1
|
Ali‐Rachedi F, Xavier NM, Yue X, Chambert S, Liu F, Abbott LC, Moore JN, Zeng X, Cowling SJ, Queneau Y, Goodby JW. The Unusual Mesophases and Properties Exhibited by a Family of Glycosteroids. Chemistry 2025; 31:e202403678. [PMID: 39821943 PMCID: PMC11840659 DOI: 10.1002/chem.202403678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/14/2024] [Accepted: 01/10/2025] [Indexed: 01/19/2025]
Abstract
In this article we describe research on the synthesis and characterization of a family of "Janus" amphiphiles composed of disaccharide head groups and alkaloid units joined together via a methylene linker, and bearing a lateral aliphatic chain of varying length. The condensed phases formed by self-organization of the products as a function of temperature were characterized by differential scanning calorimetry, thermal polarized light microscopy, and small angle X-ray scattering, allied with computational modelling and simulations. Structural studies on heating specimens from the solid showed that some homologues exhibited lamellar, columnar and bicontinuous mesophases, whereas the same homologues revealed different phase sequences on cooling from the amorphous liquid. We explore these unusual results, which are revealed via supercooling.
Collapse
Affiliation(s)
- Fahima Ali‐Rachedi
- INSA Lyon, Universite Claude Bernard Lyon 1CNRSCPE-LyonICBMSUMR 5246Bâtiment Lederer1 Rue Victor GrignardF-69622VilleurbanneFrance
- Faculty of Science and TechnologyUniv Souk Ahras41000Souk AhrasPB 1553Algeria
- Laboratory of Sciences and Technology of Water and Environment LSTWE41000Souk AhrasAlgeria
| | - Nuno M. Xavier
- INSA Lyon, Universite Claude Bernard Lyon 1CNRSCPE-LyonICBMSUMR 5246Bâtiment Lederer1 Rue Victor GrignardF-69622VilleurbanneFrance
- Centro de Química Estrutural, Institute of Molecular SciencesFaculdade de CiênciasUniversidade de LisboaEd. C8, 5° Piso, Campo Grande1749-016LisboaPortugal
| | - Xiaoyang Yue
- INSA Lyon, Universite Claude Bernard Lyon 1CNRSCPE-LyonICBMSUMR 5246Bâtiment Lederer1 Rue Victor GrignardF-69622VilleurbanneFrance
- present address: School of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300401P. R. China
| | - Stéphane Chambert
- INSA Lyon, Universite Claude Bernard Lyon 1CNRSCPE-LyonICBMSUMR 5246Bâtiment Lederer1 Rue Victor GrignardF-69622VilleurbanneFrance
| | - Feng Liu
- Department of Materials Science and EngineeringUniversity of SheffieldMappin StreetSheffieldS1 3JDUK
- Shaanxi International Research Center for Soft MatterState Key Laboratory for Mechanical Behaviour of MaterialsXi'an Jiaotong UniversityXi An ShiXi'an710049P. R. China
| | | | - John N. Moore
- Department of ChemistryThe University of YorkYorkYO10 5DDUK
| | - Xiangbing Zeng
- Department of Materials Science and EngineeringUniversity of SheffieldMappin StreetSheffieldS1 3JDUK
| | | | - Yves Queneau
- INSA Lyon, Universite Claude Bernard Lyon 1CNRSCPE-LyonICBMSUMR 5246Bâtiment Lederer1 Rue Victor GrignardF-69622VilleurbanneFrance
| | - John W. Goodby
- Department of ChemistryThe University of YorkYorkYO10 5DDUK
| |
Collapse
|
2
|
Cao Y, Zhao Y, Tan T, Liu F, Alaasar M. Manipulation of Supramolecular Chirality in Bicontinuous Networks of Bent-Shaped Polycatenar Dimers. Chemistry 2025; 31:e202403586. [PMID: 39431520 DOI: 10.1002/chem.202403586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 10/22/2024]
Abstract
Bicontinuous cubic liquid crystalline (LC) phases are of particular interest due their possible applications in electronic devices and special supramolecular chirality. Herein, we report the design and synthesis of first examples of achiral bent-shaped polycatenar dimers, capable of displaying mirror symmetry breaking in their cubic and isotropic liquid phases. The molecules have a taper-shaped 3,4,5-trialkoxybenzoate segment connected to rod-like building unit terminated with one terminal flexible chain. The two segments were connected using an aliphatic spacer with seven methylene units to induce bending of the whole structure. Investigated by the small-angle X-ray scattering (SAXS), a double network achiral cubic phase Cub/Ia3 ‾ ${\bar{3}}$ d, which is a meso-structure, and a chiral triple network cubic phase Cub/I23[*] are formed. The molecules self-assemble into molecular helices and progress along the networks. Interestingly, different linking groups such as ester or azo linkages and core fluorination lead to distinct local helicity, resulting in an alkyl chain volume dependent phase transition sequence Ia3 ‾ ${\bar{3}}$ d(L) - I23* - Ia3 ‾ ${\bar{3}}$ d(S). The re-entry of Ia3 ‾ ${\bar{3}}$ d phase and loss of supramolecular chirality is attributed to the delicate influence of steric effect at the mono-substitute end and interhelix interaction. Besides, aromatic core fluorination was proved to be a successful tool stabilizing the cubic phases in these dimers.
