1
|
Yuan W, Pirillo J, Hijikata Y, Aida T, Sato H. An α-Helically Folded α-Aminoisobutyric Acid (Aib) Oligomer That Assembles into a Metal-Peptide Superhelical Nanotube. J Am Chem Soc 2025. [PMID: 40372256 DOI: 10.1021/jacs.5c03534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
α,α-Disubstituted α-amino acids such as α-aminoisobutyric acid (Aib), in their polymeric structures, are known to form a 310-helical conformation rather than an α-helical conformation, which is usually adopted by polymeric α-monosubstituted α-amino acids. Even α-helically folded Aib oligomers are unprecedented, although they have been predicted by theoretical calculations. In the present paper, we report the first α-helically folded Aib oligomer found in the course of our study on the construction of a metal-peptide framework, AibMOF-1. This MOF was synthesized by Zn2+-mediated complexation of a pyridyl-functionalized Aib hexamer, Py-Aib6-Py, and 5-nitroisophthalate (nip2-). Single crystal X-ray diffraction of AibMOF-1 ([Zn(nip)(Py-Aib6-Py)]n) revealed that Py-Aib6-Py in AibMOF-1 carried a C═Oi → NHi+4 hydrogen bonding array characteristic of α-helices, which is distinct from Py-Aib6-Py alone adopting a 310-helical conformation with a C═Oi → NHi+3 hydrogen bonding array. The α-helical Py-Aib6-Py units in AibMOF-1 assembled into a superhelical nanotubular architecture with a porous framework. When just the nitro group of the coligand nip2- was changed to a tert-butyl group, an MOF (AibMOF-2) with a completely different structure formed, where the constituent Py-Aib6-Py units adopted only the 310-helical conformation, just like Py-Aib6-Py in its crystalline structure.
Collapse
Affiliation(s)
- Wei Yuan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Jenny Pirillo
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Yuh Hijikata
- Research Center for Net Zero Carbon Society, Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Takuzo Aida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroshi Sato
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
2
|
Richardson-Matthews R, Velko K, Bhunia B, Ghosh S, Oktawiec J, Brunzelle JS, Dang VT, Nguyen AI. Metal-α-Helix Peptide Frameworks. J Am Chem Soc 2025. [PMID: 40328673 DOI: 10.1021/jacs.5c04078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Metal-peptide frameworks (MPFs) are a growing class of metal-organic frameworks with promising applications in metalloprotein mimicry, chiral separations, and catalysis. There are limited examples of MPFs, especially those with both secondary structure and natural amino acid side chains that coordinate to metal nodes, which are important for accurately mimicking metalloprotein active sites. Here, we design a robust and modular strategy based on short α-helical peptides (nine amino acids long) to form frameworks with many types of biomimetic metal sites. Peptides were designed to have Glu and His metal-binding residues, hydrophobic residues, and noncanonical helix-enforcing residues. With Co(II), it was shown that mutagenesis of a single amino acid near the metal-binding residues generates a diverse library of frameworks with varying metal node coordination geometries and compositions. Structures for 16 out of 20 variants were characterized by single-crystal X-ray diffraction, revealing how noncovalent interactions impact the metal primary sphere. In one case, a point mutation turns on reversible ligand-triggered conformational changes, demonstrating that this platform allows for dynamic behavior like that observed in metalloproteins. Furthermore, we show that frameworks readily assemble with Mn(II), Fe(II), Cu(II), and Zn(II) ions, highlighting the generality of this approach. The ease-of-synthesis, modularity, and crystallinity of these materials make this a highly accessible platform for studying and engineering biomimetic metal centers in porous materials.
Collapse
Affiliation(s)
| | - Kateryna Velko
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Bitan Bhunia
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Sabari Ghosh
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Julia Oktawiec
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Joseph S Brunzelle
- Northwestern Synchrotron Research Center, Life Sciences Collaborative Access Team, Northwestern University, Argonne, Illinois 60439, United States
| | - Viet Thuc Dang
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Andy I Nguyen
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
3
|
Wu P, Wei L, Yao R, Liu B, Yang SL, Qiao L, Wang X, Gong W, Liu Y, Cui Y, Dong J. Recent Advances in Crystalline Porous Materials for Antibacterial Applications. Chem Asian J 2025:e202401961. [PMID: 40195822 DOI: 10.1002/asia.202401961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/09/2025]
Abstract
Bacterial infections remain a significant and escalating threat to global health, exacerbated by multidrug-resistant strains that undermine the efficacy of conventional antibiotics. This pressing issue underscores the urgent need for the development of new antimicrobial materials. Among these, molecular-based crystalline porous materials, such as metal-organic frameworks (MOFs), covalent organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs), and supramolecular assembly frameworks (SAFs), have emerged as a promising class of antibacterial agents. These materials exhibit well-defined crystallinity and tunable structures, offering exceptional versatility for antibacterial applications. Notably, their high surface area, adjustable pore size, and potential for functionalization enable efficient loading and controlled release of antibacterial agents, including metal ions and antibacterial molecules. This review provides a comprehensive analysis of recent advancements in this field, highlighting design strategies, structural diversity, antibacterial mechanisms, and applications. Finally, we discuss the current challenges and outline future opportunities for the practical development and deployment of antibacterial porous materials.
