1
|
Damacet P, Hannouche K, Gouda A, Hmadeh M. Controlled Growth of Highly Defected Zirconium-Metal-Organic Frameworks via a Reaction-Diffusion System for Water Remediation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17741-17750. [PMID: 38230659 PMCID: PMC11955948 DOI: 10.1021/acsami.3c16327] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
The relentless growth of metal-organic framework (MOF) chemistry is paralleled by the persistent urge to control the MOFs physical and chemical properties. While this control is mostly achieved by solvothermal syntheses, room temperature procedures stand out as more convenient and sustainable pathways for the production of MOF materials. Herein, a novel approach to control the crystal size and defect numbers of a dihydroxy-functionalized zirconium-based metal-organic framework (UiO-66(OH)2) at room temperature is reported. Through a reaction-diffusion method in a 1D system, zirconium salt was diffused into an agar gel matrix containing the organic linker to form nanocrystals of UiO-66(OH)2 with tailored structural features that include crystal size distribution, surface area, and defect number. By variation of the synthesis parameters of the system, hierarchical MOF nanocrystals with an average size ranging from 30 nm up to 270 nm and surface areas between 201 and 500 m2 g-1 were obtained in a one-pot synthetic route. To stress the importance of crystal size, morphology, and structural defects on the adsorption properties of UiO-66(OH)2, the adsorption capacity of the MOF toward methylene blue dye was tested with the largest and most defected crystals achieving the best performance of 202 mg/g. The distinctive structural characteristics including the hierarchical micromesoporous frameworks, the nanosized particles, and the highly defective crystals obtained by our synthesis procedure are deemed challenging through the conventional synthesis methods. This work paves the way for engineering MOF crystals with tunable physical and chemical properties, using a green synthesis procedure, for their advantageous use in many desirable applications.
Collapse
Affiliation(s)
- Patrick Damacet
- Department
of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107 2020, Lebanon
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| | - Karen Hannouche
- Department
of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Abdelaziz Gouda
- Department
of Chemistry, University of Toronto, 80 St. George Street, M5S 3H6 Toronto, Canada
| | - Mohamad Hmadeh
- Department
of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107 2020, Lebanon
| |
Collapse
|
2
|
Peng Y, Sakoleva T, Rockstroh N, Bartling S, Schoenmakers P, Lim G, Wei D, Bayer T, Dörr M, Böttcher D, Lauterbach L, Junge H, Bornscheuer UT, Beller M. State-of-the-Art Light-Driven Hydrogen Generation from Formic Acid and Utilization in Enzymatic Hydrogenations. CHEMSUSCHEM 2025; 18:e202401811. [PMID: 39377637 PMCID: PMC11826123 DOI: 10.1002/cssc.202401811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/09/2024]
Abstract
A concept of combining photocatalytically generated hydrogen with green enzymatic reductions is demonstrated. The developed photocatalytic formic acid (FA) dehydrogenation setup based on Pt(x)@TiO2 shows stable hydrogen generation activity, which is two orders of magnitude higher than reported values of state-of-the-art systems. Mechanistic studies confirm that hydrogen generation proceeds via a photocatalytic pathway, which is entirely different from purely thermal reaction mechanisms previously reported. The viability of the presented approach is demonstrated by the synthesis of value-added compounds 3-phenylpropanal and (2R, 5S)-dihydrocarvone at ambient pressure and room temperature, which should be applicable for many other hydrogenation processes, e. g., for the preparation of flavours and fragrance compounds, as well as pharmaceuticals.
