1
|
Le LN, He T, Joyce JP, Oyala PH, DeBeer S, Agapie T. Molybdenum-Iron-Sulfur Cluster with a Bridging Carbide Ligand as a Partial FeMoco Model: CO Activation, EPR Studies, and Bonding Insight. J Am Chem Soc 2025; 147:11216-11226. [PMID: 40112093 PMCID: PMC11969536 DOI: 10.1021/jacs.4c17893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 03/22/2025]
Abstract
Nitrogenase enzymes catalyze the reduction of N2 to NH3 at a complex Fe-M (M = Mo, Fe, or V) cofactor (FeMco), which displays eight metal centers and sulfide and carbide bridges with a MFe7S8C composition. The role of the unusual μ6-carbide ligand and its effects on the metal centers remain unclear. Here, we describe the transfer of a carbide ligand to a MoFe3S3 cluster supported by a bisphenoxide ligand from a previously reported terminal Mo carbide complex to yield a pentametallic cluster of MoS3Fe3CMo composition, which also displays a bridging CO that resembles the lo-CO form of nitrogenase. This cluster has an S = 1/2 spin state amenable to studies by pulse EPR spectroscopy, revealing a significantly larger carbide 13C hyperfine interaction (aiso(13C) = 12.5 MHz) than any observed for various states of FeMoco studied by EPR thus far (|aiso(13C)| = 0.89 to 2.7 MHz). This report provides a strategy for the synthesis of carbide-containing iron-sulfur clusters relevant to nitrogenase cluster modeling, as well as benchmarking information for the metal-carbon interactions by EPR methods.
Collapse
Affiliation(s)
- Linh N.
V. Le
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Tianyi He
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Justin P. Joyce
- Department
of Inorganic Spectroscopy, Max Planck Institute
for Chemical Energy Conversion, Stiftstr. 34-36, Mülheim an der Ruhr D-45470, Germany
| | - Paul H. Oyala
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Serena DeBeer
- Department
of Inorganic Spectroscopy, Max Planck Institute
for Chemical Energy Conversion, Stiftstr. 34-36, Mülheim an der Ruhr D-45470, Germany
| | - Theodor Agapie
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
2
|
Huang F, Ma J, Nie J, Xu B, Huang X, Lu G, Winnik MA, Feng C. A Versatile Strategy toward Donor-Acceptor Nanofibers with Tunable Length/Composition and Enhanced Photocatalytic Activity. J Am Chem Soc 2024; 146:25137-25150. [PMID: 39207218 DOI: 10.1021/jacs.4c08415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Living crystallization-driven self-assembly (CDSA) has emerged as an efficient strategy to generate nanofibers of π-conjugated polymers (CPNFs) in a controlled fashion. However, reports of donor-acceptor (D-A) heterojunction CPNFs are extremely rare. The preparation of these materials remains a challenge due to the lack of rational design guidelines for the D-A π-conjugated units. Herein, we report a versatile CDSA strategy based upon carefully designed D-A-co-oligomers in which electron-deficient benzothiadiazole (BT) or dibenzo[b,d]thiophene 5,5-dioxide (FSO) units are attached to the two ends of an oligo(p-phenylene ethynylene) heptamer [BT-OPE7-BT, FSO-OPE7-FSO]. This arrangement with the electron-deficient groups at the two ends of the oligomer enhances the stacking interaction of the A-D-A π-conjugated structure. In contrast, D-A-D structures with a single BT in the middle of a string of OPE units disrupt the packing. We employed oligomers with a terminal alkyne to synthesize diblock copolymers BT-OPE7-BT-b-P2VP and BT-OPE7-BT-b-PNIPAM (P2VP = poly(2-vinylpyridine), PNIPAM = poly(N-isopropylacrylamide)) and FSO-OPE7-FSO-b-P2VP and FSO-OPE7-FSO-b-PNIPAM. CDSA experiments with these copolymers in ethanol were able to generate CPNFs of controlled length by both self-seeding and seeded growth as well as block comicelles with precisely tunable length and composition. Furthermore, the D-A CPNFs with a BT-OPE7-BT-based core demonstrate photocatalytic activity for the photooxidation of sulfide to sulfoxide and benzylamine to N-benzylidenebenzylamine. Given the scope of the oligomer compositions examined and the range of structures formed, we believe that the living CDSA strategy with D-A-based co-oligomers opens future opportunities for the creation of D-A CPNFs with programmable architectures as well as diverse functionalities and applications.
