1
|
Drennhaus T, Birschel J, Daniliuc CG, Leifert D, Studer A. Radical Addition to 2-Allenylaryl Isocyanides for the Preparation of 2,3-Difunctionalized Quinolines. Org Lett 2025. [PMID: 40423735 DOI: 10.1021/acs.orglett.5c01436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
2-Allenylaryl isocyanides are presented as a novel platform to construct quinolines carrying various substituents in positions 2 and 3 via radical addition cyclization cascades. Carbon-, sulfur-, and tin-centered radicals add to the isonitrile functionality to generate the corresponding imidoyl radicals, which undergo 6-exo-cyclization onto the ortho-allenyl moiety. The newly generated benzylic radicals are either reduced or cyanated. In the latter case, enantioselective trapping is achieved.
Collapse
Affiliation(s)
- Till Drennhaus
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, 48149 Münster Germany
| | - Jens Birschel
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, 48149 Münster Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, 48149 Münster Germany
| | - Dirk Leifert
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, 48149 Münster Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, 48149 Münster Germany
| |
Collapse
|
2
|
Wang J, Wang X, Yao C, Xu J, Wang D, Zhao X, Li X, Liu J, Hong W. Interface Phenomena in Molecular Junctions through Noncovalent Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:5705-5735. [PMID: 40009872 DOI: 10.1021/acs.langmuir.4c04865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Noncovalent interactions, both between molecules and at the molecule-electrode interfaces, play essential roles in enabling dynamic and reversible molecular behaviors, including self-assembly, recognition, and various functional properties. In macroscopic ensemble systems, these interfacial phenomena often exhibit emergent properties that arise from the synergistic interplay of multiple noncovalent interactions. However, at the single-molecule scale, precisely distinguishing, characterizing, and controlling individual noncovalent interactions remains a significant challenge. Molecular electronics offers a unique platform for constructing and characterizing both intermolecular and molecule-electrode interfaces governed by noncovalent interactions, enabling the isolated study of these fundamental interactions. Furthermore, precise control over these interfaces through noncovalent interactions facilitates the development of enhanced molecular devices. This review examines the characterization of interfacial phenomena arising from noncovalent interactions through single-molecule electrical measurements and explores their applications in molecular devices. We begin by discussing the construction of stable molecular junctions through intermolecular and molecule-electrode interfaces, followed by an analysis of electron tunneling mechanisms mediated by key noncovalent interactions and their modulation methods. We then investigate how noncovalent interactions enhance device sensitivity, stability, and functionality, establishing design principles for next-generation molecular electronics. We have also explored the potential of noncovalent interactions for bottom-up self-assembled molecular devices. The review concludes by addressing the opportunities and challenges in scaling up molecular electronics through noncovalent interactions.
Collapse
Affiliation(s)
- Jia Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Xiaojing Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Chengpeng Yao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Jizhe Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Dongdong Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Xin Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Xiaohui Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| |
Collapse
|
3
|
Brango-Vanegas J, Leite ML, Macedo MLR, Cardoso MH, Franco OL. Capping motifs in antimicrobial peptides and their relevance for improved biological activities. Front Chem 2024; 12:1382954. [PMID: 38873409 PMCID: PMC11169826 DOI: 10.3389/fchem.2024.1382954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
N-capping (N-cap) and C-capping (C-cap) in biologically active peptides, including specific amino acids or unconventional group motifs, have been shown to modulate activity against pharmacological targets by interfering with the peptide's secondary structure, thus generating unusual scaffolds. The insertion of capping motifs in linear peptides has been shown to prevent peptide degradation by reducing its susceptibility to proteolytic cleavage, and the replacement of some functional groups by unusual groups in N- or C-capping regions in linear peptides has led to optimized peptide variants with improved secondary structure and enhanced activity. Furthermore, some essential amino acid residues that, when placed in antimicrobial peptide (AMP) capping regions, are capable of complexing metals such as Cu2+, Ni2+, and Zn2+, give rise to the family known as metallo-AMPs, which are capable of boosting antimicrobial efficacy, as well as other activities. Therefore, this review presents and discusses the different strategies for creating N- and C-cap motifs in AMPs, aiming at fine-tuning this class of antimicrobials.