Collapse
Affiliation(s)
- Peijie Wu
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Luofei Wei
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Rui Yao
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Bingyu Liu
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Shuai-Liang Yang
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Liang Qiao
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xiao Wang
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Wei Gong
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yan Liu
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yong Cui
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jinqiao Dong
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| |
Collapse
|
4
|
Gong YN, Zhong DC, Lu TB. Porous Supramolecular Crystalline Materials for Photocatalysis. Angew Chem Int Ed Engl 2025; 64:e202424452. [PMID: 39777838 DOI: 10.1002/anie.202424452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
Porous supramolecular crystalline materials (PSCMs), such as hydrogen-bonded organic frameworks (HOFs), π frameworks, can be defined as a type of porous supramolecular assemblies stabilized by hydrogen-bonding, π-π stacking and other non-covalent interactions. Benefiting from the unique features of mild synthesis conditions, well-defined and synthetically tailorable structures, easy healing and regeneration, PSCMs have garnered widespread interest in research fields including molecular recognition, sensor, gas storage and separation. Moreover, they have emerged as promising photocatalysts because these PSCMs could be readily endowed with optical function, and the hydrogen-bonding and π-π stacking can offer channels for electron transfer to boost the photocatalytic activity. However, the research on PSCMs for photocatalysis is still at an early stage, and a review on this topic would help to promote the development of supramolecular chemistry. In this Minireview, we first introduce the synthesis methods for PSCMs, and then highlight their advantages in photocatalysis. Subsequently, we summarize the applications of PSCMs in photocatalysis including CO2 reduction, H2 evolution, H2O2 production, organic transformation and pollutant degradation, and we put particular emphasis on delineating the structure-performance relationship. At the end, we discuss the challenges and perspectives in developing high-performance PSCM-based photocatalysts.
Collapse
Affiliation(s)
- Yun-Nan Gong
- Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Di-Chang Zhong
- Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
5
|
Dey S, Roy S, Puneeth Kumar DRGKR, Nalawade SA, Singh M, Toraskar SU, Mahapatra SP, Gopi HN. Metal-directed hierarchical superhelices from hybrid peptide foldamers. Chem Commun (Camb) 2025; 61:2770-2773. [PMID: 39829400 DOI: 10.1039/d4cc05770h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
A superhelix is a three-dimensional arrangement of a helix in which the helix is coiled around a common axis. Here, we are reporting a short 12-helix of α,γ-hybrid peptides terminated by metal binding ligands, self-assembled into a right-handed superhelix around a common axis in the presence of Cd(II) ions. Furthermore, these superhelices are assembled into hierarchical superhelical β-sheet-type structural motifs in single crystals. The results reported here may give new insights to construct advanced self-assembled architectures from peptide foldamers.
Collapse
Affiliation(s)
- Sanjit Dey
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pune-411008, India.
| | - Souvik Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pune-411008, India.
| | - DRGKoppalu R Puneeth Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pune-411008, India.
| | - Sachin A Nalawade
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pune-411008, India.
| | - Manjeet Singh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pune-411008, India.
| | - Sandip U Toraskar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pune-411008, India.
| | - Souvik Panda Mahapatra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pune-411008, India.
| | - Hosahudya N Gopi
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pune-411008, India.