Collapse
Affiliation(s)
- Fengfeng Huang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Junyu Ma
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Jiucheng Nie
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Binbin Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Guolin Lu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Chun Feng
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| |
Collapse
|
3
|
Cobb CR, Ngo RK, Dick EJ, Lynch VM, Rose MJ. Multi-phosphine-chelated iron-carbide clusters via redox-promoted ligand exchange on an inert hexa-iron-carbide carbonyl cluster, [Fe 6(μ 6-C)(μ 2-CO) 4(CO) 12] 2. Chem Sci 2024; 15:11455-11471. [PMID: 39055015 PMCID: PMC11268514 DOI: 10.1039/d4sc01370k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/25/2024] [Indexed: 07/27/2024] Open
Abstract
We report the reactivity, structures and spectroscopic characterization of reactions of phosphine-based ligands (mono-, di- and tri-dentate) with iron-carbide carbonyl clusters. Historically, the archetype of this cluster class, namely [Fe6(μ6-C)(μ2-CO)4(CO)12]2-, can be prepared on a gram-scale but is resistant to simple ligand substitution reactions. This limitation has precluded the relevance of iron-carbide clusters relating to organometallics, catalysis and the nitrogenase active site cluster. Herein, we aimed to derive a simple and reliable method to accomplish CO → L (where L = phosphine or other general ligands) substitution reactions without harsh reagents or multi-step synthetic strategies. Ultimately, our goal was ligand-based chelation of an Fe n (μ n -C) core to achieve more synthetic control over multi-iron-carbide motifs relevant to the nitrogenase active site. We report that the key intermediate is the PSEPT-non-conforming cluster [Fe6(μ6-C)(CO)16] (2: 84 electrons), which can be generated in situ by the outer-sphere oxidation of [Fe6(μ6-C)(CO)16]2- (1: closo, 86 electrons) with 2 equiv. of [Fc]PF6. The reaction of 2 with excess PPh3 generates a singly substituted neutral cluster [Fe5(μ5-C)(CO)14PPh3] (4), similar to the reported reactivity of the substitutionally active cluster [Fe5(μ5-C)(CO)15] with monodentate phosphines (Cooke & Mays, 1990). In contrast, the reaction of 2 with flexible, bidentate phosphines (DPPE and DPPP) generates a wide range of unisolable products. However, the rigid bidentate phosphine bis(diphenylphosphino)benzene (bdpb) disproportionates the cluster into non-ligated Fe3-carbide anions paired with a bdpb-supported Fe(ii) cation, which co-crystallize in [Fe3(μ3-CH)(μ3-CO)(CO)9]2[Fe(MeCN)2(bdpb)2] (6). A successful reaction of 2 with the tripodal ligand Triphos generates the first multi-iron-chelated, authentic carbide cluster of the formula [Fe4(μ4-C)(κ3-Triphos)(CO)10] (9). DFT analysis of the key (oxidized) intermediate 2 suggests that its (μ6-C)Fe6 framework remains fully intact but is distorted into an axially compressed, 'ruffled' octahedron distinct from the parent closo cluster 1. Oxidation of the cluster in non-coordinating solvent allows for the isolation and crystallization of the CO-saturated, intact closo-analogue [Fe6(μ6-C)(CO)17] (3), indicating that the intact (μ6-C)Fe6 motif is retained during initial oxidation with [Fc]PF6. Overall, we demonstrate that redox modulation beneficially 'bends' Wade-Mingo's rules via the generation of electron-starved (non-PSEPT) intermediates, which are the key intermediates in promoting facile CO → L substitution reactions in iron-carbide-carbonyl clusters.
