1
|
Zeng Z, Cai W, Liu Y, Su Y, Sun Y, Tan L, Chang L, Liu Y, Wang Y, Liu T. Small Molecule Drugs Triggered the Activation of Macrocycle Masked Proteins. NANO LETTERS 2025; 25:3291-3299. [PMID: 39943878 DOI: 10.1021/acs.nanolett.4c06362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
On-demand activation of prodrugs represents an emerging and fast developing strategy to improve the therapeutic index of certain drugs. However, strategies to generate protein-based prodrugs with controllable activation are still limited. Here, we present a supramolecular masking strategy that enables on-demand activation of macrocycle-masked proteins with Food and Drug Administration (FDA)-approved oral drugs. Proteins of interest were engineered to incorporate two N-terminal peptide motifs, which were dimerized by cucurbit[8]uril (CB[8]) to form a supramolecular mask that sterically blocks functional protein interfaces, inhibiting interactions with targets or substrates. The inhibitory effect was selectively reversed by amantadine or memantine to restore the protein activity. This masking strategy was validated across various protein classes, including antibodies, cytokines, and enzymes. Activation of CB[8]-masked proteins was further demonstrated in living mice via FDA-approved small molecule treatments. Our method provided a supramolecular strategy for the selective activation of protein-based prodrugs and the development of next-generation protein therapeutics.
Collapse
Affiliation(s)
- Zhiying Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, P. R. China
| | - Wenkang Cai
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, P. R. China
| | - Yingze Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, P. R. China
| | - Yeyu Su
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, P. R. China
| | - Yi Sun
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, P. R. China
| | - Linzhi Tan
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, P. R. China
| | - Liying Chang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, P. R. China
| | - Yong Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, P. R. China
| | - Tao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, P. R. China
| |
Collapse
|
2
|
Armstrong L, Chang SL, Clements N, Hirani Z, Kimberly LB, Odoi-Adams K, Suating P, Taylor HF, Trauth SA, Urbach AR. Molecular recognition of peptides and proteins by cucurbit[ n]urils: systems and applications. Chem Soc Rev 2024; 53:11519-11556. [PMID: 39415690 PMCID: PMC11484504 DOI: 10.1039/d4cs00569d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Indexed: 10/19/2024]
Abstract
The development of methodology for attaching ligand binding sites to proteins of interest has accelerated biomedical science. Such protein tags have widespread applications as well as properties that significantly limit their utility. This review describes the mechanisms and applications of supramolecular systems comprising the synthetic receptors cucurbit[7]uril (Q7) or cucurbit[8]uril (Q8) and their polypeptide ligands. Molecular recognition of peptides and proteins occurs at sites of 1-3 amino acids with high selectivity and affinity via several distinct mechanisms, which are supported by extensive thermodynamic and structural studies in aqueous media. The commercial availability, low cost, high stability, and biocompatibility of these synthetic receptors has led to the development of myriad applications. This comprehensive review compiles the molecular recognition studies and the resulting applications with the goals of providing a valuable resource to the community and inspiring the next generation of innovation.
Collapse
Affiliation(s)
- Lilyanna Armstrong
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| | - Sarah L Chang
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| | - Nia Clements
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| | - Zoheb Hirani
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| | - Lauren B Kimberly
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| | - Keturah Odoi-Adams
- Department of Chemistry and Physics, Southwestern Oklahoma State University, Weatherford, OK, 73096, USA
| | - Paolo Suating
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| | - Hailey F Taylor
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| | - Sara A Trauth
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| | - Adam R Urbach
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| |
Collapse
|
3
|
Bai R, Wang W, Gao W, Yang M, Zhang X, Wang C, Fan Z, Yang L, Zhang Z, Yan X. Dynamically Cross-linked Oligo[2]rotaxane Networks Mediated by Metal-Coordination. Angew Chem Int Ed Engl 2024; 63:e202410127. [PMID: 39030819 DOI: 10.1002/anie.202410127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/07/2024] [Accepted: 07/18/2024] [Indexed: 07/22/2024]
Abstract
Polyrotaxanes (PRs) have attracted significant research attention due to their unique topological structures and high degrees of conformational freedom. Herein, we take advantage of an oligo[2]rotaxane to construct a novel class of dynamically cross-linked rotaxane network (DCRN) mediated by metal-coordination. The oligo[2]rotaxane skeleton offers several distinct advantages: In addition to retaining the merits of traditional polymer backbones, the ordered intramolecular motion of the [2]rotaxane motifs introduced dangling chains into the network, thereby enhancing the stretchability of the DCRN. Additionally, the dissociation of host-guest recognition and subsequent sliding motion, along with the breakage of metal-coordination interactions, represented an integrated energy dissipation pathway to enhance mechanical properties. Moreover, the resulting DCRN demonstrated responsiveness to multiple stimuli and displayed exceptional self-healing capabilities in a gel state. Upon exposure to PPh3, which induced network deconstruction by breaking the coordinated cross-linking points, the oligo[2]rotaxane could be recovered, showcasing good recyclability. These findings demonstrate the untapped potential of the oligo[2]rotaxane as a polymer skeleton to develop DCRN and open the door to extend their advanced applications in intelligent mechanically interlocked materials.