| |
Collapse
|
6
|
Chung JS, Hartman EM, Mertick-Sykes EJ, Pimentel EB, Martell JD. Hyper-Expandable Cross-Linked Protein Crystals as Scaffolds for Catalytic Reactions. ACS APPLIED MATERIALS & INTERFACES 2025; 17:311-321. [PMID: 39701958 DOI: 10.1021/acsami.4c15051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Scaffolding catalytic reactions within porous materials is a powerful strategy to enhance the reaction rates of multicatalytic systems. However, it remains challenging to develop materials with high porosity, high diversity of functional groups within the pores, and guest-adaptive tunability. Furthermore, it is challenging to capture large catalysts such as enzymes within porous materials. Protein-based materials are promising candidates to overcome these limitations, owing to their large pore sizes and potential for stimuli-responsive adaptability. In this work, hydrogel beads were generated from cross-linked lysozyme crystals. These swellable lysozyme cross-linked crystals (SLCCs) expand more than 10 mL per gram of crystal following a simple treatment in ethanol, followed by the addition of water. SLCCs are sensitive to the solution environment and change their extent of swelling from adjusting the concentration and identity of the ions in the solution, or by changing the flexibility of the protein backbone, such as adding dithiothreitol to reduce the protein disulfide bonds. SLCCs can adsorb a wide range of catalysts ranging from transition metal complexes to large biomacromolecules, such as the 160 kDa enzyme glucose oxidase (GOx). Transition metal catalysts and enzymes captured within SLCCs maintained their catalytic activity and exhibited minimal leaching. We performed a cascade reaction by adsorbing GOx and the transition metal catalyst Fe-TAML into SLCCs, resulting in enhanced activity compared to a free-floating reaction. SLCCs offer a promising combination of attributes as scaffolds for multicatalytic reactions, including gram-scale batch preparation, tunable expansion to greater than 20-fold in volume, guest-responsive adaptable behavior, and facile capture of a wide array of small molecule and enzyme-catalysts.
Collapse
Affiliation(s)
- Jedidiah S Chung
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Ethan M Hartman
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Eli J Mertick-Sykes
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Edward B Pimentel
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Jeffrey D Martell
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705, United States
| |
Collapse
|
7
|
Cheng PM, Jia T, Li CY, Qi MQ, Du MH, Su HF, Sun QF, Long LS, Zheng LS, Kong XJ. Bottom-up construction of chiral metal-peptide assemblies from metal cluster motifs. Nat Commun 2024; 15:9034. [PMID: 39426962 PMCID: PMC11490616 DOI: 10.1038/s41467-024-53320-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
The exploration of artificial metal-peptide assemblies (MPAs) is one of the most exciting fields because of their great potential for simulating the dynamics and functionality of natural proteins. However, unfavorable enthalpy changes make forming discrete complexes with large and adaptable cavities from flexible peptide ligands challenging. Here, we present a strategy integrating metal-cluster building blocks and peptides to create chiral metal-peptide assemblies and get a family of enantiopure [R-/S-Ni3L2]n (n = 2, 3, 6) MPAs, including the R-/S-Ni6L4 capsule, the S-Ni9L6 trigonal prism, and the R-/S-Ni18L12 octahedron cage. X-ray crystallography shows MPA formation reactions are highly solvent-condition-dependent, resulting in significant changes in ligand conformation and discrete cavity sizes. Moreover, we demonstrate that a structure transformation from Ni18L12 to Ni9L6 in the presence of benzopyrone molecules depends on the peptide conformational selection in crystallization. This work reveals that a metal-cluster building block approach enables facile bottom-up construction of artificial metal-peptide assemblies.
Collapse
Affiliation(s)
- Pei-Ming Cheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Tao Jia
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Chong-Yang Li
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Ming-Qiang Qi
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Ming-Hao Du
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Hai-Feng Su
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - La-Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Lan-Sun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiang-Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.
| |
Collapse
|
8
|
Ganatra P, Wang DF, Ganatra V, Dang VT, Nguyen AI. Diverse Proteomimetic Frameworks via Rational Design of π-Stacking Peptide Tectons. J Am Chem Soc 2024; 146:22236-22246. [PMID: 39096501 DOI: 10.1021/jacs.4c03094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Peptide-based frameworks aim to integrate protein architecture into solid-state materials using simpler building blocks. Despite the growing number of peptide frameworks, there are few strategies to rationally engineer essential properties like pore size and shape. Designing peptide assemblies is generally hindered by the difficulty of predicting complex networks of weak intermolecular interactions. Peptides conjugated to polyaromatic groups are a unique case where assembly appears to be strongly driven by π-π interactions, suggesting that rationally adjusting the geometry of the π-stackers could create novel structures. Here, we report peptide elongation as a simple mechanism to predictably tune the angle between the π-stacking groups to produce a remarkable diversity of pore shapes and sizes, including some that are mesoporous. Notably, rapid jumps in pore size and shape can occur with just a single amino acid insertion. The geometry of the π-stacking residues also significantly influences framework structure, representing an additional dimension for tuning. Lastly, sequence identity can also indirectly modulate the π-π interactions. By correlating each of these factors with detailed crystallographic data, we find that, despite the complexity of peptide structure, the shape and polarity of the tectons are straightforward predictors of framework structure. These guidelines are expected to accelerate the development of advanced porous materials with protein-like capabilities.
