1
|
Wang J, Deng C, Zhang Y, Niu K, Zhao X, Zhu H, Zhang Y, Huang P, Lin H, Lu J, Rosen J, Björk J, Cai J, Li Q. Mechanistical Study on Substrate-Controlled Highly Selective [2+2] and [2+3] Cycloaddition Reactions. Chemistry 2025; 31:e202404074. [PMID: 39613717 DOI: 10.1002/chem.202404074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/01/2024]
Abstract
Polycyclic conjugated hydrocarbons have acquired increased interests recently because of their potential applications in electronic devices. On metal surfaces, the selective synthesis of four- and five-membered carbon rings remains challenging due to the presence of diverse reaction pathways. Here, utilizing the same precursor molecule, we successfully achieved substrate-controlled highly selective cycloaddition reactions towards four- and five-membered carbon rings. A 97 % yield for four-membered carbon rings on Au(111), while a 96 % yield towards five-membered carbon rings is achieved on Ag(111). The detailed topological structures of the reaction products are carefully examined by bond-resolving scanning tunneling microscopy (BR-STM) imaging with a CO functionalized tip. The underlying mechanism of the novel surface-directed reaction selectivity is elucidated by extensive density functional theory (DFT) calculations. Our study paves the way for high selective synthesis of polycyclic conjugated hydrocarbons with non-benzenoid rings.
Collapse
Affiliation(s)
- Junbo Wang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Chuan Deng
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Yong Zhang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Kaifeng Niu
- Materials Design Division, Department of Physics, Chemistry and Biology, IFM, Linköping University, Linköping, 58183, Sweden
| | - Xinjing Zhao
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Huaming Zhu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Yi Zhang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Peipei Huang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Haiping Lin
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Jianchen Lu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Johanna Rosen
- Materials Design Division, Department of Physics, Chemistry and Biology, IFM, Linköping University, Linköping, 58183, Sweden
| | - Jonas Björk
- Materials Design Division, Department of Physics, Chemistry and Biology, IFM, Linköping University, Linköping, 58183, Sweden
| | - Jinming Cai
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Qing Li
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
2
|
Sun L, Zheng W, Kang F, Gao W, Wang T, Gao G, Xu W. On-surface synthesis and characterization of anti-aromatic cyclo[12]carbon and cyclo[20]carbon. Nat Commun 2024; 15:7649. [PMID: 39223168 PMCID: PMC11369269 DOI: 10.1038/s41467-024-52115-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Cyclo[n]carbons have recently attracted significant attention owing to their geometric and electronic structures remaining largely unexplored in the condensed phase. In this work, we focus on two anti-aromatic cyclocarbons, namely C12 and C20. By designing two fully halogenated molecular precursors both including 4-numbered rings, we further extend the on-surface retro-Bergman ring-opening reaction, and successfully produce C12 and C20. The polyynic structures of C12 and C20 are unambiguously revealed by bond-resolved atomic force microscopy. More importantly, subtly positioning the C20 molecule into an atomic fence formed by Cl clusters allows us to experimentally probe its frontier molecular orbitals, yielding a transport gap of 3.8 eV measured from scanning tunneling spectroscopy. Our work may advance the field by easier synthesis of a series of cyclocarbons via on-surface retro-Bergman ring-opening strategy.
Collapse
Affiliation(s)
- Luye Sun
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Wei Zheng
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Faming Kang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Wenze Gao
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Tongde Wang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Guohua Gao
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Wei Xu
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, People's Republic of China.
| |
Collapse
|
3
|
Pan ML, Hsu CH, Lin YD, Chen BH, Lu CH, Yang SD, Chou PT, Wu YT. Overcrowded 14,14'-Bidibenzo[a,j]anthracenes: Challenges in Syntheses and Atypical Property of Lacking Symmetry-Breaking Charge Transfer (SBCT). Chemistry 2024; 30:e202401063. [PMID: 38654592 DOI: 10.1002/chem.202401063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
14,14'-Bidibenzo[a,j]anthracenes (BDBAs) were prepared by iridium-catalyzed annulation of 5,5'-biterphenylene with alkynes. The molecular geometries of overcrowded BDBAs were verified by X-ray crystallography. The two dibenzo[a,j]anthryl moieties are connected through the sterically hindered 14 positions, resulting in highly distorted molecular halves. The conformation with a small twist angle between two molecular halves can minimize steric conflicts between the substituents at 1 and 13 positions and the carbon atoms of the central axis, as well as steric clashes between those substituents. One such example is octafluoro-substituted BDBA, where the interplanar angle between two anthryl moieties is approximately 31° (currently the lowest reported value, cf. 81° in 9,9'-bianthracene). The intramolecular interactions and electronic couplings between two molecular halves resulted in upfield 1H NMR signals, redshifted absorption and emission bands, and a reduced HOMO-LUMO gap. Photodynamic investigations on BDBAs indicated that the formation of the conventional symmetry-breaking charge transfer (SBCT) state was suspended by restricted rocking around the central C-C bond. Such a mechanism associated with this highly constrained conformation was examined for the first time.