Collapse
Affiliation(s)
- Ruixue Bai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Wenbin Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Wenzhe Gao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Mengling Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xinhai Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chunyu Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhiwei Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Li Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhaoming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
4
|
Du M, Li C. Engineering Supramolecular Hydrogels via Reversible Photoswitching of Cucurbit[8]uril-Spiropyran Complexation Stoichiometry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408484. [PMID: 39188206 DOI: 10.1002/adma.202408484] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/16/2024] [Indexed: 08/28/2024]
Abstract
The integration of photoswitchable supramolecular units into hydrogels allows for spatiotemporal control over their nanoscale topological network and macroscale properties using light. Nevertheless, the current availability of photoswitchable supramolecular interactions for the development of such materials remains limited. Here, the molecular design of a novel photoswitchable cucurbit[8]uril-spiropyran host-guest complex exhibiting fast and reversible switching of binding ratios between 1:2 and 1:1 is reported. Photoswitchable complexation stoichiometries are rationally exploited as (de)crosslinking units in multiple polymers for the design of supramolecular hydrogels displaying highly dynamic and switchable features that are spatiotemporally controlled by light. The hydrogels exhibit rapid reversible mechanical softening-hardening upon alternating irradiation with blue and UV light, which is used to significantly accelerate and improve the efficiency of self-healing and shape-remolding of hydrogels. Furthermore, spiropyran endows such materials with unique reversible photochromic properties for reproducible patterning/erasing and information storage. Using a dual-light-assisted extrusion process, meter-scale hydrogel fibers with enhanced structural integrity and photoswitchable ionic conductivity are constructed and woven into various slidable knots and fluorescent shapes. This work represents an innovative molecular design strategy for advancing the development of spatiotemporally engineered supramolecular hydrogels using light and opens avenues for their prospective applications in dynamic materials and adaptive systems.
Collapse
Affiliation(s)
- Mengqi Du
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chuang Li
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
5
|
Li R, Wang Y, Zuo H, Tang R, Bian Y, Ou J, Shen Y. Design and fabrication of fluorous monoliths with tunable surface property for capillary liquid chromatography. J Chromatogr A 2024; 1731:465204. [PMID: 39059302 DOI: 10.1016/j.chroma.2024.465204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Hierarchically porous monoliths with satisfactory properties have been employed in diverse fields, especially separation. In this study, pentafluorophenyl acrylate (PFPA), pentaerythritol tetraacrylate (PETA) and trimethylolpropane tris(3-mercaptopropionate) (TTMP) were selected as precursors to fabricate a novel monolithic column by thermally initiated polymerization in the presence of a binary porogenic system containing tetrahydrofuran and 1-propanol. The fabricated poly(PFPA-co-PETA-co-TTMP) monolithic column revealed excellent permeability and mechanical stability. Additionally, baseline separation of the mixture of small molecules can be achieved, involving alkylbenzene and fluorobenzene in chromatographic assessment, and the theoretical plate number is up to 60,500 plates/m for butylbenzene with a linear velocity of 0.14 mm/s. Tryptic digest of HeLa as an analyte was used to investigate the possibility of the poly(PFPA-co-PETA-co-TTMP) monolith in biological separation by cLC-MS/MS. Moreover, benefiting from the existence of pentafluorophenyl groups, the cucurbit[8]uril (CB[8]) could be modified on the prepared poly(PFPA-co-PETA-co-TTMP) monolith through host-guest interaction to obtain poly(PFPA-co-PETA-co-TTMP)-CB[8] monolith. It could be observed that significant changes in retention behavior of analytes appeared after immobilizing CB[8] on the monolith. It offered an innovative approach by utilizing host-guest interaction to fabricate monolithic columns with different chromatographic behaviors.