Collapse
Affiliation(s)
- Pragati Ganatra
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Daniel F Wang
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Vaibhav Ganatra
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Viet Thuc Dang
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Andy I Nguyen
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
9
|
DiGiorno MC, Vithanage N, Victorio CG, Kreitler DF, Outlaw VK, Sawyer N. Structural Characterization of Disulfide-Linked p53-Derived Peptide Dimers. RESEARCH SQUARE 2024:rs.3.rs-4644285. [PMID: 39070635 PMCID: PMC11275974 DOI: 10.21203/rs.3.rs-4644285/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Disulfide bonds provide a convenient method for chemoselective alteration of peptide and protein structure and function. We previously reported that mild oxidation of a p53-derived bisthiol peptide (CTFANLWRLLAQNC) under dilute non-denaturing conditions led to unexpected disulfide-linked dimers as the exclusive product. The dimers were antiparallel, significantly α-helical, resistant to protease degradation, and easily reduced back to the original bisthiol peptide. Here we examine the intrinsic factors influencing peptide dimerization using a combination of amino acid substitution, circular dichroism (CD) spectroscopy, and X-ray crystallography. CD analysis of peptide variants suggests critical roles for Leu6 and Leu10 in the formation of stable disulfide-linked dimers. The 1.0 Å resolution crystal structure of the peptide dimer supports these data, revealing a leucine-rich LxxLL dimer interface with canonical knobs-into-holes packing. Two levels of higher-order oligomerization are also observed in the crystal: an antiparallel "dimer of dimers" mediated by Phe3 and Trp7 residues in the asymmetric unit and a tetramer of dimers mediated by Trp7 and Leu10. In CD spectra of Trp-containing peptide variants, minima at 227 nm provide evidence for the dimer of dimers in dilute aqueous solution. Importantly, and in contrast to the original dimer model, the canonical leucine-rich core and robust dimerization of most peptide variants suggests a tunable molecular architecture to target various proteins and evaluate how folding and oligomerization impact various properties, such as cell permeability.
Collapse
|
10
|
Jones AA, Snow CD. Porous protein crystals: synthesis and applications. Chem Commun (Camb) 2024; 60:5790-5803. [PMID: 38756076 DOI: 10.1039/d4cc00183d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Large-pore protein crystals (LPCs) are an emerging class of biomaterials. The inherent diversity of proteins translates to a diversity of crystal lattice structures, many of which display large pores and solvent channels. These pores can, in turn, be functionalized via directed evolution and rational redesign based on the known crystal structures. LPCs possess extremely high solvent content, as well as extremely high surface area to volume ratios. Because of these characteristics, LPCs continue to be explored in diverse applications including catalysis, targeted therapeutic delivery, templating of nanostructures, structural biology. This Feature review article will describe several of the existing platforms in detail, with particular focus on LPC synthesis approaches and reported applications.
Collapse
Affiliation(s)
- Alec Arthur Jones
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523-1301, USA.
| | - Christopher D Snow
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523-1301, USA.
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523-1301, USA
| |
Collapse
|
11
|
Vijayakanth T, Dasgupta S, Ganatra P, Rencus-Lazar S, Desai AV, Nandi S, Jain R, Bera S, Nguyen AI, Gazit E, Misra R. Peptide hydrogen-bonded organic frameworks. Chem Soc Rev 2024; 53:3640-3655. [PMID: 38450536 DOI: 10.1039/d3cs00648d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Hydrogen-bonded porous frameworks (HPFs) are versatile porous crystalline frameworks with diverse applications. However, designing chiral assemblies or biocompatible materials poses significant challenges. Peptide-based hydrogen-bonded porous frameworks (P-HPFs) are an exciting alternative to conventional HPFs due to their intrinsic chirality, tunability, biocompatibility, and structural diversity. Flexible, ultra-short peptide-based P-HPFs (composed of 3 or fewer amino acids) exhibit adaptable porous topologies that can accommodate a variety of guest molecules and capture hazardous greenhouse gases. Longer, folded peptides present challenges and opportunities in designing P-HPFs. This review highlights recent developments in P-HPFs using ultra-short peptides, folded peptides, and foldamers, showcasing their utility for gas storage, chiral recognition, chiral separation, and medical applications. It also addresses design challenges and future directions in the field.
