleterious side reactions at the milder temperatures employed, while the methodology can be scaled up to 1 g. The robustness and versatility of ICAR depolymerization is further demonstrated by the possibility to effectively depolymerize both chlorine and bromine terminated polymers and its compatibility with both copper and iron catalysts.
Collapse
Affiliation(s)
- Glen R Jones
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Maria-Nefeli Antonopoulou
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Nghia P Truong
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Athina Anastasaki
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
18
|
Young JB, Goodrich SL, Lovely JA, Ross ME, Bowman JI, Hughes RW, Sumerlin BS. Mechanochemically Promoted Functionalization of Postconsumer Poly(Methyl Methacrylate) and Poly(α-Methylstyrene) for Bulk Depolymerization. Angew Chem Int Ed Engl 2024; 63:e202408592. [PMID: 39007541 DOI: 10.1002/anie.202408592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
We describe a methodology of post-polymerization functionalization to enable subsequent bulk depolymerization to monomer by utilizing mechanochemical macro-radical generation. By harnessing ultrasonic chain-scission in the presence of N-hydroxyphthalimide methacrylate (PhthMA), we successfully chain-end functionalize polymers to promote subsequent depolymerization in bulk, achieving up to 82 % depolymerization of poly(methyl methacrylate) (PMMA) and poly(α-methylstyrene) (PAMS) within 30 min. This method of depolymerization yields a high-purity monomer that can be repolymerized. Moreover, as compared to the most common methods of depolymerization, this work is most efficient with ultra-high molecular weight (UHMW) polymers, establishing a method with the potential to address highly persistent, non-degradable all-carbon backbone plastic materials. Lastly, we demonstrate the expansion of this depolymerization method to commercial cell cast PMMA, achieving high degrees of depolymerization from post-consumer waste. This work is the first demonstration of applying PhthMA-promoted depolymerization strategies in homopolymer PMMA and PAMS prepared by conventional polymerization methods.
Collapse
Affiliation(s)
- James B Young
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, 32611, Gainesville, FL, United States
| | - Sofia L Goodrich
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, 32611, Gainesville, FL, United States
| | - James A Lovely
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, 32611, Gainesville, FL, United States
| | - Madison E Ross
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, 32611, Gainesville, FL, United States
| | - Jared I Bowman
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, 32611, Gainesville, FL, United States
| | - Rhys W Hughes
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, 32611, Gainesville, FL, United States
| | - Brent S Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, 32611, Gainesville, FL, United States
| |
Collapse
|
19
|
Palà M, Lligadas G, Moreno A. Valorization of Lactate Esters and Amides into Value-Added Biobased (Meth)acrylic Polymers. Biomacromolecules 2024; 25:6338-6356. [PMID: 39258970 PMCID: PMC11480984 DOI: 10.1021/acs.biomac.4c00891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
(Meth)acrylic polymers are massively produced due to their inherently attractive properties. However, the vast majority of these polymers are derived from fossil resources, which is not aligned with the tendency to reduce gas emissions. In this context, (meth)acrylic polymers derived from biomass (biobased polymers) are gaining momentum, as their application in different areas can not only stand the comparison but even surpass, in some cases, the performance of petroleum-derived ones. In this review, we highlight the design and synthesis of (meth)acrylic polymers derived from lactate esters (LEs) and lactate amides (LAs), both derived from lactic acid. While biobased polymers have been widely studied and reviewed, the poly(meth)acrylates with pendant LE and LA moieties evolved slowly until recently when significant achievements have been made. Hence, constraints and opportunities arising from previous research in this area are presented, focusing on the synthesis of well-defined polymers for the preparation of advanced materials.
Collapse
Affiliation(s)
- Marc Palà
- Universitat
Rovira i Virgili, Departament de
Química Analítica i Química Orgànica,
Laboratory of Sustainable Polymers, Tarragona 43007, Spain
| | - Gerard Lligadas
- Universitat
Rovira i Virgili, Departament de
Química Analítica i Química Orgànica,
Laboratory of Sustainable Polymers, Tarragona 43007, Spain
| | - Adrian Moreno
- Universitat
Rovira i Virgili, Departament de
Química Analítica i Química Orgànica,
Laboratory of Sustainable Polymers, Tarragona 43007, Spain
| |
Collapse
|
20
|
Yang S, Du S, Zhu J, Ma S. Closed-loop recyclable polymers: from monomer and polymer design to the polymerization-depolymerization cycle. Chem Soc Rev 2024; 53:9609-9651. [PMID: 39177226 DOI: 10.1039/d4cs00663a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The extensive utilization of plastic, as a symbol of modern technological society, has consumed enormous amounts of finite and non-renewable fossil resources and produced huge amounts of plastic wastes in the land or ocean, and thus recycling and reuse of the plastic wastes have great ecological and economic benefits. Closed-loop recyclable polymers with inherent recyclability can be readily depolymerized into monomers with high selectivity and purity and repolymerized into polymers with the same performance. They are deemed to be the next generation of recyclable polymers and have captured great and increasing attention from academia and industry. Herein, we provide an overview of readily closed-loop recyclable polymers based on monomer and polymer design and no-other-reactant-involved reversible ring-opening and addition polymerization reactions. The state-of-the-art of circular polymers is separately summarized and discussed based on different monomers, including lactones, thiolactones, cyclic carbonates, hindered olefins, cycloolefins, thermally labile olefin comonomers, cyclic disulfides, cyclic (dithio) acetals, lactams, Diels-Alder addition monomers, Michael addition monomers, anhydride-secondary amide monomers, and cyclic anhydride-aldehyde monomers, and polymers with activatable end groups. The polymerization and depolymerization mechanisms are clearly disclosed, and the evolution of the monomer structure, the polymerization and depolymerization conditions, the corresponding polymerization yield, molecular weight, performance of the polymers, monomer recovery, and depolymerization equipment are also systematically summarized and discussed. Furthermore, the challenges and future prospects are also highlighted.
Collapse
Affiliation(s)
- Shuaiqi Yang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China.
| | - Shuai Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China.
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Songqi Ma
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China.
| |
Collapse
|
21
|
Chin M, Diao T. Industrial and Laboratory Technologies for the Chemical Recycling of Plastic Waste. ACS Catal 2024; 14:12437-12453. [PMID: 39169909 PMCID: PMC11334192 DOI: 10.1021/acscatal.4c03194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
Synthetic polymers play an indispensable role in modern society, finding applications across various sectors ranging from packaging, textiles, and consumer products to construction, electronics, and industrial machinery. Commodity plastics are cheap to produce, widely available, and versatile to meet diverse application needs. As a result, millions of metric tons of plastics are manufactured annually. However, current approaches for the chemical recycling of postconsumer plastic waste, primarily based on pyrolysis, lag in efficiency compared to their production methods. In recent years, significant research has focused on developing milder, economically viable methods for the chemical recycling of commodity plastics, which involves converting plastic waste back into monomers or transforming it into other valuable chemicals. This Perspective examines both industrial and cutting-edge laboratory-scale methods contributing to recent advancements in the field of chemical recycling.