Collapse
Affiliation(s)
- Yong Peng
- Leibniz-Institut für Katalyse e. V. (LIKAT Rostock)Albert-Einstein-Str. 29a18059RostockGermany
| | - Thaleia Sakoleva
- Dept. of Biotechnology & Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417487GreifswaldGermany
| | - Nils Rockstroh
- Leibniz-Institut für Katalyse e. V. (LIKAT Rostock)Albert-Einstein-Str. 29a18059RostockGermany
| | - Stephan Bartling
- Leibniz-Institut für Katalyse e. V. (LIKAT Rostock)Albert-Einstein-Str. 29a18059RostockGermany
| | - Pierre Schoenmakers
- Institute of Applied MicrobiologyAachen Biology and BiotechnologyRWTH Aachen UniversityWorringerweg 152074AachenGermany
| | - Guiyeoul Lim
- Institute of Applied MicrobiologyAachen Biology and BiotechnologyRWTH Aachen UniversityWorringerweg 152074AachenGermany
| | - Duo Wei
- School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
| | - Thomas Bayer
- Dept. of Biotechnology & Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417487GreifswaldGermany
| | - Mark Dörr
- Dept. of Biotechnology & Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417487GreifswaldGermany
| | - Dominique Böttcher
- Dept. of Biotechnology & Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417487GreifswaldGermany
| | - Lars Lauterbach
- Institute of Applied MicrobiologyAachen Biology and BiotechnologyRWTH Aachen UniversityWorringerweg 152074AachenGermany
| | - Henrik Junge
- Leibniz-Institut für Katalyse e. V. (LIKAT Rostock)Albert-Einstein-Str. 29a18059RostockGermany
| | - Uwe T. Bornscheuer
- Dept. of Biotechnology & Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417487GreifswaldGermany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V. (LIKAT Rostock)Albert-Einstein-Str. 29a18059RostockGermany
| |
Collapse
|
3
|
Luo R, Qiao P, Zeng M, Deng X, Wang H, Hao W, Fan J, Bi Q, Li G, Cao Y. CO 2-Mediated Hydrogen Energy Release-Storage Enabled by High-Dispersion Gold-Palladium Alloy Nanodots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407578. [PMID: 39568215 DOI: 10.1002/smll.202407578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/13/2024] [Indexed: 11/22/2024]
Abstract
Developing and fabricating a heterogeneous catalyst for efficient formic acid (FA) dehydrogenation coupled with CO2 hydrogenation back to FA is a promising approach to constructing a complete CO2-mediated hydrogen release-storage system, which remains challenging. Herein, a facile two-step strategy involving high-temperature pyrolysis and wet chemical reduction processes can synthesize efficient pyridinic-nitrogen-modified carbon-loaded gold-palladium alloy nanodots (AuPd alloy NDs). These NDs exhibit a prominent electron synergistic effect between Au and Pd components and tunable alloy-support interactions. The pyridinic-N dosage in carbon substrate improves the surface electron density of the alloy catalyst, thus regulating the chemical adsorption of FA molecules. Specifically, the engineered Au3Pd7/CN0.25 demonstrates an outstanding room-temperature FA dehydrogenation efficiency, achieving ≈100% conversion and an initial turnover frequency (TOF) of up to 9049 h-1. The versatile AuPd alloy NDs also show the ability to convert CO2, one of the products of FA dehydrogenation, into FA (formate) with a 90.8% yield under mild conditions. Moreover, in-depth insights into the unique alloyed microstructure, structure-activity relationship, key intermediates, and the alloy-driven five-step reaction mechanism involving the rate-determining step of C─H bond cleavage from critical *HCOO species via D-labeled isotope, in situ infrared spectroscopy, and theoretical calculations are investigated.