Collapse
Affiliation(s)
- José Brango-Vanegas
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Michel Lopes Leite
- Departamento de Biologia Molecular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, Brazil
| | - Maria L. R. Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande, Brazil
| | - Marlon H. Cardoso
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| |
Collapse
|
4
|
Ren L, Lu X, Li W, Yan J, Whittaker AK, Zhang A. Thermoresponsive Helical Dendronized Poly(phenylacetylene)s: Remarkable Stabilization of Their Helicity via Photo-Dimerization of the Dendritic Pendants. J Am Chem Soc 2023. [PMID: 37922243 DOI: 10.1021/jacs.3c09333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Dynamic helical polymers can change their helicity according to external stimuli due to the low helix-inversion barriers, while helicity stabilization for polymers is important for applications in chiral recognition or chiral separations. Here, we present a convenient methodology to stabilize dynamic helical conformations of polymers through intramolecular cross-linking. Thermoresponsive dendronized poly(phenylacetylene)s (PPAs) carrying 3-fold dendritic oligoethylene glycol pendants containing cinnamate moieties were synthesized. These polymers exhibit typical features of dynamic helical structures in different solvents, that is, racemic contracted conformations in less polar organic solvents and predominantly one-handed stretched helical conformations in highly polar solvents. This dynamic helicity can be enhanced through selective solvation by increasing the polarity of the organic solvents or simply via their thermally mediated dehydration in water. However, through photocycloaddition of the cinnamate moieties between the neighboring pendants via UV irradiation, these dendronized PPAs adopt stable helical conformations either below or above their phase transition temperatures in water, and their helical conformations can even be retained in less polar organic solvents. Spectroscopic and atomic force microscopy measurements demonstrate that photocycloaddition between the cinnamate moieties occurs on the individual molecular level, and this is found to be helpful in restraining the photodegradation of the PPA backbones. Molecular dynamics simulations reveal that the spatial orientation of the pendants along the rigid polyene backbone is crucial for the photodimerization of cinnamates within one helix pitch.
Collapse
Affiliation(s)
- Liangxuan Ren
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science & Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Xueting Lu
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science & Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Wen Li
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science & Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Jiatao Yan
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science & Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Afang Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science & Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| |
Collapse
|
5
|
Kanbayashi N, Narukawa M, Onitsuka K. Facile End-Functionalization of Poly(Quinolylene-2,3-Methylene) Using the Terminal Palladium Complex: Thiocarbonylation through Formation of an Acyl Palladium Complex at the Polymer Terminal. Macromol Rapid Commun 2023; 44:e2300251. [PMID: 37357765 DOI: 10.1002/marc.202300251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/29/2023] [Indexed: 06/27/2023]
Abstract
The end-functionalization of poly(quinolylene-2,3-methylene)s (PQM) via thiocarbonylation is successfully achieved by forming an acyl palladium complex. The terminal palladium complex of the PQMs synthesized by living cyclocopolymerization of o-allenylaryl isocyanide is quantitatively converted to a tractable acyl palladium complex through the carbon monoxide insertion into a palladium-carbon bond. The resulting acyl palladium complex exhibits high reactivity toward thiols, thereby enabling the introduction of various substituents at the ω-chain end of PQM by selectively converting them to thioester groups. The one-pot procedure enables the arbitrary control of both terminal structures of PQMs, including the synthesis of multi-armed block copolymers and a triblock polymer. Additionally, the resulting thioester groups can serve as reactive sites and be converted into amide groups using amines. The new end-functionalization method has the potential to be applied not only to the synthesis of PQM but also to other polymerization reactions using transition-metal complexes, and can lead to a wide range of developments in polymer synthesis.
Collapse
Affiliation(s)
- Naoya Kanbayashi
- Department of Macromolecular Science Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Manami Narukawa
- Department of Macromolecular Science Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Kiyotaka Onitsuka
- Department of Macromolecular Science Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
6
|
Rathore R, Abdelwahed SH. Design and Synthesis of Cofacially-Arrayed Polyfluorene Wires for Electron and Energy Transfer Studies. Molecules 2023; 28:molecules28093717. [PMID: 37175127 PMCID: PMC10180040 DOI: 10.3390/molecules28093717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
A study of cofacially arrayed π-systems is of particular importance for the design of functional materials for efficient long-range intra-chain charge transfer through the bulk semiconducting materials in the layers of photovoltaic devices. The effect of π-stacking between a pair of aromatic rings has been mainly studied in the form of cyclophanes, where aromatic rings are forced into a sandwich-like geometry, which extensively deforms the aromatic rings from planarity. The synthetic difficulties associated with the preparation of cyclophane-like structures has prevented the synthesis of many examples of their multi-layered analogues. Moreover, the few available multi-layered cyclophanes are not readily amenable to the structural modification required for the construction of D-spacer-A triads needed to explore mechanisms of electron and energy transfer. In this review, we recount how a detailed experimental and computational analysis of 1,3-diarylalkanes led to the design of a new class of cofacially arrayed polyfluorenes that retain their π-stacked structure. Thus, efficient synthetic strategies have been established for the ready preparation of monodisperse polyfluorenes with up to six π-stacked fluorenes, which afford ready access to D-spacer-A triads by linking donor and acceptor groups to the polyfluorene spacers via single methylenes. Detailed 1H NMR spectroscopy, X-ray crystallography, electrochemistry, and He(I) photoelectron spectroscopy of F2-F6 have confirmed the rigid cofacial stacking of multiple fluorenes in F2-F6, despite the presence of rotatable C-C bonds. These polyfluorenes (F2-F6) form stable cation radicals in which a single hole is delocalized amongst the stacked fluorenes, as judged by the presence of intense charge-resonance transition in their optical spectra. Interestingly, these studies also discern that delocalization of a single cationic charge could occur over multiple fluorene rings in F2-F6, while the exciton is likely localized only onto two fluorenes in F2-F6. Facile synthesis of the D-spacer-A triads allowed us to demonstrate that efficient triplet energy transfer can occur through π-stacked polyfluorenes; the mechanism of energy transfer crosses over from tunneling to hopping with increasing number of fluorenes in the polyfluorene spacer. We suggest that the development of rigidly held π-stacked polyfluorenes, described herein, with well-defined redox and optoelectronic properties provides an ideal scaffold for the study of electron and energy transfer in D-spacer-A triads, where the Fn spacers serve as models for cofacially stacked π-systems.