Collapse
Affiliation(s)
- Thangavel Vijayakanth
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-6997801, Israel.
| | - Sneha Dasgupta
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, S.A.S. Nagar (Mohali) 160062, India.
| | - Pragati Ganatra
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA.
| | - Sigal Rencus-Lazar
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-6997801, Israel.
| | - Aamod V Desai
- School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| | - Shyamapada Nandi
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, 600127, Chennai, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, S.A.S. Nagar (Mohali) 160062, India.
| | - Santu Bera
- Department of Chemistry, Ashoka University, Sonipat, Haryana 131029, India
| | - Andy I Nguyen
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA.
| | - Ehud Gazit
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-6997801, Israel.
- Sagol School of Neuroscience, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Rajkumar Misra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, S.A.S. Nagar (Mohali) 160062, India.
| |
Collapse
|
12
|
Heinz-Kunert SL, Pandya A, Dang VT, Oktawiec J, Nguyen AI. Pore Restructuring of Peptide Frameworks by Mutations at Distal Packing Residues. Biomacromolecules 2024; 25:2016-2023. [PMID: 38362872 DOI: 10.1021/acs.biomac.3c01418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Porous framework materials are highly useful for catalysis, adsorption, and separations. Though they are usually made from inorganic and organic building blocks, recently, folded peptides have been utilized for constructing frameworks, opening up an enormous structure-space for exploration. These peptides assemble in a metal-free fashion using π-stacking, H-bonding, dispersion forces, and the hydrophobic effect. Manipulation of pore-defining H-bonding residues is known to generate new topologies, but the impact of mutations in the hydrophobic packing region facing away from the pores is less obvious. To explore their effects, we synthesized variants of peptide frameworks with mutations in the hydrophobic packing positions and found by single-crystal X-ray crystallography (SC-XRD) that they induce significant changes to the framework pore structure. These structural changes are driven by a need to maximize van der Waals interactions of the nonpolar groups, which are achieved by various mechanisms including helix twisting, chain flipping, chain offsetting, and desymmetrization. Even subtle changes to the van der Waals interface, such as the introduction of a methyl group or isomeric replacement, result in significant pore restructuring. This study shows that the dispersion interactions upholding a peptide material are a rich area for structural engineering.
Collapse
Affiliation(s)
- Sherrie L Heinz-Kunert
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Ashma Pandya
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Viet Thuc Dang
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Julia Oktawiec
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Andy I Nguyen
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
13
|
Chen F, Tang J, Wang J. Effects of π-π Stacking on Shale Gas Adsorption and Transport in Nanopores. ACS OMEGA 2023; 8:46577-46588. [PMID: 38107891 PMCID: PMC10720277 DOI: 10.1021/acsomega.3c05522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/19/2023]
Abstract
The π-π interaction is a prevalent driving force in the formation of various organic porous media, including the shale matrix. The configuration of π-π stacking in the shale matrix significantly influences the properties of shale gas and plays a crucial role in understanding and exploiting gas resources. In this research, we investigate the impact of different π-π stacking configurations on the adsorption and transport of shale gas within the nanopores of the shale matrix. To achieve this, we construct kerogen nanopores using π-π stacked columns with varying stacking configurations, such as offset/parallel stacking types and different orientations of the stacked columns. Through molecular dynamics simulations, we examined the adsorption and transport of methane within these nanopores. Our findings reveal that methane exhibits stronger adsorption in smoother nanopores, with this adsorption remaining unaffected by the nanoflow. We observe a heterogeneous distribution of the 2D adsorption free energy, which correlates with the specific π-π stacking configurations. Additionally, we introduce the concept of "directional roughness" to describe the surface characteristics, finding that the nanoflow flux increases as the roughness decreases. This research contributes to the understanding of shale gas behavior in the shale matrix and provides insights into nanoflow properties in other porous materials containing π-π stackings.