Collapse
Affiliation(s)
- Mason
T. Chin
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Tianning Diao
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
22
|
Li Z, Zhang X, Zhao Y, Tang S. Mechanochemical Backbone Editing for Controlled Degradation of Vinyl Polymers. Angew Chem Int Ed Engl 2024; 63:e202408225. [PMID: 38801168 DOI: 10.1002/anie.202408225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
The chemically inert nature of fully saturated hydrocarbon backbones endows vinyl polymers with desirable durability, but it also leads to their significant environmental persistence. Enhancing the sustainability of these materials requires a pivotal yet challenging shift: transforming the inert backbone into one that is degradable. Here, we present a versatile platform for mechanochemically editing the fully saturated backbone of vinyl polymers towards degradable polymer chains by integrating cyclobutene-fused succinimide (CBS) units along backbone through photo-iniferter reversible addition-fragmentation chain-transfer (RAFT) copolymerization. Significantly, the evenly insertion of CBS units does not compromise thermal or chemical stability but rather offers a means to adjust the properties of polymethylacrylate (PMA). Meanwhile, reactive acyclic imide units can be selectively introduced to the backbone through mechanochemical activation (pulse ultrasonication or ball-milling grinding) when required. Subsequent hydrolysis of the acyclic imide groups enables efficient degradation, yielding telechelic oligomers. This approach holds promise for inspiring the design and modification of more environmentally friendly vinyl polymers through backbone editing.
Collapse
Affiliation(s)
- Zhuang Li
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaohui Zhang
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yajun Zhao
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shan Tang
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
23
|
Sbordone F, Frisch H. Plenty of Space in the Backbone: Radical Ring-Opening Polymerization. Chemistry 2024; 30:e202401547. [PMID: 38818742 DOI: 10.1002/chem.202401547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/01/2024]
Abstract
Radical polymerization is the most widely applied technique in both industry and fundamental science. However, its major drawback is that it typically yields polymers with non-functional, non-degradable all-carbon backbones-a limitation that radical ring-opening polymerization (rROP) allows to overcome. The last decade has seen a surge in rROP, primarily focused on creating degradable polymers. This pursuit has resulted in the creation of the first readily degradable materials through radical polymerization. Recent years have witnessed innovations in new monomers that address previous design limitations, such as ring strain and reactivity ratios. Furthermore, advances in integrating rROP with reversible deactivation radical polymerization (RDRP) have facilitated the incorporation of complex, customizable chemical payloads into the main polymer chain. This short review discusses the latest developments in monomer design with a focused analysis of their limitations in a broader historical context. Recently evolving strategies for compatibility of rROP monomers with RDRP are discussed, which are key to precision polymer synthesis. The latest chemistry surveyed expands the horizon beyond mere hydrolytic degradation. Now is the time to explore the chemical potential residing in the previously inaccessible polymer backbone.
Collapse
Affiliation(s)
- Federica Sbordone
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Material Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Hendrik Frisch
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Material Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
24
|
Tran TM, Read de Alaniz J. Synthesis and Thermo-Selective Recycling of Diels-Alder Cyclopentadiene Thermoplastics. J Am Chem Soc 2024. [PMID: 39041456 DOI: 10.1021/jacs.4c05952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Catalyst-free and reversible step-growth Diels-Alder (DA) polymerization has a wide range of applications in polymer synthesis and is a promising method for fabricating recyclable thermoplastics. The effectiveness of polymerization and depolymerization relies on the chemical building blocks, often utilizing furan as the diene and maleimide as the dienophile. Compared to the traditional diene-dienophile or two-component approach that requires precise stoichiometry, cyclopentadiene (Cp) can serve dual roles via self-dimerization. This internally balanced platform offers a route to access high-molecular-weight polymers and a dynamic handle for polymer recycling, which has yet to be explored. Herein, through a reactivity investigation of different telechelic Cp derivatives, the uncontrolled cross-linking of Cp was addressed, revealing the first successful DA homopolymerization. To demonstrate the generality of our methodology, we synthesized and characterized six Cp homopolymers with backbones derived from common thermoplastics, such as poly(dimethylsiloxane), hydrogenated polybutadiene, and ethylene phthalate. Among these materials, the hydrogenated polybutadiene-Cp analog can be thermally depolymerized (Mn = 68 to 23 kDa) and repolymerized to the parent polymer (Mn = 68 kDa) under solvent- and catalyst-free conditions. This process was repeated over three cycles without intermediate purification, confirming the efficient thermo-selective recyclability. The varied degradable properties of the other four Cp-incorporated thermoplastics were also examined. Overall, this work provides a general methodology for accessing a new class of reversible homopolymers, potentially expanding the design and construction of sustainable thermoplastics.
Collapse
Affiliation(s)
- Thi M Tran
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
25
|
Han P, Xu H, Zhang G, Qin A, Tang BZ. A Processible and Ultrahigh-temperature Organic Photothermal Material through Spontaneous and Quantitative [2+2] Cycloaddition-Cycloreversion. Angew Chem Int Ed Engl 2024; 63:e202406381. [PMID: 38744675 DOI: 10.1002/anie.202406381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
Energy conversion, particularly light to heat conversion, has garnered significant attention owing to its prospect in renewable energy exploitation and utilization. Most previous efforts have focused on developing organic photothermal materials for low-temperature applications, whereas the importance of simplifying the preparation methods of photothermal materials and enhancing their maximum photothermal temperature have been less taken. Herein, we prepare an organic near-infrared (NIR) photothermal material namely ATT by a spontaneous [2+2] cycloaddition-cycloreversion reaction. In addition to the solution-based method, ATT could also be readily preapred by ball milling in a high yield of 90 % in just 15 min. ATT powder exhibits a broad absorption extending beyond 2000 nm, excellent processability, and thermal stability. Remarkably, ATT powder can reach an unprecedently temperature as high as 450 °C while maintaining excellent photostability upon photoirradiation. Leveraging its extraordinary photothermal and processable properties, ATT was used in the high-temperature applications, such as photo-ignition, photo-controlled metal processing and high-temperature shape memory, all of which offer spatiotemporal control capabilities. This work provides a new approach to prepare organic photothermal materials with high temperatures, and pave the way for their applications in extreme environments.