Collapse
Affiliation(s)
- Yu Cao
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangzhou, 510641, China
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yangyang Zhao
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Tianyi Tan
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Feng Liu
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Mohamed Alaasar
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Street 2, Halle, 069120, Germany
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
3
|
Wang Y, Yang S, Li Y, Cao Y, Liu F, Zeng X, Cseh L, Ungar G. Supertwisted Chiral Gyroid Mesophase in Chiral Rod-Like Compounds. Angew Chem Int Ed Engl 2024; 63:e202403156. [PMID: 38566540 PMCID: PMC11497307 DOI: 10.1002/anie.202403156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
Among the intriguing bicontinuous self-assembled structures, the gyroid cubic is the most ubiquitous. It is found in block and star polymers, surfactants with or without solvent, in thermotropic liquid crystals with end- or side-chains, and in biosystems providing structural color and modelling cell mitosis. It contains two interpenetrating networks of opposite chirality and is thus achiral if, as usual, the content of the two nets is the same. However, we now find that this is not the case for strongly chiral compounds. While achiral molecules follow the opposite twists of nets 1 and 2, molecules with a chiral center in their rod-like core fail to follow the 70° twist between junctions in net 2 and instead wind against it by -110° to still match the junction orientation. The metastable chiral gyroid is a high-entropy high-heat-capacity mesophase. The homochirality of its nets makes the CD signal of the thienofluorenone compounds close to that in the stable I23 phase with 3 isochiral nets.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory for Mechanical Behaviour of MaterialsShaanxi International Research Center for Soft MatterXi'an Jiaotong University710049Xi'anChina
| | - Shu‐Gui Yang
- State Key Laboratory for Mechanical Behaviour of MaterialsShaanxi International Research Center for Soft MatterXi'an Jiaotong University710049Xi'anChina
| | - Ya‐Xin Li
- School of Chemistry and Chemical EngineeringHenan University of Technology450001ZhengzhouChina
| | - Yu Cao
- State Key Laboratory for Mechanical Behaviour of MaterialsShaanxi International Research Center for Soft MatterXi'an Jiaotong University710049Xi'anChina
| | - Feng Liu
- State Key Laboratory for Mechanical Behaviour of MaterialsShaanxi International Research Center for Soft MatterXi'an Jiaotong University710049Xi'anChina
| | - Xiang‐Bing Zeng
- Department of Materials Science and EngineeringUniversity of SheffieldS1 3JDSheffieldUK
| | - Liliana Cseh
- Romanian AcademyCoriolan Dragulescu Institute of Chemistry300223TimisoaraRomania
| | - Goran Ungar
- State Key Laboratory for Mechanical Behaviour of MaterialsShaanxi International Research Center for Soft MatterXi'an Jiaotong University710049Xi'anChina
- Department of Materials Science and EngineeringUniversity of SheffieldS1 3JDSheffieldUK
| |
Collapse
|
4
|
Liu ZF, Ye XY, Chen L, Niu LY, Jin WJ, Zhang S, Yang QZ. Spontaneous Symmetry Breaking of Achiral Molecules Leading to the Formation of Homochiral Superstructures that Exhibit Mechanoluminescence. Angew Chem Int Ed Engl 2024; 63:e202318856. [PMID: 38169084 DOI: 10.1002/anie.202318856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/05/2024]
Abstract