Collapse
Affiliation(s)
- Rajendra Rathore
- Department of Chemistry, Marquette University, Milwaukee, WI 53233, USA
| | - Sameh H Abdelwahed
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA
| |
Collapse
|
7
|
Xu L, Wu YJ, Gao RT, Li SY, Liu N, Wu ZQ. Visible Helicity Induction and Memory in Polyallene toward Circularly Polarized Luminescence, Helicity Discrimination, and Enantiomer Separation. Angew Chem Int Ed Engl 2023; 62:e202217234. [PMID: 36745050 DOI: 10.1002/anie.202217234] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/07/2023]
Abstract
Inspired by biological helices (e.g., DNA), artificial helical polymers have attracted intense attention. However, precise synthesis of one-handed helices from achiral materials remains a formidable challenge. Herein, a series of achiral poly(biphenyl allene)s with controlled molar mass and low dispersity were prepared and induced into one-handed helices using chiral amines and alcohols. The induced one-handed helix was simultaneously memorized, even after the chiral inducer was removed. The switchable induction processes were visible to naked eye; the achiral polymers exhibited blue emission (irradiated at 365 nm), whereas the induced one-handed helices exhibited cyan emission with clear circularly polarized luminescence. The induced helices formed stable gels in various solvents with helicity discrimination ability: the same-handed helix gels were self-healing, whereas the gels of opposite-handed helicity were self-sorted. Moreover, the induced helices could separate enantiomers via enantioselective crystallization with high efficiency and switchable enantioselectivity.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.,Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| | - Yong-Jie Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui Province, 230009, China
| | - Run-Tan Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Shi-Yi Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Na Liu
- The School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin, 130021, P. R. China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
8
|
Bai H, Han L, Wang X, Yan H, Leng H, Chen S, Ma H. Anion Migrated Ring Opening and Rearrangement in Anionic Polymerization Induced C7 and C8 Polymerizations. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hongyuan Bai
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Li Han
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xuefei Wang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hong Yan
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Haitao Leng
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Siwei Chen
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hongwei Ma
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
9
|
Kumar G, Kumar M, Bhalla V. Controlling the Transition of Nanospheres to Superhelices in Aqueous Media by Using a “Smart” Pyrazine Building Block. Angew Chem Int Ed Engl 2022; 61:e202207416. [DOI: 10.1002/anie.202207416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Gaurav Kumar
- Department of Chemistry UGC Centre of Advance Study-II Guru Nanak Dev University Amritsar 143005, Punjab India
| | - Manoj Kumar
- Department of Chemistry UGC Centre of Advance Study-II Guru Nanak Dev University Amritsar 143005, Punjab India
| | - Vandana Bhalla
- Department of Chemistry UGC Centre of Advance Study-II Guru Nanak Dev University Amritsar 143005, Punjab India
| |
Collapse
|
10
|
Kumar G, Kumar M, Bhalla V. Controlling the Transition of Nanospheres to Superhelices in Aqueous Media by Using a ‘Smart’ Pyrazine Building Block. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Gaurav Kumar
- Guru Nanak Dev University Department of Chemistry INDIA
| | - Manoj Kumar
- Guru Nanak Dev University Department of Chemistry INDIA
| | - Vandana Bhalla
- Guru Nanak Dev University, Amritsar Chemistry Assistant Professor, Department of Chemistry,Guru Nanak Dev University, AmritsarPunjab 143005 AMRITSAR INDIA
| |
Collapse
|
11
|
Kanbayashi N, Yamazaki K, Nishio M, Onitsuka K. Synthesis Methodology of End-Functionalized Poly(quinolylene-2,3-methylene)s: Living Cyclocopolymerization Using Aryl Palladium Initiators Conveniently Prepared from Versatile Aryl Halide. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Naoya Kanbayashi
- Department of Macromolecular Science Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Kazuki Yamazaki
- Department of Macromolecular Science Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Miho Nishio
- Department of Macromolecular Science Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Kiyotaka Onitsuka
- Department of Macromolecular Science Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|