Collapse
Affiliation(s)
- Pengbo Han
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou, 510640, China
| | - He Xu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou, 510640, China
| | - Guiquan Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou, 510640, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou, 510640, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou, 510640, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China
- Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Kowloon, 999077, Hong Kong, China
| |
Collapse
|
26
|
Mountaki S, Whitfield R, Liarou E, Truong NP, Anastasaki A. Open-Air Chemical Recycling: Fully Oxygen-Tolerant ATRP Depolymerization. J Am Chem Soc 2024; 146:18848-18854. [PMID: 38958656 PMCID: PMC11258787 DOI: 10.1021/jacs.4c05621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
While oxygen-tolerant strategies have been overwhelmingly developed for controlled radical polymerizations, the low radical concentrations typically required for high monomer recovery render oxygen-tolerant solution depolymerizations particularly challenging. Here, an open-air atom transfer radical polymerization (ATRP) depolymerization is presented, whereby a small amount of a volatile cosolvent is introduced as a means to thoroughly remove oxygen. Ultrafast depolymerization (i.e., 2 min) could efficiently proceed in an open vessel, allowing a very high monomer retrieval to be achieved (i.e., ∼91% depolymerization efficiency), on par with that of the fully deoxygenated analogue. Oxygen probe studies combined with detailed depolymerization kinetics revealed the importance of the low-boiling point cosolvent in removing oxygen prior to the reaction, thus facilitating effective open-air depolymerization. The versatility of the methodology was demonstrated by performing reactions with a range of different ligands and at high polymer loadings (1 M monomer repeat unit concentration) without significantly compromising the yield. This approach provides a fully oxygen-tolerant, facile, and efficient route to chemically recycle ATRP-synthesized polymers, enabling exciting new applications.
Collapse
Affiliation(s)
- Stella
Afroditi Mountaki
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Zurich 8093, Switzerland
| | - Richard Whitfield
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Zurich 8093, Switzerland
| | - Evelina Liarou
- Department
of Chemistry, University of Warwick Library Road, Coventry CV4 7SH, U.K.
| | - Nghia P. Truong
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Zurich 8093, Switzerland
| | - Athina Anastasaki
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Zurich 8093, Switzerland
| |
Collapse
|
27
|
De Alwis Watuthanthrige N, Whitfield R, Harrisson S, Truong NP, Anastasaki A. Thermal Solution Depolymerization of RAFT Telechelic Polymers. ACS Macro Lett 2024; 13:806-811. [PMID: 38857492 PMCID: PMC11256755 DOI: 10.1021/acsmacrolett.4c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Thermal solution depolymerization is a promising low-temperature chemical recycling strategy enabling high monomer recovery from polymers made by controlled radical polymerization. However, current methodologies predominantly focus on the depolymerization of monofunctional polymers, limiting the material scope and depolymerization pathways. Herein, we report the depolymerization of telechelic polymers synthesized by RAFT polymerization. Notably, we observed a significant decrease in the molecular weight (Mn) of the polymers during monomer recovery, which contrasts the minimal Mn shift observed during the depolymerization of monofunctional polymers. Introducing Z groups at the center or both ends of the polymer resulted in distinct kinetic profiles, indicating partial depolymerization of the bifunctional polymers, as supported by mathematical modeling. Remarkably, telechelic polymers featuring R-terminal groups showed up to 68% improvement in overall depolymerization conversion compared to their monofunctional analogues, highlighting the potential of these materials in chemical recycling and the circular economy.
Collapse
Affiliation(s)
| | - Richard Whitfield
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Simon Harrisson
- Laboratoire
de Chimie des Polymères Organiques, University of Bordeaux/Bordeaux-INP/CNRS UMR5629, Pessac 33607, France
| | - Nghia P. Truong
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Athina Anastasaki
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| |
Collapse
|
28
|
Pol MD, Dai K, Thomann R, Moser S, Kanti Roy S, Pappas CG. Guiding Transient Peptide Assemblies with Structural Elements Embedded in Abiotic Phosphate Fuels. Angew Chem Int Ed Engl 2024; 63:e202404360. [PMID: 38676693 DOI: 10.1002/anie.202404360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Despite great progress in the construction of non-equilibrium systems, most approaches do not consider the structure of the fuel as a critical element to control the processes. Herein, we show that the amino acid side chains (A, F, Nal) in the structure of abiotic phosphates can direct assembly and reactivity during transient structure formation. The fuels bind covalently to substrates and subsequently influence the structures in the assembly process. We focus on the ways in which the phosphate esters guide structure formation and how structures and reactivity cross regulate when constructing assemblies. Through the chemical functionalization of energy-rich aminoacyl phosphate esters, we are able to control the yield of esters and thioesters upon adding dipeptides containing tyrosine or cysteine residues. The structural elements around the phosphate esters guide the lifetime of the structures formed and their supramolecular assemblies. These properties can be further influenced by the peptide sequence of substrates, incorporating anionic, aliphatic and aromatic residues. Furthermore, we illustrate that oligomerization of esters can be initiated from a single aminoacyl phosphate ester incorporating a tyrosine residue (Y). These findings suggest that activated amino acids with varying reactivity and energy contents can pave the way for designing and fabricating structured fuels.
Collapse
Affiliation(s)
- Mahesh D Pol
- DFG Cluster of Excellence livMatS@FIT-, Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| | - Kun Dai
- DFG Cluster of Excellence livMatS@FIT-, Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Ralf Thomann
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Strasse 21, 79104, Freiburg, Germany
| | - Sandra Moser
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| | - Subhra Kanti Roy
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| | - Charalampos G Pappas
- DFG Cluster of Excellence livMatS@FIT-, Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| |
Collapse
|
29
|
Liu P, Jimaja S, Immel S, Thomas C, Mayer M, Weder C, Bruns N. Mechanically triggered on-demand degradation of polymers synthesized by radical polymerizations. Nat Chem 2024; 16:1184-1192. [PMID: 38609710 PMCID: PMC11230896 DOI: 10.1038/s41557-024-01508-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
Polymers that degrade on demand have the potential to facilitate chemical recycling, reduce environmental pollution and are useful in implant immolation, drug delivery or as adhesives that debond on demand. However, polymers made by radical polymerization, which feature all carbon-bond backbones and constitute the most important class of polymers, have proven difficult to render degradable. Here we report cyclobutene-based monomers that can be co-polymerized with conventional monomers and impart the resulting polymers with mechanically triggered degradability. The cyclobutene residues act as mechanophores and can undergo a mechanically triggered ring-opening reaction, which causes a rearrangement that renders the polymer chains cleavable by hydrolysis under basic conditions. These cyclobutene-based monomers are broadly applicable in free radical and controlled radical polymerizations, introduce functional groups into the backbone of polymers and allow the mechanically gated degradation of high-molecular-weight materials or cross-linked polymer networks into low-molecular-weight species.
Collapse
Affiliation(s)
- Peng Liu
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland.
- Swiss National Center of Competence in Research Bio-Inspired Materials, Fribourg, Switzerland.
- Department of Materials, ETH Zürich, Zürich, Switzerland.
| | - Sètuhn Jimaja
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
- Swiss National Center of Competence in Research Bio-Inspired Materials, Fribourg, Switzerland
| | - Stefan Immel
- Department of Chemistry and Centre for Synthetic Biology, University of Darmstadt, Darmstadt, Germany
| | | | - Michael Mayer
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
- Swiss National Center of Competence in Research Bio-Inspired Materials, Fribourg, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
- Swiss National Center of Competence in Research Bio-Inspired Materials, Fribourg, Switzerland
| | - Nico Bruns
- Swiss National Center of Competence in Research Bio-Inspired Materials, Fribourg, Switzerland.