Chirality, with its intrinsic symmetry-breaking feature, is frequently utilized in the creation of acentric crystalline functional materials that exhibit intriguing optoelectronic properties. On the other hand, the development of chiral crystals from achiral molecules offers a solution that bypasses the need for enantiopure motifs, presenting a promising alternative and thereby expanding the possibilities of the self-assembly toolkit. Nevertheless, the rational design of achiral molecules that prefer spontaneous symmetry breaking during crystallization has so far been obscure. In this study, we present a series of six achiral molecules, demonstrating that when these conformationally flexible molecules adopt a cis-conformation and engage in multiple non-covalent interactions along a helical path, they collectively self-assemble into chiral superstructures consisting of single-handed supramolecular columns. When these homochiral supramolecular columns align in parallel, they form polar crystals that exhibit intense luminescence upon grinding or scraping. We therefore demonstrate our molecular design strategy could significantly increase the likelihood of symmetry breaking in achiral molecular synthons during self-assembly, offering a facile access to novel chiral crystalline materials with unique optoelectronic properties.
Collapse
Affiliation(s)
- Zheng-Fei Liu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xin-Yi Ye
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Lihua Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Li-Ya Niu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Wei Jun Jin
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Shaodong Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Qing-Zheng Yang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
5
|
Zuo Y, Liu X, Fu E, Zhang S. A Pair of Interconverting Cages Formed from Achiral Precursors Spontaneously Resolve into Homochiral Conformers. Angew Chem Int Ed Engl 2023; 62:e202217225. [PMID: 36748582 DOI: 10.1002/anie.202217225] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/08/2023]
Abstract
Without chiral induction the emergence of homochirality from achiral molecules is rather serendipitous, as the rationale is somewhat ambiguous. We herein provide a plausible solution. From achiral precursors are formed a pair of interconverting cage conformers that exhibit a C3 -axis as the only symmetry element. When their interconversion is impeded with intramolecular H-bonding, each conformer self-sorts into a homochiral crystal, which is driven by a helical network of multivalent intermolecular interactions during the self-assembly of homochiral cage conformers. As no chiral induction is involved throughout, we believe our study could enlighten the rational design for the emergence of homochirality with several criteria: 1) formation of a molecule without inversion center or mirror plane; 2) suppression of the enantiomeric interconversion, and introduction of multivalent interactions along the helical trajectory of screw symmetry within the resulting superstructure.
Collapse
Affiliation(s)
- Yong Zuo
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaoning Liu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Enguang Fu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shaodong Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
6
|
Shao Y, Han D, Tao Y, Feng F, Han G, Hou B, Liu H, Yang S, Fu Q, Zhang WB. Leveraging Macromolecular Isomerism for Phase Complexity in Janus Nanograins. ACS CENTRAL SCIENCE 2023; 9:289-299. [PMID: 36844495 PMCID: PMC9951285 DOI: 10.1021/acscentsci.2c01405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Indexed: 06/18/2023]
Abstract
It remains intriguing whether macromolecular isomerism, along with competing molecular interactions, could be leveraged to create unconventional phase structures and generate considerable phase complexity in soft matter. Herein, we report the synthesis, assembly, and phase behaviors of a series of precisely defined regioisomeric Janus nanograins with distinct core symmetry. They are named B2DB2 where B stands for iso-butyl-functionalized polyhedral oligomeric silsesquioxanes (POSS) and D stands for dihydroxyl-functionalized POSS. While BPOSS prefers crystallization with a flat interface, DPOSS prefers to phase-separate from BPOSS. In solution, they form 2D crystals owing to strong BPOSS crystallization. In bulk, the subtle competition between crystallization and phase separation is strongly influenced by the core symmetry, leading to distinct phase structures and transition behaviors. The phase complexity was understood based on their symmetry, molecular packing, and free energy profiles. The results demonstrate that regioisomerism could indeed generate profound phase complexity.