Collapse
Affiliation(s)
- Ming-Lun Pan
- Department of Chemistry, National Cheng Kung University, No. 1 Ta-Hsueh Rd., 701401, Tainan, Taiwan
| | - Chao-Hsien Hsu
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., 106319, Taipei, Taiwan
| | - Yan-Ding Lin
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., 106319, Taipei, Taiwan
| | - Bo-Han Chen
- Institute of Photonics Technologies, National Tsing Hua University, No.101, Section 2, Kuang-Fu Rd., 300044, Hsinchu, Taiwan
| | - Chih-Hsuan Lu
- Institute of Photonics Technologies, National Tsing Hua University, No.101, Section 2, Kuang-Fu Rd., 300044, Hsinchu, Taiwan
| | - Shang-Da Yang
- Institute of Photonics Technologies, National Tsing Hua University, No.101, Section 2, Kuang-Fu Rd., 300044, Hsinchu, Taiwan
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., 106319, Taipei, Taiwan
| | - Yao-Ting Wu
- Department of Chemistry, National Cheng Kung University, No. 1 Ta-Hsueh Rd., 701401, Tainan, Taiwan
| |
Collapse
|
4
|
Hu C, Kuhn L, Makurvet FD, Knorr ES, Lin X, Kawade RK, Mentink-Vigier F, Hanson K, Alabugin IV. Tethering Three Radical Cascades for Controlled Termination of Radical Alkyne peri-Annulations: Making Phenalenyl Ketones without Oxidants. J Am Chem Soc 2024; 146:4187-4211. [PMID: 38316011 DOI: 10.1021/jacs.3c13371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Although Bu3Sn-mediated radical alkyne peri-annulations allow access to phenalenyl ring systems, the oxidative termination of these cascades provides only a limited selection of the possible isomeric phenalenone products with product selectivity controlled by the intrinsic properties of the new cyclic systems. In this work, we report an oxidant-free termination strategy that can overcome this limitation and enable selective access to the full set of isomerically functionalized phenalenones. The key to preferential termination is the preinstallation of a "weak link" that undergoes C-O fragmentation in the final cascade step. Breaking a C-O bond is assisted by entropy, gain of conjugation in the product, and release of stabilized radical fragments. This strategy is expanded to radical exo-dig cyclization cascades of oligoalkynes, which provide access to isomeric π-extended phenalenones. Conveniently, these cascades introduce functionalities (i.e., Bu3Sn and iodide moieties) amenable to further cross-coupling reactions. Consequently, a variety of polyaromatic diones, which could serve as phenalenyl-based open-shell precursors, can be synthesized.
Collapse
Affiliation(s)
- Chaowei Hu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Leah Kuhn
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Favour D Makurvet
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Erica S Knorr
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Xinsong Lin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Rahul K Kawade
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Frederic Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Kenneth Hanson
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
5
|
Dengiz C. Biphenylene-containing polycyclic conjugated compounds. Beilstein J Org Chem 2023; 19:1895-1911. [PMID: 38116241 PMCID: PMC10729107 DOI: 10.3762/bjoc.19.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023] Open
Abstract
There has been a growing emphasis on the synthesis of polycyclic conjugated compounds, driven by their distinct structural characteristics that make them valuable candidates for use in cutting-edge technologies. In particular, acenes, a subgroup of polycyclic aromatic compounds, are sought-after synthetic targets due to their remarkable optoelectronic properties which stem from their π-conjugation and planar structure. Despite all these promising characteristics, acenes exhibit significant stability problems when their conjugation enhances. Various approaches have been developed to address this stability concern. Among these strategies, one involves the incorporation of the biphenylene unit into acene frameworks, limiting the electron delocalization through the antiaromatic four-membered ring. This review gives a brief overview of the methods used in the synthesis of biphenylenes and summarizes the recent studies on biphenylene-containing polycyclic conjugated compounds, elucidating their synthesis, and distinct optoelectronic properties.
Collapse
Affiliation(s)
- Cagatay Dengiz
- Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey
| |
Collapse
|
6
|
Yang B, Gu Y, Paternò GM, Teyssandier J, Maghsoumi A, Barker AJ, Mali KS, Scotognella F, De Feyter S, Tommasini M, Feng X, Narita A, Müllen K. Zigzag-Edged Polycyclic Aromatic Hydrocarbons from Benzo[m]tetraphene Precursors. Chemistry 2023; 29:e202203981. [PMID: 36695295 DOI: 10.1002/chem.202203981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
A series of zigzag-edged polycyclic aromatic hydrocarbons (PAHs) (Z1-Z3) were synthesized from 2,12-dibromo-7,14-diphenyl-benzo[m]tetraphene (9) as a versatile building block. Their structures were unambiguously confirmed by laser desorption/ionization time-of-flight mass spectrometry, 1 H NMR, Raman, and Fourier-transformed infrared (FTIR) spectroscopies as well as scanning tunneling microscopy. The fingerprint vibrational modes were elucidated with theoretical support. The edge- and size-dependent optical properties were characterized by UV-Vis absorption and fluorescence spectroscopy and DFT calculations. Moreover, ultrafast transient absorption spectroscopy revealed distinct modulation of the photophysical properties upon π-extension from Z1 to Z2, the latter having a gulf edge.