- Department of Chemistry and Centre for Synthetic Biology, University of Darmstadt, Darmstadt, Germany.
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
30
|
Parkatzidis K, Wang HS, Anastasaki A. Photocatalytic Upcycling and Depolymerization of Vinyl Polymers. Angew Chem Int Ed Engl 2024; 63:e202402436. [PMID: 38466624 DOI: 10.1002/anie.202402436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
Photocatalytic upcycling and depolymerization of vinyl polymers have emerged as promising strategies to combat plastic pollution and promote a circular economy. This mini review critically summarizes current developments in the upcycling and degradation of vinyl polymers including polystyrene and poly(meth)acrylates. Of these material classes, polymethacrylates possess the unique possibility to undergo a photocatalytic depolymerization back to monomer under thermodynamically favourable conditions, thus presenting significant advantages over traditional thermal strategies. Our perspective on current formidable challenges and potential future directions are also discussed.
Collapse
Affiliation(s)
- Kostas Parkatzidis
- Department of Materials Science, ETH Zurich, Vladimir-Prelog-Weg 5, 8093, Zürich, Switzerland
| | - Hyun Suk Wang
- Department of Materials Science, ETH Zurich, Vladimir-Prelog-Weg 5, 8093, Zürich, Switzerland
| | - Athina Anastasaki
- Department of Materials Science, ETH Zurich, Vladimir-Prelog-Weg 5, 8093, Zürich, Switzerland
| |
Collapse
|
31
|
Ko K, Lundberg DJ, Johnson AM, Johnson JA. Mechanism-Guided Discovery of Cleavable Comonomers for Backbone Deconstructable Poly(methyl methacrylate). J Am Chem Soc 2024; 146:9142-9154. [PMID: 38526229 DOI: 10.1021/jacs.3c14554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The development of cleavable comonomers (CCs) with suitable copolymerization reactivity paves the way for the introduction of backbone deconstructability into polymers. Recent advancements in thionolactone-based CCs, exemplified by dibenzo[c,e]-oxepine-5(7H)-thione (DOT), have opened promising avenues for the selective deconstruction of multiple classes of vinyl polymers, including polyacrylates, polyacrylamides, and polystyrenics. To date, however, no thionolactone CC has been shown to copolymerize with methacrylates to an appreciable extent to enable polymer deconstruction. Here, we overcome this challenge through the design of a new class of benzyl-functionalized thionolactones (bDOTs). Guided by detailed mechanistic analyses, we find that the introduction of radical-stabilizing substituents to bDOTs enables markedly increased and tunable copolymerization reactivity with methyl methacrylate (MMA). Through iterative optimizations of the molecular structure, a specific bDOT, F-p-CF3PhDOT, is discovered to copolymerize efficiently with MMA. High molar mass deconstructable PMMA-based copolymers (dPMMA, Mn > 120 kDa) with low percentages of F-p-CF3PhDOT (1.8 and 3.8 mol%) are prepared using industrially relevant bulk free radical copolymerization conditions. The thermomechanical properties of dPMMA are similar to PMMA; however, the former is shown to degrade into low molar mass fragments (<6.5 kDa) under mild aminolysis conditions. This work presents the first example of a radical ring-opening CC capable of nearly random copolymerization with MMA without the possibility of cross-linking and provides a workflow for the mechanism-guided design of deconstructable copolymers in the future.
Collapse
Affiliation(s)
- Kwangwook Ko
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - David J Lundberg
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Alayna M Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
32
|
Deng Y, Zhang Q, Feringa BL. Dynamic Chemistry Toolbox for Advanced Sustainable Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308666. [PMID: 38321810 PMCID: PMC11005721 DOI: 10.1002/advs.202308666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Indexed: 02/08/2024]
Abstract
Developing dynamic chemistry for polymeric materials offers chemical solutions to solve key problems associated with current plastics. Mechanical performance and dynamic function are equally important in material design because the former determines the application scope and the latter enables chemical recycling and hence sustainability. However, it is a long-term challenge to balance the subtle trade-off between mechanical robustness and dynamic properties in a single material. The rise of dynamic chemistry, including supramolecular and dynamic covalent chemistry, provides many opportunities and versatile molecular tools for designing constitutionally dynamic materials that can adapt, repair, and recycle. Facing the growing social need for developing advanced sustainable materials without compromising properties, recent progress showing how the toolbox of dynamic chemistry can be explored to enable high-performance sustainable materials by molecular engineering strategies is discussed here. The state of the art and recent milestones are summarized and discussed, followed by an outlook toward future opportunities and challenges present in this field.
Collapse
Affiliation(s)
- Yuanxin Deng
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Technology130 Meilong RoadShanghai200237China
- Stratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsFaculty of Science and EngineeringUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Technology130 Meilong RoadShanghai200237China
- Stratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsFaculty of Science and EngineeringUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| | - Ben L. Feringa
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Technology130 Meilong RoadShanghai200237China
- Stratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsFaculty of Science and EngineeringUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| |
Collapse
|
33
|
Cao Q, Tu YM, Fan HZ, Shan SY, Cai Z, Zhu JB. Torsional Strain Enabled Ring-Opening Polymerization towards Axially Chiral Semiaromatic Polyesters with Chemical Recyclability. Angew Chem Int Ed Engl 2024; 63:e202400196. [PMID: 38356038 DOI: 10.1002/anie.202400196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 02/16/2024]
Abstract
The development of new chemically recyclable polymers via monomer design would provide a transformative strategy to address the energy crisis and plastic pollution problem. Biaryl-fused cyclic esters were targeted to generate axially chiral polymers, which would impart new material performance. To overcome the non-polymerizability of the biaryl-fused monomer DBO, a cyclic ester Me-DBO installed with dimethyl substitution was prepared to enable its polymerizability via enhancing torsional strain. Impressively, Me-DBO readily went through well-controlled ring-opening polymerization, producing polymer P(Me-DBO) with high glass transition temperature (Tg >100 °C). Intriguingly, mixing these complementary enantiopure polymers containing axial chirality promoted a transformation from amorphous to crystalline material, affording a semicrystalline stereocomplex with a melting transition temperature more than 300 °C. P(Me-DBO) were capable of depolymerizing back to Me-DBO in high efficiency, highlighting an excellent recyclability.