Collapse
Affiliation(s)
- Yu Shao
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Polymer
Chemistry & Physics of Ministry of Education, College of Chemistry
and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beijing 100871, China
| | - Di Han
- College
of Polymer Science & Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yangdan Tao
- College
of Polymer Science & Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Fengfeng Feng
- Center
for Advanced Low-Dimension Materials, State Key Laboratory for Modification
of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
| | - Ge Han
- College
of Polymer Science & Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Bo Hou
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Polymer
Chemistry & Physics of Ministry of Education, College of Chemistry
and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beijing 100871, China
| | - Hao Liu
- Center
for Advanced Low-Dimension Materials, State Key Laboratory for Modification
of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
| | - Shuguang Yang
- Center
for Advanced Low-Dimension Materials, State Key Laboratory for Modification
of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
| | - Qiang Fu
- College
of Polymer Science & Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Wen-Bin Zhang
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Polymer
Chemistry & Physics of Ministry of Education, College of Chemistry
and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Liu ZF, Ren J, Li P, Niu LY, Liao Q, Zhang S, Yang QZ. Circularly Polarized Laser Emission from Homochiral Superstructures based on Achiral Molecules with Conformal Flexibility. Angew Chem Int Ed Engl 2023; 62:e202214211. [PMID: 36374590 DOI: 10.1002/anie.202214211] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 11/16/2022]
Abstract
Without external chiral intervention, it is a challenge to form homochirality from achiral molecules with conformational flexibility. We here report on a rational strategy that uses multivalent noncovalent interactions to clamp the molecular conformations of achiral D-A molecules. These interactions overcome the otherwise dominant dipole-dipole interactions and thus disfavor their symmetric antiparallel stacking. It in turn facilitates parallel packing, leading to spontaneous symmetry breaking during crystallization and thus the formation of homochiral conglomerates. When this emergent homochirality is coupled with optical gain characteristics of the molecules, the homochiral crystals are explored as excellent circularly polarized micro-lasers with low lasing threshold (16.4 μJ cm-2 ) and high dissymmetry factor glum (0.9). This study therefore provides a facile design strategy for supramolecular chiral materials and active laser ones without the necessity of intrinsic chiral element.
Collapse
Affiliation(s)
- Zheng-Fei Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Jiahuan Ren
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Pan Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Li-Ya Niu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Qing Liao
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Shaodong Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Qing-Zheng Yang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
8
|
Alaasar M, Cao Y, Liu Y, Liu F, Tschierske C. Switching Chirophilic Self-assembly: From meso-structures to Conglomerates in Liquid and Liquid Crystalline Network Phases of Achiral Polycatenar Compounds. Chemistry 2022; 28:e202201857. [PMID: 35866649 PMCID: PMC10092095 DOI: 10.1002/chem.202201857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 11/12/2022]
Abstract
Spontaneous generation of chirality from achiral molecules is a contemporary research topic with numerous implications for technological applications and for the understanding of the development of homogeneous chirality in biosystems. Herein, a series of azobenzene based rod-like molecules with an 3,4,5-trialkylated end and a single n-alkyl chain involving 5 to 20 aliphatic carbons at the opposite end is reported. Depending on the chain length and temperature these achiral molecules self-assemble into a series of liquid and liquid crystalline (LC) helical network phases. A chiral isotropic liquid (Iso1 [ *] ) and a cubic triple network phase with chiral I23 lattice were found for the short chain compounds, whereas non-cubic and achiral cubic phases dominate for the long chain compounds. Among them a mesoscale conglomerate with I23 lattice, a tetragonal phase (Tetbi ) containing one chirality synchronized and one non-synchronized achiral network, an achiral double network meso-structure with Ia3 ‾ $\bar 3$ d space group and an achiral percolated isotropic liquid mesophase (Iso1 ) were found. This sequence is attributed to an increasing strength of chirality synchronization between the networks, combined with a change of the preferred mode of chirophilic self-assembly between the networks, switching from enantiophilic to enantiophobic with decreasing chain length and lowering temperature. These nanostructured and mirror symmetry broken LC phases exist over wide temperature ranges which is of interest for potential applications in chiral and photosensitive functional materials derived from achiral compounds.