Collapse
Affiliation(s)
- Rui Luo
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Panzhe Qiao
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Mengqi Zeng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Xinyue Deng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Hui Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Weiju Hao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Jinchen Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Qingyuan Bi
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Guisheng Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Yong Cao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
4
|
Liu K, Li Y. Photothermal Induced Dual-Interface: Accelerating Sustainable Hydrogen Evolution from Formic Acid. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62033-62042. [PMID: 39496571 DOI: 10.1021/acsami.4c13440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Formic acid (FA), a liquid hydrogen storage carrier, can release hydrogen via photothermal catalysis, providing a clean and sustainable solution toward a carbon-neutral energy cycle. Despite recent advances in the design of efficient catalysts, the development of advanced systems with high H2 yield, stability, and durability remains challenging due to the inefficient photothermal conversion and mass transfer in the traditional liquid-solid bulk system, as well as the trade-off between hydrogen storage density and dehydrogenation rate. Here, we address these challenges by creating a photothermal-induced dual-interface characterized by high spectral absorption and low heat loss, a facile supply of FA, and vaporization of FA to minimize the energy barrier of the reaction. As a result, a record hydrogen evolution rate (200.9 mmol g-1 h-1) is achieved in a high concentration (26 M) of FA, which is about 15 times higher than the liquid-solid bulk system. In addition, it can be operated continuously for more than 192 h without additive addition and energy consumption, providing a strategy for accelerating interfacial mass transfer to improve catalytic activity, and also presents a reference for sustainable hydrogen production.
Collapse
Affiliation(s)
- Kun Liu
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yinshi Li
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
5
|
Cheng C, Zhang S, Zhang J, Guan L, El-Khouly ME, Jin S. Mixed Crystalline Covalent Heptazine Frameworks with Built-in Heterojunction Structures towards Efficient Photocatalytic Formic Acid Dehydrogenation. Angew Chem Int Ed Engl 2024; 63:e202411359. [PMID: 39007748 DOI: 10.1002/anie.202411359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/16/2024]
Abstract
Covalent heptazine frameworks (CHFs) are widely utilized in the recent years as potential photocatalysts. However, their limited conjugated structures, low crystallinity and small surface areas have restricted the practical photocatalysis performance. Along this line, we report herein the synthesis of a kind of mixed crystalline CHF (m-CHF-1) with built-in heterojunction structure, which can efficiently catalyze the formic acid dehydrogenation by visible light driven photocatalysis. The m-CHF-1 is synthesized from 2,5,8-triamino-heptazine and dicyanobenzene (DCB) in the molten salts, in which DCB plays as organic molten co-solvent to promote the rapid and ordered polymerization of 2,5,8-triamino-heptazine. The m-CHF-1 is formed by embedding phenyl-linked heptazine (CHF-Ph) units in the poly(heptazine imide) (PHI) network similar to doping. The CHF-Ph combined with PHI form an effective type II heterojunction structure, which promote the directional transfer of charge carriers. And the integration of CHF-Ph makes m-CHF-1 have smaller exciton binding energy than pure PHI, the charge carriers are more easily dissociated to form free electrons, resulting in higher utilization efficiency of the carriers. The largest hydrogen evolution rate reaches a value of 42.86 mmol h-1 g-1 with a high apparent quantum yield of 24.6 % at 420 nm, which surpasses the majority of other organic photocatalysts.
Collapse
Affiliation(s)
- Cheng Cheng
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, Shaanxi, 710049, China
| | - Siquan Zhang
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Jin Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, Shaanxi, 710049, China
| | - Lijiang Guan
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, Shaanxi, 710049, China
| | - Mohamed E El-Khouly