Collapse
Affiliation(s)
- Qing Cao
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Yi-Min Tu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Hua-Zhong Fan
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Si-Yi Shan
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Zhongzheng Cai
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Jian-Bo Zhu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| |
Collapse
|
34
|
Mountaki SA, Whitfield R, Parkatzidis K, Antonopoulou MN, Truong NP, Anastasaki A. Chemical recycling of bromine-terminated polymers synthesized by ATRP. RSC APPLIED POLYMERS 2024; 2:275-283. [PMID: 38525379 PMCID: PMC10955525 DOI: 10.1039/d3lp00279a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/25/2024] [Indexed: 03/26/2024]
Abstract
Chemical recycling of polymers is one of the biggest challenges in materials science. Recently, remarkable achievements have been made by utilizing polymers prepared by controlled radical polymerization to trigger low-temperature depolymerization. However, in the case of atom transfer radical polymerization (ATRP), depolymerization has nearly exclusively focused on chlorine-terminated polymers, even though the overwhelming majority of polymeric materials synthesized with this method possess a bromine end-group. Herein, we report an efficient depolymerization strategy for bromine-terminated polymethacrylates which employs an inexpensive and environmentally friendly iron catalyst (FeBr2/L). The effect of various solvents and the concentration of metal salt and ligand on the depolymerization are judiciously explored and optimized, allowing for a depolymerization efficiency of up to 86% to be achieved in just 3 minutes. Notably, the versatility of this depolymerization is exemplified by its compatibility with chlorinated and non-chlorinated solvents, and both Fe(ii) and Fe(iii) salts. This work significantly expands the scope of ATRP materials compatible with depolymerization and creates many future opportunities in applications where the depolymerization of bromine-terminated polymers is desired.
Collapse
Affiliation(s)
- Stella Afroditi Mountaki
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir-Prelog-Weg-5 8093 Zurich Switzerland
| | - Richard Whitfield
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir-Prelog-Weg-5 8093 Zurich Switzerland
| | - Kostas Parkatzidis
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir-Prelog-Weg-5 8093 Zurich Switzerland
| | - Maria-Nefeli Antonopoulou
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir-Prelog-Weg-5 8093 Zurich Switzerland
| | - Nghia P Truong
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir-Prelog-Weg-5 8093 Zurich Switzerland
| | - Athina Anastasaki
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir-Prelog-Weg-5 8093 Zurich Switzerland
| |
Collapse
|
35
|
Hughes RW, Lott ME, Zastrow IS, Young JB, Maity T, Sumerlin BS. Bulk Depolymerization of Methacrylate Polymers via Pendent Group Activation. J Am Chem Soc 2024; 146:6217-6224. [PMID: 38382047 DOI: 10.1021/jacs.3c14179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
In this study, we present an efficient approach for the depolymerization of poly(methyl methacrylate) (PMMA) copolymers synthesized via conventional radical polymerization. By incorporating low mol % phthalimide ester-containing monomers during the polymerization process, colorless and transparent polymers closely resembling unfunctionalized PMMA are obtained, which can achieve >95% reversion to methyl methacrylate (MMA). Notably, our catalyst-free bulk depolymerization method exhibits exceptional efficiency, even for high-molecular-weight polymers, including ultrahigh-molecular-weight (106-107 g/mol) PMMA, where near-quantitative depolymerization is achieved. Moreover, this approach yields polymer byproducts of significantly lower molecular weight, distinguishing it from bulk depolymerization methods initiated from chain ends. Furthermore, we extend our investigation to polymethacrylate networks, demonstrating high extents of depolymerization. This innovative depolymerization strategy offers promising opportunities for the development of sustainable polymethacrylate materials, holding great potential for various applications in polymer science.
Collapse
Affiliation(s)
- Rhys W Hughes
- George & Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science & Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Megan E Lott
- George & Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science & Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Isabella S Zastrow
- George & Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science & Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - James B Young
- George & Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science & Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Tanmoy Maity
- George & Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science & Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Brent S Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science & Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
36
|
Chin M, Yang T, Quirion KP, Lian C, Liu P, He J, Diao T. Implementing a Doping Approach for Poly(methyl methacrylate) Recycling in a Circular Economy. J Am Chem Soc 2024; 146:5786-5792. [PMID: 38382057 PMCID: PMC10921398 DOI: 10.1021/jacs.3c13223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
To mitigate pollution by plastic waste, it is paramount to develop polymers with efficient recyclability while retaining desirable physical properties. A recyclable poly(methyl methacrylate) (PMMA) is synthesized by incorporating a minimal amount of an α-methylstyrene (AMS) analogue into the polymer structure. This P(MMA-co-AMS) copolymer preserves the essential mechanical strength and optical clarity of PMMA, vital for its wide-ranging applications in various commercial and high-tech industries. Doping with AMS significantly enhances the thermal, catalyst-free depolymerization efficiency of PMMA, facilitating the recovery of methyl methacrylate (MMA) with high yield and purity at temperatures ranging from 150 to 210 °C, nearly 250 K lower than current industrial standards. Furthermore, the low recovery temperature permits the isolation of pure MMA from a mixture of assorted common plastics.
Collapse
Affiliation(s)
- Mason
T. Chin
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Tiangang Yang
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Kevin P. Quirion
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Christina Lian
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Peng Liu
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jie He
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Tianning Diao
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
37
|
Yu H, Liu L, Yin R, Jayapurna I, Wang R, Xu T. Mapping Composition Evolution through Synthesis, Purification, and Depolymerization of Random Heteropolymers. J Am Chem Soc 2024; 146:6178-6188. [PMID: 38387070 PMCID: PMC10921401 DOI: 10.1021/jacs.3c13909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
Random heteropolymers (RHPs) consisting of three or more comonomers have been routinely used to synthesize functional materials. While increasing the monomer variety diversifies the side-chain chemistry, this substantially expands the sequence space and leads to ensemble-level sequence heterogeneity. Most studies have relied on monomer composition and simulated sequences to design RHPs, but the questions remain unanswered regarding heterogeneities within each RHP ensemble and how closely these simulated sequences reflect the experimental outcomes. Here, we quantitatively mapped out the evolution of monomer compositions in four-monomer-based RHPs throughout a design-synthesis-purification-depolymerization process. By adopting a Jaacks method, we first determined 12 reactivity ratios directly from quaternary methacrylate RAFT copolymerization experiments to account for the influences of competitive monomer addition and the reversible activation/deactivation equilibria. The reliability of in silico analysis was affirmed by a quantitative agreement (<4% difference) between the simulated RHP compositions and the experimental results. Furthermore, we mapped out the conformation distribution within each ensemble in different solvents as a function of monomer chemistry, composition, and segmental characteristics via high-throughput computation based on self-consistent field theory (SCFT). These comprehensive studies confirmed monomer composition as a viable design parameter to engineer RHP-based functional materials as long as the reactivity ratios are accurately determined and the livingness of RHP synthesis is ensured.