Collapse
Affiliation(s)
- Caitlyn R Cobb
- Department of Chemistry, The University of Texas at Austin Austin TX 78712 USA
| | - Ren K Ngo
- Department of Chemistry, The University of Texas at Austin Austin TX 78712 USA
| | - Emily J Dick
- Department of Chemistry, The University of Texas at Austin Austin TX 78712 USA
| | - Vincent M Lynch
- Department of Chemistry, The University of Texas at Austin Austin TX 78712 USA
| | - Michael J Rose
- Department of Chemistry, The University of Texas at Austin Austin TX 78712 USA
| |
Collapse
|
4
|
Tan J, Zhu C, Li L, Wang J, Xia XH, Wang C. Engineering Cell Membranes: From Extraction Strategies to Emerging Biosensing Applications. Anal Chem 2024; 96:7880-7894. [PMID: 38272835 DOI: 10.1021/acs.analchem.3c01746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Affiliation(s)
- Jing Tan
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Chengcheng Zhu
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Lulu Li
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, P.R. China
| | - Jin Wang
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, P.R. China
| | - Chen Wang
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
5
|
Wilson DWN, Fataftah MS, Mathe Z, Mercado BQ, DeBeer S, Holland PL. Three-Coordinate Nickel and Metal-Metal Interactions in a Heterometallic Iron-Sulfur Cluster. J Am Chem Soc 2024; 146:4013-4025. [PMID: 38308743 PMCID: PMC10993082 DOI: 10.1021/jacs.3c12157] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
Biological multielectron reactions often are performed by metalloenzymes with heterometallic sites, such as anaerobic carbon monoxide dehydrogenase (CODH), which has a nickel-iron-sulfide cubane with a possible three-coordinate nickel site. Here, we isolate the first synthetic iron-sulfur clusters having a nickel atom with only three donors, showing that this structural feature is feasible. These have a core with two tetrahedral irons, one octahedral tungsten, and a three-coordinate nickel connected by sulfide and thiolate bridges. Electron paramagnetic resonance (EPR), Mössbauer, and superconducting quantum interference device (SQUID) data are combined with density functional theory (DFT) computations to show how the electronic structure of the cluster arises from strong magnetic coupling between the Ni, Fe, and W sites. X-ray absorption spectroscopy, together with spectroscopically validated DFT analysis, suggests that the electronic structure can be described with a formal Ni1+ atom participating in a nonpolar Ni-W σ-bond. This metal-metal bond, which minimizes spin density at Ni1+, is conserved in two cluster oxidation states. Fe-W bonding is found in all clusters, in one case stabilizing a local non-Hund state at tungsten. Based on these results, we compare different M-M interactions and speculate that other heterometallic clusters, including metalloenzyme active sites, could likewise store redox equivalents and stabilize low-valent metal centers through metal-metal bonding.
Collapse
Affiliation(s)
- Daniel W. N. Wilson
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520, USA
| | - Majed S. Fataftah
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520, USA
| | - Zachary Mathe
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520, USA
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Patrick L. Holland
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520, USA
| |
Collapse
|
6
|
Zhao L, Hu Y, Li G, Zou S, Ling L. Chemical-Chemical Redox Cycle Signal Amplification Strategy Combined with Dual Ratiometric Immunoassay for Surface-Enhanced Raman Spectroscopic Detection of Cardiac Troponin I. Anal Chem 2023; 95:16677-16682. [PMID: 37916775 DOI: 10.1021/acs.analchem.3c03238] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Improving the sensitivity and reproducibility of surface-enhanced Raman spectroscopy (SERS) methods for the detection of bioactive molecules is crucial in biological process research and clinical diagnosis. Herein, we designed a novel SERS platform for cardiac troponin I (cTnI) detection by a chemical-chemical redox cycle signal amplification strategy combined with a dual ratiometric immunoassay. First, ascorbic acid (AA) was generated by enzyme-assisted immunoreaction with a cTnI-anchored sandwich structure. Then, oxidized 4-mercaptophenol (ox4-MP) was reacted with AA to produce 4-mercaptophenol (4-MP). Quantitative analysis of cTnI was realized by a Raman signal switch between ox4-MP and 4-MP. Specifically, AA could be regenerated by reductant (tris(2-carboxyethyl) phosphine, TCEP), which in turn produced more signal indicator 4-MP, causing significant signal amplification for cTnI analysis by SERS immunosensing. Moreover, a dual ratiometric-type SERS method was established with the intensity ratio I1077/I822 and I633/I822, which improved the reproducibility of the cTnI assay. The excellent performance of the chemical-chemical redox cycle strategy and ratio-type SERS assay endows the method with high sensitivity and reproducibility. The linear ranges of cTnI were 0.001 to 50.0 ng mL-1 with detection limits of 0.33 pg mL-1 (upon I1077/I822) and 0.31 pg mL-1 (upon I635/I822), respectively. The amount of cTnI in human serum samples yielded recoveries from 89.0 to 114%. This SERS method has remarkable analytical performance, providing an effective approach for the early diagnosis of cardiovascular diseases, and has great latent capacity in the sensitive detection of bioactive molecules.
Collapse
Affiliation(s)
- Lizhen Zhao
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuling Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Seyin Zou
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Liansheng Ling
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|