Collapse
Affiliation(s)
- Rong Li
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Yan Wang
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
| | - Haiyue Zuo
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an 710069, China
| | - Ruizhi Tang
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Yangyang Bian
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an 710069, China
| | - Junjie Ou
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China.
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China.
| |
Collapse
|
6
|
Nazarov YE, Turaev KK, Alimnazarov BK, Suyunov JR, Umirova GA, Ibragimov BT, Ashurov JM. Bis(8-hy-droxy-quinolinium) naphthalene-1,5-di-sulfonate tetra-hydrate. IUCRDATA 2024; 9:x240570. [PMID: 38974851 PMCID: PMC11223680 DOI: 10.1107/s2414314624005704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/13/2024] [Indexed: 07/09/2024] Open
Abstract
The inter-action between 8-hy-droxy-quinoline (8HQ, C9H7NO) and naphthalene-1,5-di-sulfonic acid (H2NDS, C10H8O6S2) in aqueous media results in the formation of the salt hydrate bis-(8-hy-droxy-quinolinium) naphthalene-1,5-di-sulfonate tetra-hydrate, 2C9H8NO+·C10H6O6S2 2-·4H2O. The asymmetric unit comprises one protonated 8HQ+ cation, half of an NDS2- dianion symmetrically disposed around a center of inversion, and two water mol-ecules. Within the crystal structure, these components are organized into chains along the [010] and [10] directions through O-H⋯O and N-H⋯O hydrogen-bonding inter-actions, forming a di-periodic network parallel to (101). Additional stabilizing inter-actions such as C-H⋯O, C-H⋯π, and π-π inter-actions extend this arrangement into a tri-periodic network structure.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jamshid Mengnorovich Ashurov
- Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, 100125, M. Ulugbek Str 83, Tashkent, Uzbekistan
| |
Collapse
|
7
|
McLean A, Sala RL, Longbottom BW, Carr AR, McCune JA, Lee SF, Scherman OA. Single-Molecule Stoichiometry of Supramolecular Complexes. J Am Chem Soc 2024; 146:12877-12882. [PMID: 38710014 PMCID: PMC11100007 DOI: 10.1021/jacs.4c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024]
Abstract
The use of single-molecule microscopy is introduced as a method to quantify the photophysical properties of supramolecular complexes rapidly at ultra low concentrations (<1 nM), previously inaccessible. Using a model supramolecular system based on the host-guest complexation of cucurbit[n]uril (CB[n]) macrocycles together with a fluorescent guest (Ant910Me), we probe fluorescent CB[n] host-guest complexes in the single molecule regime. We show quantification and differentiation of host-guest photophysics and stoichiometries, both in aqueous media and noninvasively in hydrogel, by thresholding detected photons. This methodology has wide reaching implications in aiding the design of next-generation materials with programmed and controlled properties.
Collapse
Affiliation(s)
- Alan McLean
- Melville
Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Renata L. Sala
- Melville
Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Brooke W. Longbottom
- Melville
Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Alexander R. Carr
- Melville
Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Jade A. McCune
- Melville
Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Steven F. Lee
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Oren A. Scherman
- Melville
Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| |
Collapse
|
8
|
Zubkov MO, Dilman AD. Radical reactions enabled by polyfluoroaryl fragments: photocatalysis and beyond. Chem Soc Rev 2024; 53:4741-4785. [PMID: 38536104 DOI: 10.1039/d3cs00889d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Polyfluoroarenes have been known for a long time, but they are most often used as fluorinated building blocks for the synthesis of aromatic compounds. At the same time, due to peculiar fluorine effect, they have unique properties that provide applications in various fields ranging from synthesis to materials science. This review summarizes advances in the radical chemistry of polyfluoroarenes, which have become possible mainly with the advent of photocatalysis. Transformations of the fluorinated ring via the C-F bond activation, as well as use of fluoroaryl fragments as activating groups and hydrogen atom transfer agents are discussed. The ability of fluoroarenes to serve as catalysts is also considred.
Collapse
Affiliation(s)
- Mikhail O Zubkov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation.