Collapse
Affiliation(s)
- Hao Yu
- California
Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California 94720, United States
| | - Luofu Liu
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Ruilin Yin
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Ivan Jayapurna
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
| | - Rui Wang
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
| | - Ting Xu
- California
Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California 94720, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
- Departent
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
38
|
Jarach N, Dodiuk H, Kenig S, Magdassi S. Fully Recyclable Cured Polymers for Sustainable 3D Printing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307297. [PMID: 37850591 DOI: 10.1002/adma.202307297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/08/2023] [Indexed: 10/19/2023]
Abstract
The most prevalent materials used in the Additive Manufacturing era are polymers and plastics. Unfortunately, these materials are recognized for their negative environmental impact as they are primarily nonrecyclable, resulting in environmental pollution. In recent years, a new sustainable alternative to these materials has been emerging: Reversible Covalent Bond-Containing Polymers (RCBPs). These materials can be recycled, reprocessed, and reused multiple times without losing their properties. Nonetheless, they have two significant drawbacks when used in 3D printing. First, some require adding new materials every reprinting cycle, and second, others require high temperatures for (re)printing, limiting recyclability, and increasing energy consumption. This study, thus, introduces fully recyclable RCBPs as a sustainable approach for radiation-based printing technologies. This approach enables multiple (re)printing cycles at low temperatures (50 °C lower than the lowest reported) without adding new materials. It involves purposefully synthesized polymers that undergo reversible photopolymerization, composed of a tin-based catalyst. An everyday microwave oven quickly depolymerized these polymers, obtaining complete reversibility.
Collapse
Affiliation(s)
- Natanel Jarach
- The Department of Polymer Materials Engineering, Pernick Faculty of Engineering, Shenkar - Engineering. Design. Art, Raman-Gan, 5252626, Israel
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Hanna Dodiuk
- The Department of Polymer Materials Engineering, Pernick Faculty of Engineering, Shenkar - Engineering. Design. Art, Raman-Gan, 5252626, Israel
| | - Samuel Kenig
- The Department of Polymer Materials Engineering, Pernick Faculty of Engineering, Shenkar - Engineering. Design. Art, Raman-Gan, 5252626, Israel
| | - Shlomo Magdassi
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
39
|
Lohmann V, Jones GR, Truong NP, Anastasaki A. The thermodynamics and kinetics of depolymerization: what makes vinyl monomer regeneration feasible? Chem Sci 2024; 15:832-853. [PMID: 38239674 PMCID: PMC10793647 DOI: 10.1039/d3sc05143a] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/28/2023] [Indexed: 01/22/2024] Open
Abstract
Depolymerization is potentially a highly advantageous method of recycling plastic waste which could move the world closer towards a truly circular polymer economy. However, depolymerization remains challenging for many polymers with all-carbon backbones. Fundamental understanding and consideration of both the kinetics and thermodynamics are essential in order to develop effective new depolymerization systems that could overcome this problem, as the feasibility of monomer generation can be drastically altered by tuning the reaction conditions. This perspective explores the underlying thermodynamics and kinetics governing radical depolymerization of addition polymers by revisiting pioneering work started in the mid-20th century and demonstrates its connection to exciting recent advances which report depolymerization reaching near-quantitative monomer regeneration at much lower temperatures than seen previously. Recent catalytic approaches to monomer regeneration are also explored, highlighting that this nascent chemistry could potentially revolutionize depolymerization-based polymer recycling in the future.
Collapse
Affiliation(s)
- Victoria Lohmann
- Laboratory of Polymeric Materials, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| | - Glen R Jones
- Laboratory of Polymeric Materials, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| | - Nghia P Truong
- Laboratory of Polymeric Materials, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
- Monash Institute of Pharmaceutical Sciences, Monash University 399 Royal Parade Parkville VIC 3152 Australia
| | - Athina Anastasaki
- Laboratory of Polymeric Materials, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| |
Collapse
|
40
|
Hsu JH, Ball TE, Oh S, Stache EE, Fors BP. Selective Electrocatalytic Degradation of Ether-Containing Polymers. Angew Chem Int Ed Engl 2024; 63:e202316578. [PMID: 38032347 DOI: 10.1002/anie.202316578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/01/2023]
Abstract
Leveraging electrochemistry to degrade robust polymeric materials has the potential to impact society's growing issue of plastic waste. Herein, we develop an electrocatalytic oxidative degradation of polyethers and poly(vinyl ethers) via electrochemically mediated hydrogen atom transfer (HAT) followed by oxidative polymer degradation promoted by molecular oxygen. We investigated the selectivity and efficiency of this method, finding our conditions to be highly selective for polymers with hydridic, electron-rich C-H bonds. We leveraged this reactivity to degrade polyethers and poly(vinyl ethers) in the presence of polymethacrylates and polyacrylates with complete selectivity. Furthermore, this method made polyacrylates degradable by incorporation of ether units into the polymer backbone. We quantified degradation products, identifying up to 36 mol % of defined oxidation products, including acetic acid, formic acid, and acetaldehyde, and we extended this method to degrade a polyether-based polyurethane in a green solvent. This work demonstrates a facile, electrochemically-driven route to degrade polymers containing ether functionalities.
Collapse
Affiliation(s)
- Jesse H Hsu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA
| | - Tyler E Ball
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA
| | - Sewon Oh
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA
| | - Erin E Stache
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Brett P Fors
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
41
|
Mineo AM, Katsumata R. A Versatile Comonomer Additive for Radically Recyclable Vinyl-derived Polymers. Angew Chem Int Ed Engl 2024; 63:e202316248. [PMID: 38029360 DOI: 10.1002/anie.202316248] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/01/2023]
Abstract
Radically-formed, vinyl-derived polymers account for over 30 % of polymer production. Connected through stable carbon-carbon bonds, these materials are notoriously challenging to chemically recycle. Herein, we report universal copolymerization of a cyclic allyl sulfide (CAS) additive with multiple monomers under free-radical conditions, to introduce main-chain dynamic motifs. Backbone allyl sulfides undergo post-polymerization radical rearrangement via addition-fragmentation-transfer (AFT) that fosters both chain scission and extension. Scission is selectively induced through allyl sulfide exchange with small molecule thiyl radicals, resulting in oligomers as low as 14 % of the initial molar mass. Crucially, oligomers retain allyl sulfide end groups, enabling their extension with monomer under radical conditions. Extended, i.e., recycled, product molar mass is tunable through the ratio of monomer to oligomer, and can surpass that of the initial copolymer. Two scission-extension cycles are demonstrated in copolymers with methyl methacrylate and styrene without escalation in dispersity. In illustration of forming higher-value products, i.e., upcycling, we synthesized block copolymers through the extension of oligomers with a different vinyl monomer. Collectively, our approach to chemical recycling is unparalleled in its ability to 1) function in a variety of vinyl-derived polymers, 2) complete radical closed-loop cycling, and 3) upcycle waste material.