Collapse
Affiliation(s)
- Bo Yang
- Max Planck Institute for Polymer Research Ackermannweg 10, 55128, Mainz, Germany
| | - Yanwei Gu
- Max Planck Institute for Polymer Research Ackermannweg 10, 55128, Mainz, Germany
| | - Giuseppe M Paternò
- Physics Department, Politecnico di Milano Piazza L. da Vinci 32, Milano, 20133, Italy.,Istituto Italiano di Tecnologia, Center for Nano Science and Technology, Milano, 20133, Italy
| | - Joan Teyssandier
- Department of Chemistry, Division of Molecular Imaging and Photonics KU Leuven Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Ali Maghsoumi
- Dipartimento di Chimica, Materiali e Ingegneria Chimica - Politecnico di Milano Piazza Leonardo da Vinci, 32-20133, Milano, Italy
| | - Alex J Barker
- Istituto Italiano di Tecnologia, Center for Nano Science and Technology, Milano, 20133, Italy
| | - Kunal S Mali
- Department of Chemistry, Division of Molecular Imaging and Photonics KU Leuven Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Francesco Scotognella
- Physics Department, Politecnico di Milano Piazza L. da Vinci 32, Milano, 20133, Italy
| | - Steven De Feyter
- Department of Chemistry, Division of Molecular Imaging and Photonics KU Leuven Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Matteo Tommasini
- Dipartimento di Chimica, Materiali e Ingegneria Chimica - Politecnico di Milano Piazza Leonardo da Vinci, 32-20133, Milano, Italy
| | - Xinliang Feng
- Center for Advancing Electronics and Faculty of Chemistry and Food Chemistry, Technical University of Dresden, 01062, Dresden, Germany.,Max Planck Institute of Microstructure Physics Weinberg 2, 06120, Halle, Germany
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research Ackermannweg 10, 55128, Mainz, Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer Research Ackermannweg 10, 55128, Mainz, Germany.,Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
7
|
Baig N, Shetty S, Tiwari R, Pramanik SK, Alameddine B. Aggregation-Induced Emission of Contorted Polycondensed Aromatic Hydrocarbons Made by Edge Extension Using a Palladium-Catalyzed Cyclopentannulation Reaction. ACS OMEGA 2022; 7:45732-45739. [PMID: 36530321 PMCID: PMC9753205 DOI: 10.1021/acsomega.2c07168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/23/2022] [Indexed: 06/02/2023]
Abstract
Contorted polycyclic aromatic hydrocarbons (PAHs), CPA1-2 and CPB1-2, bearing peripheral five-membered rings were synthesized employing a palladium-catalyzed cyclopentannulation reaction using specially designed diaryl acetylene synthons TPE and TPEN with commercially available dibromo- anthracene DBA and bianthracene DBBA derivatives. The resulting target compounds CPA1-2 and CPB1-2 were isolated in excellent yield and found to be highly soluble in common organic solvents, which allowed for their structural characterization and investigation of the photophysical properties, disclosing their aggregation-induced emission (AIE) properties in THF at selective concentration ranges of water fractions in the solvent mixture. Examination of the contorted PAH structures by means of density functional theory (DFT) revealed higher electronic conjugation in the more rigid and planar anthracene-containing CPA1-2 derivatives when compared to the twisted bianthracene-bearing moieties CBPA1-2 with HOMO-LUMO bandgaps (ΔE) of ∼2.32 eV for the former PAHs and ∼2.78 eV for the latter ones.
Collapse
Affiliation(s)
- Noorullah Baig
- Department
of Mathematics and Natural Sciences, Gulf
University for Science and Technology, Kuwait City 1886644, Kuwait
- Functional
Materials Group, GUST, Kuwait City 1886644, Kuwait
| | - Suchetha Shetty
- Department
of Mathematics and Natural Sciences, Gulf
University for Science and Technology, Kuwait City 1886644, Kuwait
- Functional
Materials Group, GUST, Kuwait City 1886644, Kuwait
| | - Rajeshwari Tiwari
- CSIR-Central
Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| | - Sumit Kumar Pramanik
- CSIR-Central
Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| | - Bassam Alameddine
- Department
of Mathematics and Natural Sciences, Gulf
University for Science and Technology, Kuwait City 1886644, Kuwait
- Functional
Materials Group, GUST, Kuwait City 1886644, Kuwait
| |
Collapse
|