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation.
| |
Collapse
|
9
|
Pramod M, Alnajjar MA, Schöpper SN, Schwarzlose T, Nau WM, Hennig A. Adamantylglycine as a high-affinity peptide label for membrane transport monitoring and regulation. Chem Commun (Camb) 2024; 60:4810-4813. [PMID: 38602391 DOI: 10.1039/d4cc00602j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The non-canonical amino acid adamantylglycine (Ada) is introduced into peptides to allow high-affinity binding to cucurbit[7]uril (CB7). Introduction of Ada into a cell-penetrating peptide (CPP) sequence had minimal influence on the membrane transport, yet enabled up- and down-regulation of the membrane transport activity.
Collapse
Affiliation(s)
- Malavika Pramod
- Center for Cellular Nanoanalytics (CellNanOs) and Department of Biology and Chemistry, Universität Osnabrück, Barbarastraße 7, Osnabrück 49069, Germany.
| | - Mohammad A Alnajjar
- Center for Cellular Nanoanalytics (CellNanOs) and Department of Biology and Chemistry, Universität Osnabrück, Barbarastraße 7, Osnabrück 49069, Germany.
| | - Sandra N Schöpper
- Center for Cellular Nanoanalytics (CellNanOs) and Department of Biology and Chemistry, Universität Osnabrück, Barbarastraße 7, Osnabrück 49069, Germany.
| | - Thomas Schwarzlose
- School of Science, Constructor University, Campus Ring 1, Bremen 28759, Germany.
| | - Werner M Nau
- School of Science, Constructor University, Campus Ring 1, Bremen 28759, Germany.
| | - Andreas Hennig
- Center for Cellular Nanoanalytics (CellNanOs) and Department of Biology and Chemistry, Universität Osnabrück, Barbarastraße 7, Osnabrück 49069, Germany.
| |
Collapse
|
10
|
Suating P, Kimberly LB, Ewe MB, Chang SL, Fontenot JM, Sultane PR, Bielawski CW, Decato DA, Berryman OB, Taylor AB, Urbach AR. Cucurbit[8]uril Binds Nonterminal Dipeptide Sites with High Affinity and Induces a Type II β-Turn. J Am Chem Soc 2024; 146:7649-7657. [PMID: 38348472 DOI: 10.1021/jacs.3c14045] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
In an effort to target polypeptides at nonterminal sites, we screened the binding of the synthetic receptor cucurbit[8]uril (Q8) to a small library of tetrapeptides, each containing a nonterminal dipeptide binding site. The resulting leads were characterized in detail using a combination of isothermal titration calorimetry, 1H NMR spectroscopy, electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS), and X-ray crystallography. The equilibrium dissociation constant values determined for the binding of Q8 to nonterminal dipeptide sites Lys-Phe (KF) and Phe-Lys (FK) were 60 and 86 nm, respectively. These are to the best of our knowledge the highest affinities reported to date for any synthetic receptor targeting a nonterminal site on an unmodified peptide. A 0.79 Å resolution crystal structure was obtained for the complex of Q8 with the peptide Gly-Gly-Leu-Tyr-Gly-Gly-Gly (GGLYGGG) and reveals structural details of the pair-inclusion motif. The molecular basis for recognition is established to be the inclusion of the side chains of Leu and Tyr residues, as well as an extensive network of hydrogen bonds between the peptide backbone, the carbonyl oxygens of Q8, and proximal water molecules. In addition, the crystal structure reveals that Q8 induces a type II β-turn. The sequence-selectivity, high affinity, reversibility, and detailed structural characterization of this system should facilitate the development of applications involving ligand-induced polypeptide folding.