Collapse
Affiliation(s)
- Mohamed Alaasar
- Institute of ChemistryMartin-Luther University Halle-WittenbergKurt-Mothes Str. 2D-06120Halle/SaaleGermany
- Department of ChemistryFaculty of ScienceCairo UniversityP.O.12613GizaEgypt
| | - Yu Cao
- Shaanxi International Research Center for Soft MatterState Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi An ShiXi'an710049P. R. China
| | - Yan Liu
- Shaanxi International Research Center for Soft MatterState Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi An ShiXi'an710049P. R. China
- Wanhua Chemical Group Co Ltd.Yantai265505P. R. China
| | - Feng Liu
- Shaanxi International Research Center for Soft MatterState Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi An ShiXi'an710049P. R. China
| | - Carsten Tschierske
- Institute of ChemistryMartin-Luther University Halle-WittenbergKurt-Mothes Str. 2D-06120Halle/SaaleGermany
| |
Collapse
|
9
|
Yi M, Wang F, Tan W, Hsieh JT, Egelman EH, Xu B. Enzyme Responsive Rigid-Rod Aromatics Target "Undruggable" Phosphatases to Kill Cancer Cells in a Mimetic Bone Microenvironment. J Am Chem Soc 2022; 144:13055-13059. [PMID: 35849554 PMCID: PMC9339482 DOI: 10.1021/jacs.2c05491] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bone metastasis remains a challenge in cancer treatment. Here we show enzymatic responsive rigid-rod aromatics acting as the substrates of "undruggable" phosphatases to kill cancer cells in a mimetic bone microenvironment. By phosphorylation and conjugating nitrobenzoxadiazole (NBD) to hydroxybiphenylcarboxylate (BP), we obtained pBP-NBD (1P) as a substrate of both acid and alkaline phosphatases. 1P effectively kills both metastatic castration-resistant prostate cancer cells (mCRPCs) and osteoblast mimic cells in their coculture. 1P enters Saos2 almost instantly to target the endoplasmic reticulum (ER) of the cells. Co-culturing with Saos2 cells boosts the cellular uptake of 1P by mCRPCs. Cryo-EM reveals the nanotube structures of both 1P (2.4 Å resolution, pH 5.6) and 1 (2.2 Å resolution, pH 7.4). The helical packing of both nanotubes is identical, held together by strong pi-stacking interactions. Besides reporting the atomistic structure of nanotubes formed by the assembly of rigid-rod aromatics, this work expands the pool of molecules for designing EISA substrates that selectively target TME.
Collapse
Affiliation(s)
- Meihui Yi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Jer-Tsong Hsieh
- Department of Urology, Southwestern Medical Center, University of Texas, Dallas, Texas 75235, United States
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| |
Collapse
|
10
|
Alaasar M, Cai X, Cao Y, Liu F. Transition from lamellar to nanostructure mesophases in azobenzene-based hockey-stick polycatenars. NEW J CHEM 2022. [DOI: 10.1039/d2nj03255d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Tuning from 1D to 3D mesophases by alkyl chain engineering. Multichain π-conjugated hockey-stick molecules form lamellar SmA and meso-structure Ia3̄d with continuous networks. The effect of the position of the central bent-core unit on helical self-assembly is discussed.
Collapse
Affiliation(s)
- Mohamed Alaasar
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt Mothes Str. 2, D-06120, Halle, Saale, Germany
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Xiaoqian Cai
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, 710049, P. R. China
| | - Yu Cao
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, 710049, P. R. China
| | - Feng Liu
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, 710049, P. R. China
| |
Collapse
|