- Nanoscience Program, Institute of Basic and Applied Sciences (BAS), Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Shangbin Jin
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
6
|
Diez-Cabanes V, Granados-Tavera K, Shere I, Cárdenas-Jirón G, Maurin G. Engineering MOF/carbon nitride heterojunctions for effective dual photocatalytic CO 2 conversion and oxygen evolution reactions. Chem Sci 2024:d4sc03630a. [PMID: 39246361 PMCID: PMC11376056 DOI: 10.1039/d4sc03630a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024] Open
Abstract
Photocatalysis appears as one of the most promising avenues to shift towards sustainable sources of energy, owing to its ability to transform solar light into chemical energy, e.g. production of chemical fuels via oxygen evolution (OER) and CO2 reduction (CO2RR) reactions. Ti metal-organic frameworks (MOFs) and graphitic carbon nitride derivatives, i.e. poly-heptazine imides (PHI) are appealing CO2RR and OER photo-catalysts respectively. Engineering of an innovative Z-scheme heterojunction by assembling a Ti-MOF and PHI offers an unparalleled opportunity to mimick an artificial photosynthesis device for dual CO2RR/OER catalysis. Along this path, understanding of the photophysical processes controlling the MOF/PHI interfacial charge recombination is vital to fine tune the electronic and chemical features of the two components and devise the optimum heterojunction. To address this challenge, we developed a modelling approach integrating force field Molecular Dynamics (MD), Time-Dependent Density Functional Theory (TD-DFT) and Non-Equilibrium Green Function DFT (NEGF-DFT) tools with the aim of systematically exploring the structuring, the opto-electronic and transport properties of MOF/PHI heterojunctions. We revealed that the nature of the MOF/PHI interactions, the interfacial charge transfer directionality and the absorption energy windows of the resulting heterojunctions can be fine tuned by incorporating Cu species in the MOF and/or doping PHI with mono- or divalent cations. Interestingly, we demonstrated that the interfacial charge transfer can be further boosted by engineering MOF/PHI device junctions and application of negative bias. Overall, our generalizable computational methodology unravelled that the performance of CO2RR/OER photoreactors can be optimized by chemical and electronic tuning of the components but also by device design based on reliable structure-property rules, paving the way towards practical exploitation.
Collapse
Affiliation(s)
| | - Kevin Granados-Tavera
- ICGM, Univ. Montpellier, CNRS, ENSCM Montpellier 34293 France
- Laboratory of Theoretical Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile (USACH) 9170022 Santiago Chile
| | - Inderdip Shere
- ICGM, Univ. Montpellier, CNRS, ENSCM Montpellier 34293 France
| | - Gloria Cárdenas-Jirón
- Laboratory of Theoretical Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile (USACH) 9170022 Santiago Chile
| | | |
Collapse
|
7
|
Dankar J, Rouchon V, Rivallan M, Pagis C, El-Roz M. Evidence on C-C Coupling to Acetate as Key Reaction Intermediate in Photocatalytic Reduction of CO 2 over Pt/TiO 2. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42210-42220. [PMID: 39086023 DOI: 10.1021/acsami.4c07256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Photocatalytic conversion of CO2 with H2O is an attractive application that has the potential to mitigate environmental and energy challenges through the conversion of CO2 to hydrocarbon products such as methane. However, the underlying reaction mechanisms remain poorly understood, limiting real progress in this field. In this work, a mechanistic investigation of the CO2 photocatalytic reduction on Pt/TiO2 is carried out using an operando FTIR approach, combined with chemometric data processing and isotope exchange of (12CO2 + H2O) toward (13CO2 + H2O). Multivariate curve resolution analysis applied to operando spectra across numerous cycles of photoactivation and the CO2 reaction facilitates the identification of principal chemical species involved in the reaction pathways. Moreover, specific probe-molecule-assisted reactions, including CO and CH3COOH, elucidate the capacity of selected molecules to undergo methane production under irradiation conditions. Finally, isotopic exchange reveals conclusive evidence regarding the nature of the identified species during CO2 conversion and points to the significant role of acetates resulting from the C-C coupling reaction as key intermediates in methane production from the CO2 photocatalytic reduction reaction.