Collapse
Affiliation(s)
- Autumn M Mineo
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Reika Katsumata
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
42
|
Kuroda K, Ouchi M. Umpolung Isomerization in Radical Copolymerization of Benzyl Vinyl Ether with Pentafluorophenylacrylate Leading to Degradable AAB Periodic Copolymers. Angew Chem Int Ed Engl 2024; 63:e202316875. [PMID: 37971837 DOI: 10.1002/anie.202316875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
This study revealed that benzyl vinyl ether (BnVE) shows a peculiar isomerization propagation in its radical copolymerization with an electron-deficient acrylate carrying a pentafluorophenyl group (PFA). The co-monomer pair inherently exhibits the cross-over propagation feature due to the large difference in the electron density. However, the radical species of PFA was found to undergo a backward isomerization to the penultimate BnVE pendant giving a benzyl radical species prior to propagation with BnVE. The isomerization brings a drastic change in the character of the growing radical species from electrophilic to nucleophilic, and thus the isomerized benzyl radial species propagates with PFA. Consequently, the two monomers were consumed in the order AAB (A: PFA; B: BnVE) and the unique periodic consumption was confirmed by the pseudo-reactivity ratios calculated by the penultimate model: r11 =0.174 and r21 =6600 for PFA (M1 ) with BnVE (M2 ). The pentafluorophenyl ester groups of the resulting copolymers are transformed into ester and amide groups by post-polymerization alcoholysis and aminolysis modifications. The unique isomerization in the AAB sequence allowed the periodic introduction of a benzyl ether structure in the backbone leading to efficient degradation under acid conditions.
Collapse
Affiliation(s)
- Keita Kuroda
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Makoto Ouchi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
43
|
Chiba Y, Kawatani R, Kohsaka Y. Chemically Recyclable Vinyl Polymers by Free Radical Polymerization of Cyclic Styrene Derivatives. ACS Macro Lett 2023; 12:1672-1676. [PMID: 38010412 DOI: 10.1021/acsmacrolett.3c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
To achieve a sustainable society supported by resource circulation, vinyl monomers that can radically polymerize and be recovered from vinyl polymers (VPs) are desirable. However, the chemical recycling of VPs remains challenging because of the difficulty in quantitative and selective main-chain scission or depolymerization. In this study, VPs of cyclic styrene derivatives, such as 3-methylene phthalide, were investigated to be chemically recyclable. The ring-opening of the pendant groups by saponification enhanced the steric hindrance of the pendants, which resulted in main-chain scission and depolymerization to the monomer precursors. Highly efficient chemical recycling was achieved by suspending the polymer in aqueous KOH. These results facilitate resource circulation toward achieving a sustainable society.
Collapse
Affiliation(s)
- Yota Chiba
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Ryo Kawatani
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Yasuhiro Kohsaka
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
- Research Initiative for Supra-Materials (RISM), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, 4-17-1 Wakasato, Nagano, Nagano 380-8553, Japan
| |
Collapse
|
44
|
Fiandra EF, Shaw L, Starck M, McGurk CJ, Mahon CS. Designing biodegradable alternatives to commodity polymers. Chem Soc Rev 2023; 52:8085-8105. [PMID: 37885416 DOI: 10.1039/d3cs00556a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The development and widespread adoption of commodity polymers changed societal landscapes on a global scale. Without the everyday materials used in packaging, textiles, construction and medicine, our lives would be unrecognisable. Through decades of use, however, the environmental impact of waste plastics has become grimly apparent, leading to sustained pressure from environmentalists, consumers and scientists to deliver replacement materials. The need to reduce the environmental impact of commodity polymers is beyond question, yet the reality of replacing these ubiquitous materials with sustainable alternatives is complex. In this tutorial review, we will explore the concepts of sustainable design and biodegradability, as applied to the design of synthetic polymers intended for use at scale. We will provide an overview of the potential biodegradation pathways available to polymers in different environments, and highlight the importance of considering these pathways when designing new materials. We will identify gaps in our collective understanding of the production, use and fate of biodegradable polymers: from identifying appropriate feedstock materials, to considering changes needed to production and recycling practices, and to improving our understanding of the environmental fate of the materials we produce. We will discuss the current standard methods for the determination of biodegradability, where lengthy experimental timescales often frustrate the development of new materials, and highlight the need to develop better tools and models to assess the degradation rate of polymers in different environments.
Collapse
Affiliation(s)
- Emanuella F Fiandra
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | - Lloyd Shaw
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | - Matthieu Starck
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | | | - Clare S Mahon
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| |
Collapse
|
45
|
Améduri B. Fluoropolymers as Unique and Irreplaceable Materials: Challenges and Future Trends in These Specific Per or Poly-Fluoroalkyl Substances. Molecules 2023; 28:7564. [PMID: 38005292 PMCID: PMC10675016 DOI: 10.3390/molecules28227564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/12/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
In contrast to some low-molar-mass per- and polyfluoroalkyl substances (PFASs), which are well established to be toxic, persistent, bioaccumulative, and mobile, fluoropolymers (FPs) are water-insoluble, safe, bioinert, and durable. These niche high-performance polymers fulfil the 13 polymer-of-low-concern (PLC) criteria in their recommended conditions of use. In addition, more recent innovations (e.g., the use of non-fluorinated surfactants in aqueous radical (co)polymerization of fluoroalkenes) from industrial manufacturers of FPs are highlighted. This review also aims to show how these specialty polymers endowed with outstanding properties are essential (even irreplaceable, since hydrocarbon polymer alternatives used in similar conditions fail) for our daily life (electronics, energy, optics, internet of things, transportation, etc.) and constitute a special family separate from other "conventional" C1-C10 PFASs found everywhere on Earth and its oceans. Furthermore, some information reports on their recycling (e.g., the unzipping depolymerization of polytetrafluoroethylene, PTFE, into TFE), end-of-life FPs, and their risk assessment, circular economy, and regulations. Various studies are devoted to environments involving FPs, though they present a niche volume (with a yearly production of 330,300 t) compared to all plastics (with 460 million t). Complementary to other reviews on PFASs, which lack of such above data, this review presents both fundamental and applied strategies as evidenced by major FP producers.
Collapse
Affiliation(s)
- Bruno Améduri
- Institute Charles Gerhardt, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| |
Collapse
|
46
|
Bellotti V, Wang HS, Truong NP, Simonutti R, Anastasaki A. Temporal Regulation of PET-RAFT Controlled Radical Depolymerization. Angew Chem Int Ed Engl 2023; 62:e202313232. [PMID: 37814385 DOI: 10.1002/anie.202313232] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Indexed: 10/11/2023]
Abstract
A photocatalytic RAFT-controlled radical depolymerization method is introduced for precisely conferring temporal control under visible light irradiation. By regulating the deactivation of the depropagating chains and suppressing thermal initiation, an excellent temporal control was enabled, exemplified by several consecutive "on" and "off" cycles. Minimal, if any, depolymerization could be observed during the dark periods while the polymer chain-ends could be efficiently re-activated and continue to depropagate upon re-exposure to light. Notably, favoring deactivation resulted in the gradual unzipping of polymer chains and a stepwise decrease in molecular weight over time. This synthetic approach constitutes a simple methodology to modulate temporal control during the chemical recycling of RAFT-synthesized polymers while offering invaluable mechanistic insights.