Collapse
Affiliation(s)
- Fuye Chen
- College of Science, Guizhou
Institute of Technology, Dr. Road, Dangwu Town, Gui’an
New District, Guiyang, Guizhou 550003, China
| | - Jiaxuan Tang
- College of Science, Guizhou
Institute of Technology, Dr. Road, Dangwu Town, Gui’an
New District, Guiyang, Guizhou 550003, China
| | - Jiang Wang
- College of Science, Guizhou
Institute of Technology, Dr. Road, Dangwu Town, Gui’an
New District, Guiyang, Guizhou 550003, China
| |
Collapse
|
14
|
Liu Y, Liu FZ, Li S, Liu H, Yan K. Biasing the Formation of Solution-Unstable Intermediates in Coordination Self-Assembly by Mechanochemistry. Chemistry 2023; 29:e202302563. [PMID: 37670119 DOI: 10.1002/chem.202302563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/07/2023]
Abstract
Due to the reversible nature of coordination bonds and solvation effect, coordination self-assembly pathways are often difficult to elucidate experimentally in solution, as intermediates and products are in constant equilibration. The present study shows that some of these transient and high-energy self-assembly intermediates can be accessed by means of ball-milling approaches. Among them, highly aqueous-unstable Pd3 L11 and Pd6 L14 open-cage intermediates of the framed Fujita Pd6 L14 cage and Pd2 L22 , Pd3 L21 and Pd4 L22 intermediates of Mukherjee Pd6 L24 capsule are successfully trapped in solid-state, where Pd=tmedaPd2+ , L1=2,4,6-tris(4-pyridyl)-1,3,5-triazine and L2=1,3,5-tris(1-imidazolyl)benzene). Their structures are assigned by a combination of solution-based characterization tools such as standard NMR spectroscopy, DOSY NMR, ESI-MS and X-ray diffraction. Collectively, these results highlight the opportunity of using mechanochemistry to access unique chemical space with vastly different reactivity compared to conventional solution-based supramolecular self-assembly reactions.
Collapse
Affiliation(s)
- Yan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Fang-Zi Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Shi Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Hua Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - KaKing Yan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
15
|
Hess SS, Coppola F, Dang VT, Tran PN, Mickel PJ, Oktawiec J, Ren Z, Král P, Nguyen AI. Noncovalent Peptide Assembly Enables Crystalline, Permutable, and Reactive Thiol Frameworks. J Am Chem Soc 2023; 145:19588-19600. [PMID: 37639365 PMCID: PMC12057566 DOI: 10.1021/jacs.3c03645] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Though thiols are exceptionally versatile, their high reactivity has also hindered the synthesis and characterization of well-defined thiol-containing porous materials. Leveraging the mild conditions of the noncovalent peptide assembly, we readily synthesized and characterized a number of frameworks with thiols displayed at many unique positions and in several permutations. Importantly, nearly all assemblies were structurally determined using single-crystal X-ray diffraction to reveal their rich sequence-structure landscape and the cooperative noncovalent interactions underlying their assembly. These observations and supporting molecular dynamics calculations enabled rational engineering by the positive and negative design of noncovalent interactions. Furthermore, the thiol-containing frameworks undergo diverse single-crystal-to-single-crystal reactions, including toxic metal ion coordination (e.g., Cd2+, Pb2+, and Hg2+), selective uptake of Hg2+ ions, and redox transformations. Notably, we find a framework that supports thiol-nitrosothiol interconversion, which is applicable for biocompatible nitric oxide delivery. The modularity, ease of synthesis, functionality, and well-defined nature of these peptide-based thiol frameworks are expected to accelerate the design of complex materials with reactive active sites.
Collapse
Affiliation(s)
- Selina S Hess
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Francesco Coppola
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Viet Thuc Dang
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Phuong Nguyen Tran
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Philip J Mickel
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Julia Oktawiec
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhong Ren
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Petr Král
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Andy I Nguyen
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
16
|
Hayashi R, Tashiro S, Asakura M, Mitsui S, Shionoya M. Effector-dependent structural transformation of a crystalline framework with allosteric effects on molecular recognition ability. Nat Commun 2023; 14:4490. [PMID: 37563107 PMCID: PMC10415384 DOI: 10.1038/s41467-023-40091-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/12/2023] [Indexed: 08/12/2023] Open
Abstract
Structurally flexible porous crystals that combine high regularity and stimuli responsiveness have received attracted attention in connection with natural allostery found in regulatory systems of activity and function in biological systems. Porous crystals with molecular recognition sites in the inner pores are particularly promising for achieving elaborate functional control, where the local binding of effectors triggers their distortion to propagate throughout the structure. Here we report that the structure of a porous molecular crystal can be allosterically controlled by local adsorption of effectors within low-symmetry nanochannels with multiple molecular recognition sites. The exchange of effectors at the allosteric site triggers diverse conversion of the framework structure in an effector-dependent manner. In conjunction with the structural conversion, it is also possible to switch the molecular affinity at different recognition sites. These results may provide a guideline for the development of supramolecular materials with flexible and highly-ordered three-dimensional structures for biological applications.