Collapse
Affiliation(s)
- Paolo Suating
- Department of Chemistry, Trinity University, 1 Trinity Place, San Antonio, Texas 78212, United States
| | - Lauren B Kimberly
- Department of Chemistry, Trinity University, 1 Trinity Place, San Antonio, Texas 78212, United States
| | - Marc B Ewe
- Department of Chemistry, Trinity University, 1 Trinity Place, San Antonio, Texas 78212, United States
| | - Sarah L Chang
- Department of Chemistry, Trinity University, 1 Trinity Place, San Antonio, Texas 78212, United States
| | - John M Fontenot
- Department of Chemistry, Trinity University, 1 Trinity Place, San Antonio, Texas 78212, United States
| | - Prakash R Sultane
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS) and Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Christopher W Bielawski
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS) and Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Daniel A Decato
- Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana 59812, United States
| | - Orion B Berryman
- Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana 59812, United States
| | - Alexander B Taylor
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, 8300 Floyd Curl Drive, San Antonio, Texas 78229, United States
| | - Adam R Urbach
- Department of Chemistry, Trinity University, 1 Trinity Place, San Antonio, Texas 78212, United States
| |
Collapse
|
11
|
Chen Y, Kuvayskaya A, Pink M, Sellinger A, Flood AH. A library of vinyl phosphonate anions dimerize with cyanostars, form supramolecular polymers and undergo statistical sorting. Chem Sci 2023; 15:389-398. [PMID: 38131081 PMCID: PMC10732014 DOI: 10.1039/d3sc03685e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Supramolecular dimers are elementary units allowing the build-up of multi-molecule architectures. New among these are cyanostar-stabilized dimers of phosphate and phosphonate anions. While the anion dimerization at the heart of these assemblies is reliable, the covalent synthesis leading to this class of designer anions serves as a bottleneck in the pathway to supramolecular assemblies. Herein, we demonstrate the reliable synthesis of 14 diverse anionic monomers by Heck coupling between vinyl phosphonic acid and aryl bromide compounds. When this synthesis is combined with reliable anion dimerization, we show formation of supramolecular dimers and polymers by co-assembly with cyanostar macrocycles. The removal of the covalent bottleneck opened up a seamless synthetic route to iterate through three monomers affording the solubility needed to characterize the mechanism of supramolecular polymerization. We also test the idea that the small size of these vinyl phosphonates provide identical dimer stabilities across the library by showing how mixtures of anions undergo statistical (social) self-sorting. We exploit this property by preparing soluble copolymers from the mixing of different monomers. This multi-anion assembly shows the utility of a library for programming properties.
Collapse
Affiliation(s)
- Yusheng Chen
- Department of Chemistry, Indiana University 800 E. Kirkwood Avenue Bloomington Indiana 47405 USA
| | - Anastasia Kuvayskaya
- Department of Chemistry, Colorado School of Mines 1012 14th Street Golden Colorado 80401 USA
| | - Maren Pink
- Department of Chemistry, Indiana University 800 E. Kirkwood Avenue Bloomington Indiana 47405 USA
| | - Alan Sellinger
- Department of Chemistry, Colorado School of Mines 1012 14th Street Golden Colorado 80401 USA
- National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden Colorado 80401 USA
| | - Amar H Flood
- Department of Chemistry, Indiana University 800 E. Kirkwood Avenue Bloomington Indiana 47405 USA
| |
Collapse
|
12
|
Xiao T, Elmes R, Yao Y. Editorial: Host-guest chemistry of macrocycles- Volume II. Front Chem 2023; 11:1162019. [PMID: 36895319 PMCID: PMC9990904 DOI: 10.3389/fchem.2023.1162019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Affiliation(s)
- Tangxin Xiao
- School of Petrochemical Engineering, Changzhou University, Changzhou, China
| | - Robert Elmes
- Department of Chemistry, Maynooth University, National University of Ireland, Maynooth, Ireland.,Synthesis and Solid-State Pharmaceutical Centre (SSPC), Maynooth University, National University of Ireland, Maynooth, Ireland
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, China
| |
Collapse
|
13
|
Xiao T, James TD, Borovkov V, Castellano RK, Deng C. Editorial: Suprastars of Chemistry. Front Chem 2022; 10:932508. [PMID: 35734441 PMCID: PMC9207770 DOI: 10.3389/fchem.2022.932508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Tangxin Xiao
- School of Petrochemical Engineering, Changzhou University, Changzhou, China
- *Correspondence: Tangxin Xiao, ; Tony D. James, ; Victor Borovkov, ; Ronald K. Castellano, ; Chao Deng,
| | - Tony D. James
- Department of Chemistry, University of Bath, Bath, United Kingdom
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
- *Correspondence: Tangxin Xiao, ; Tony D. James, ; Victor Borovkov, ; Ronald K. Castellano, ; Chao Deng,
| | - Victor Borovkov
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
- *Correspondence: Tangxin Xiao, ; Tony D. James, ; Victor Borovkov, ; Ronald K. Castellano, ; Chao Deng,
| | - Ronald K. Castellano
- Department of Chemistry, University of Florida, Gainesville, FL, United States
- *Correspondence: Tangxin Xiao, ; Tony D. James, ; Victor Borovkov, ; Ronald K. Castellano, ; Chao Deng,
| | - Chao Deng
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou, China
- *Correspondence: Tangxin Xiao, ; Tony D. James, ; Victor Borovkov, ; Ronald K. Castellano, ; Chao Deng,
| |
Collapse
|