Collapse
Affiliation(s)
- Valentina Bellotti
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg-5, Zurich, 8093, Switzerland
- Department of Material Science, Università di Milano-Bicocca, Via Roberto Cozzi 55, Milan, 20125, Italy
| | - Hyun Suk Wang
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg-5, Zurich, 8093, Switzerland
| | - Nghia P Truong
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg-5, Zurich, 8093, Switzerland
| | - Roberto Simonutti
- Department of Material Science, Università di Milano-Bicocca, Via Roberto Cozzi 55, Milan, 20125, Italy
| | - Athina Anastasaki
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg-5, Zurich, 8093, Switzerland
| |
Collapse
|
47
|
Wang Z, Cui F, Sui Y, Yan J. Radical chemistry in polymer science: an overview and recent advances. Beilstein J Org Chem 2023; 19:1580-1603. [PMID: 37915554 PMCID: PMC10616707 DOI: 10.3762/bjoc.19.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
Radical chemistry is one of the most important methods used in modern polymer science and industry. Over the past century, new knowledge on radical chemistry has both promoted and been generated from the emergence of polymer synthesis and modification techniques. In this review, we discuss radical chemistry in polymer science from four interconnected aspects. We begin with radical polymerization, the most employed technique for industrial production of polymeric materials, and other polymer synthesis involving a radical process. Post-polymerization modification, including polymer crosslinking and polymer surface modification, is the key process that introduces functionality and practicality to polymeric materials. Radical depolymerization, an efficient approach to destroy polymers, finds applications in two distinct fields, semiconductor industry and environmental protection. Polymer chemistry has largely diverged from organic chemistry with the fine division of modern science but polymer chemists constantly acquire new inspirations from organic chemists. Dialogues on radical chemistry between the two communities will deepen the understanding of the two fields and benefit the humanity.
Collapse
Affiliation(s)
- Zixiao Wang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Rd., Shanghai, 201210, China
| | - Feichen Cui
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Rd., Shanghai, 201210, China
| | - Yang Sui
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Rd., Shanghai, 201210, China
| | - Jiajun Yan
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Rd., Shanghai, 201210, China
| |
Collapse
|
48
|
Parkatzidis K, Truong NP, Matyjaszewski K, Anastasaki A. Photocatalytic ATRP Depolymerization: Temporal Control at Low ppm of Catalyst Concentration. J Am Chem Soc 2023; 145:21146-21151. [PMID: 37737835 PMCID: PMC10557129 DOI: 10.1021/jacs.3c05632] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Indexed: 09/23/2023]
Abstract
A photocatalytic ATRP depolymerization is introduced that significantly suppresses the reaction temperature from 170 to 100 °C while enabling temporal regulation. In the presence of low-toxicity iron-based catalysts and under visible light irradiation, near-quantitative monomer recovery could be achieved (up to 90%), albeit with minimal temporal control. By employing ppm concentrations of either FeCl2 or FeCl3, the depolymerization during the dark periods could be completely eliminated, thus enabling temporal control and the possibility to modulate the rate by simply turning the light "on" and "off". Notably, our approach allowed preservation of the end-group fidelity throughout the reaction, could be carried out at high polymer loadings (up to 2M), and was compatible with various polymers and light sources. This methodology provides a facile, environmentally friendly, and temporally regulated route to chemically recycle ATRP-synthesized polymers, thus opening the door for further opportunities.
Collapse
Affiliation(s)
- Kostas Parkatzidis
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich 8093, Switzerland
| | - Nghia P. Truong
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich 8093, Switzerland
| | - Krzysztof Matyjaszewski
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Athina Anastasaki
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich 8093, Switzerland
| |
Collapse
|
49
|
Deng Z, Gillies ER. Emerging Trends in the Chemistry of End-to-End Depolymerization. JACS AU 2023; 3:2436-2450. [PMID: 37772181 PMCID: PMC10523501 DOI: 10.1021/jacsau.3c00345] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 09/30/2023]
Abstract
Over the past couple of decades, polymers that depolymerize end-to-end upon cleavage of their backbone or activation of a terminal functional group, sometimes referred to as "self-immolative" polymers, have been attracting increasing attention. They are of growing interest in the context of enhancing polymer degradability but also in polymer recycling as they allow monomers to be regenerated in a controlled manner under mild conditions. Furthermore, they are highly promising for applications as smart materials due to their ability to provide an amplified response to a specific signal, as a single sensing event is translated into the generation of many small molecules through a cascade of reactions. From a chemistry perspective, end-to-end depolymerization relies on the principles of self-immolative linkers and polymer ceiling temperature (Tc). In this article, we will introduce the key chemical concepts and foundations of the field and then provide our perspective on recent exciting developments. For example, over the past few years, new depolymerizable backbones, including polyacetals, polydisulfides, polyesters, polythioesters, and polyalkenamers, have been developed, while modern approaches to depolymerize conventional backbones such as polymethacrylates have also been introduced. Progress has also been made on the topological evolution of depolymerizable systems, including the introduction of fully depolymerizable block copolymers, hyperbranched polymers, and polymer networks. Furthermore, precision sequence-defined oligomers have been synthesized and studied for data storage and encryption. Finally, our perspectives on future opportunities and challenges in the field will be discussed.
Collapse
Affiliation(s)
- Zhengyu Deng
- Department
of Chemistry, The University of Western
Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
| | - Elizabeth R. Gillies
- Department
of Chemistry, The University of Western
Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
- Department
of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B9, Canada
| |
Collapse
|
50
|
Häfliger F, Truong NP, Wang HS, Anastasaki A. Fate of the RAFT End-Group in the Thermal Depolymerization of Polymethacrylates. ACS Macro Lett 2023; 12:1207-1212. [PMID: 37615956 PMCID: PMC10515620 DOI: 10.1021/acsmacrolett.3c00418] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/21/2023] [Indexed: 08/25/2023]
Abstract
Thermal RAFT depolymerization has recently emerged as a promising methodology for the chemical recycling of polymers. However, while much attention has been given to the regeneration of monomers, the fate of the RAFT end-group after depolymerization has been unexplored. Herein, we identify the dominant small molecules derived from the RAFT end-group of polymethacrylates. The major product was found to be a unimer (DP = 1) RAFT agent, which is not only challenging to synthesize using conventional single-unit monomer insertion strategies, but also a highly active RAFT agent for methyl methacrylate, exhibiting faster consumption and yielding polymers with lower dispersities compared to the original, commercially available 2-cyano-2-propyl dithiobenzoate. Solvent-derived molecules were also identified predominantly at the beginning of the depolymerization, thus suggesting a significant mechanistic contribution from the solvent. Notably, the formation of both the unimer and the solvent-derived products remained consistent regardless of the RAFT agent, monomer, or solvent employed.
Collapse
Affiliation(s)
- Florian Häfliger
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - Nghia P. Truong
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
- Monash
Institute of Pharmaceutical Sciences, Monash
University, 399 Royal
Parade, Parkville, VIC 3152, Australia
| | - Hyun Suk Wang
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - Athina Anastasaki
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| |
Collapse
|