Collapse
Affiliation(s)
- Ryunosuke Hayashi
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shohei Tashiro
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Masahiro Asakura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shinya Mitsui
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
17
|
Li Y, Gao H, Jin Y, Zhao R, Huang Y. Peptide-derived coordination frameworks for biomimetic and selective separation. Anal Bioanal Chem 2023:10.1007/s00216-023-04761-0. [PMID: 37233765 DOI: 10.1007/s00216-023-04761-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
Peptide-derived metal-organic frameworks (PMOFs) have emerged as a class of biomimetic materials with attractive performances in analytical and bioanalytical chemistry. The incorporation of biomolecule peptides gives the frameworks conformational flexibility, guest adaptability, built-in chirality, and molecular recognition ability, which greatly accelerate the applications of PMOFs in enantiomeric separation, affinity separation, and the enrichment of bioactive species from complicated samples. This review focuses on the recent advances in the engineering and applications of PMOFs in selective separation. The unique biomimetic size-, enantio-, and affinity-selective performances for separation are discussed along with the chemical structures and functions of MOFs and peptides. Updates of the applications of PMOFs in adaptive separation of small molecules, chiral separation of drug molecules, and affinity isolation of bioactive species are summarized. Finally, the promising future and remaining challenges of PMOFs for selective separation of complex biosamples are discussed.
Collapse
Affiliation(s)
- Yongming Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yulong Jin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
18
|
Ferguson AL, Tovar JD. Evolution of π-Peptide Self-Assembly: From Understanding to Prediction and Control. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15463-15475. [PMID: 36475709 DOI: 10.1021/acs.langmuir.2c02399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Supramolecular materials derived from the self-assembly of engineered molecules continue to garner tremendous scientific and technological interest. Recent innovations include the realization of nano- and mesoscale particles (0D), rods and fibrils (1D), sheets (2D), and even extended lattices (3D). Our research groups have focused attention over the past 15 years on one particular class of supramolecular materials derived from oligopeptides with embedded π-electron units, where the oligopeptides can be viewed as substituents or side chains to direct the assembly of the central π-electron cores. Upon assembly, the π-systems are driven into close cofacial architectures that facilitate a variety of energy migration processes within the nanomaterial volume, including exciton transport, voltage transmission, and photoinduced electron transfer. Like many practitioners of supramolecular materials science, many of our initial molecular designs were designed with substantial inspiration from biologically occurring self-assembly coupled with input from chemical intuition and molecular modeling and simulation. In this feature article, we summarize our current understanding of the π-peptide self-assembly process as documented through our body of publications in this area. We address fundamental spectroscopic and computational tools used to extract information regarding the internal structures and energetics of the π-peptide assemblies, and we address the current state of the art in terms of recent applications of data science tools in conjunction with high-throughput computational screening and experimental assays to guide the efficient traversal of the π-peptide molecular design space. The abstract image details our integrated program of chemical synthesis, spectroscopic and functional characterization, multiscale simulation, and machine learning which has advanced the understanding and control of the assembly of synthetic π-conjugated peptides into supramolecular nanostructures with energy and biomedical applications.
Collapse
Affiliation(s)
- Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - John D Tovar
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218 United States
| |
Collapse
|
19
|
Wang J, Wicher B, Maurizot V, Huc I. Directing the Self-Assembly of Aromatic Foldamer Helices using Acridine Appendages and Metal Coordination. Chemistry 2022; 28:e202201345. [PMID: 35965255 PMCID: PMC9826129 DOI: 10.1002/chem.202201345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Indexed: 01/11/2023]
Abstract
Folded molecules provide complex interaction interfaces amenable to sophisticated self-assembly motifs. Because of their high conformational stability, aromatic foldamers constitute suitable candidates for the rational elaboration of self-assembled architectures. Several multiturn helical aromatic oligoamides have been synthesized that possess arrays of acridine appendages pointing in one or two directions. The acridine units were shown to direct self-assembly in the solid state via aromatic stacking leading to recurrent helix-helix association patterns under the form of discrete dimers or extended arrays. In the presence of Pd(II), metal coordination of the acridine units overwhelms other forces and generates new metal-mediated multihelical self-assemblies, including macrocycles. These observations demonstrate simple access to different types of foldamer-containing architectures, ranging from discrete objects to 1D and, by extension, 2D and 3D arrays.
Collapse
Affiliation(s)
- Jinhua Wang
- CBMN (UMR5248)Univ. Bordeaux – CNRS – IPBInstitut Européen de Chimie et Biologie2 rue Escarpit33600PessacFrance
| | - Barbara Wicher
- Department of Chemical Technology of DrugsPoznan University of Medical SciencesGrunwaldzka 660-780PoznanPoland
| | - Victor Maurizot
- CBMN (UMR5248)Univ. Bordeaux – CNRS – IPBInstitut Européen de Chimie et Biologie2 rue Escarpit33600PessacFrance
| | - Ivan Huc
- CBMN (UMR5248)Univ. Bordeaux – CNRS – IPBInstitut Européen de Chimie et Biologie2 rue Escarpit33600PessacFrance
- Department of PharmacyLudwig-Maximilians-UniversitätButenandtstrasse 5–1381377MünchenGermany
- Cluster of Excellence e-conversion85748GarchingGermany
| |
Collapse
|
20
|
Wei Y, Zhang J, Liu X. Surfactant-Assisted Assembly of Dipeptide Forming a Broom-like Structure. Molecules 2022; 27:molecules27154876. [PMID: 35956826 PMCID: PMC9369827 DOI: 10.3390/molecules27154876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Understanding the influence of surfactants on the assembly of peptides has a considerable practical motivation. In this paper, we systematically study the anionic surfactant-assisted assembly of diphenylalanine (FF). FF forms broom-like structures in a concentration of sodium cholate (NaC) around the CMC, and assembles into linear and unidirectional rods in the presence of low and high surfactant concentrations. FF’s improved hydrogen bonding and controlled assembly rates are appropriate for other anionic surfactants. At this stage, the use of FF as the simplest protein consequence can be helpful in the investigation of further protein–surfactant interactions.
Collapse
|
21
|
Affiliation(s)
- Jinqiao Dong
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Queenstown, Singapore. .,School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China.
| | - Dan Zhao
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Queenstown, Singapore.
| |
Collapse
|
22
|
Hsu YF, Wu TW, Kang YH, Wu CY, Liu YH, Peng SM, Kong KV, Yang JS. Porous Supramolecular Assembly of Pentiptycene-Containing Gold(I) Complexes: Persistent Excited-State Aurophilicity and Inclusion-Induced Emission Enhancement. Inorg Chem 2022; 61:11981-11991. [PMID: 35838662 DOI: 10.1021/acs.inorgchem.2c01786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report herein a porous supramolecular framework formed by a linear mononuclear Au(I) complex (1) via the tongue-and-groove-like joinery between the pentiptycene U-cavities (grooves) and the rod-shaped π-conjugated backbone and alkyl chains (tongues) with the assistance of C-H···π and aurophilic interactions. The framework contains distorted tetrahedral Au4 units, which undergo stepwise and persistent photoinduced Au(I)-Au(I) bond shortening (excited-state aurophilicity), leading to multicolored luminescence photochromism. The one-dimensional pore channels could accommodate different solvates and guests, and the guest inclusion-induced luminescence enhancement (up to 300%) and/or vapochromism are characterized. A correlation between the aurophilic bonding and the luminescence activity is uncovered by TDDFT calculations. Isostructural derivatives 2 and 3 corroborate both the robustness of the porous supramolecular assembly and the mechanisms of the stimulation-induced luminescence properties of 1. This work demonstrates the cooperation of aurophilicity and structural porosity and adaptability in achieving novel supramolecular photochemical properties.
Collapse
Affiliation(s)
- Ying-Feng Hsu
- Department of Chemistry, National Taiwan University, Taipei 10617 Taiwan
| | - Ting-Wei Wu
- Department of Chemistry, National Taiwan University, Taipei 10617 Taiwan
| | - Yu-Hsuan Kang
- Department of Chemistry, National Taiwan University, Taipei 10617 Taiwan
| | - Cheng-Yun Wu
- Department of Chemistry, National Taiwan University, Taipei 10617 Taiwan
| | - Yi-Hung Liu
- Department of Chemistry, National Taiwan University, Taipei 10617 Taiwan
| | - Shie-Ming Peng
- Department of Chemistry, National Taiwan University, Taipei 10617 Taiwan
| | - Kien Voon Kong
- Department of Chemistry, National Taiwan University, Taipei 10617 Taiwan
| | - Jye-Shane Yang
- Department of Chemistry, National Taiwan University, Taipei 10617 Taiwan
| |
Collapse
|