Collapse
Affiliation(s)
- Joudy Dankar
- IFP Energies nouvelles, Rond-point de l'échangeur de Solaize, BP 3, Solaize 69360, France
- Laboratoire Catalyse et Spectrochimie, Normandie Université, Caen 14050, France
| | - Virgile Rouchon
- IFP Energies nouvelles, Rond-point de l'échangeur de Solaize, BP 3, Solaize 69360, France
| | - Mickael Rivallan
- IFP Energies nouvelles, Rond-point de l'échangeur de Solaize, BP 3, Solaize 69360, France
| | - Céline Pagis
- IFP Energies nouvelles, Rond-point de l'échangeur de Solaize, BP 3, Solaize 69360, France
| | - Mohamad El-Roz
- Laboratoire Catalyse et Spectrochimie, Normandie Université, Caen 14050, France
| |
Collapse
|
8
|
Pan H, Li J, Wang Y, Xia Q, Qiu L, Zhou B. Solar-Driven Biomass Reforming for Hydrogen Generation: Principles, Advances, and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402651. [PMID: 38816938 PMCID: PMC11304308 DOI: 10.1002/advs.202402651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Indexed: 06/01/2024]
Abstract
Hydrogen (H2) has emerged as a clean and versatile energy carrier to power a carbon-neutral economy for the post-fossil era. Hydrogen generation from low-cost and renewable biomass by virtually inexhaustible solar energy presents an innovative strategy to process organic solid waste, combat the energy crisis, and achieve carbon neutrality. Herein, the progress and breakthroughs in solar-powered H2 production from biomass are reviewed. The basic principles of solar-driven H2 generation from biomass are first introduced for a better understanding of the reaction mechanism. Next, the merits and shortcomings of various semiconductors and cocatalysts are summarized, and the strategies for addressing the related issues are also elaborated. Then, various bio-based feedstocks for solar-driven H2 production are reviewed with an emphasis on the effect of photocatalysts and catalytic systems on performance. Of note, the concurrent generation of value-added chemicals from biomass reforming is emphasized as well. Meanwhile, the emerging photo-thermal coupling strategy that shows a grand prospect for maximally utilizing the entire solar energy spectrum is also discussed. Further, the direct utilization of hydrogen from biomass as a green reductant for producing value-added chemicals via organic reactions is also highlighted. Finally, the challenges and perspectives of photoreforming biomass toward hydrogen are envisioned.
Collapse
Affiliation(s)
- Hu Pan
- College of BiologicalChemical Science and EngineeringJiaxing University899 Guangqiong RoadJiaxingZhejiang314001China
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Jinglin Li
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Yangang Wang
- College of BiologicalChemical Science and EngineeringJiaxing University899 Guangqiong RoadJiaxingZhejiang314001China
| | - Qineng Xia
- College of BiologicalChemical Science and EngineeringJiaxing University899 Guangqiong RoadJiaxingZhejiang314001China
| | - Liang Qiu
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Baowen Zhou
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| |
Collapse
|
9
|
Chen H, Huang H, Xu H, Wu T, Xu Y, Ma X, Yi W, Chen G, Huang S, Ouyang G. Pore-Engineered Hydrogen-Bonded Supramolecular Fluorosensor for Ultrasensitive Determination of Copper Ions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308716. [PMID: 38072769 DOI: 10.1002/smll.202308716] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/16/2023] [Indexed: 05/18/2024]
Abstract
The selective quantification of copper ions (Cu2+) in biosamples holds great importance for disease diagnosis, treatment, and prognosis since the Cu2+ level is closely associated with the physiological state of the human body. While it remains a long-term challenge due to the extremely low level of free Cu2+ and the potential interference by the complex matrices. Here, a pore-engineered hydrogen-bonded organic framework (HOF) fluorosensor is constructed enabling the ultrasensitive and highly selective detection of free Cu2+. Attributing to atomically precise functionalization of active amino "arm" within the HOF pores and the periodic π-conjugated skeleton, this porous HOF fluorosensor affords high affinity toward Cu2+ through double copper-nitrogen (Cu─N) coordination interactions, resulting in specific fluorescence quenching of the HOF as compared with a series of substances ranging from other metal ions, metabolites, amino acids to proteins. Such superior fluorescence quenching effect endows the Cu2+ quantification by this new HOF sensor with a wide linearity of 50-20 000 nm, a low detection limit of 10 nm, and good recoveries (89.5%-115%) in human serum matrices, outperforming most of the reported approaches. This work highlights the practicability of hydrogen-bonded supramolecular engineering for designing facile and ultrasensitive biosensors for clinical free Cu2+ determination.
Collapse
Affiliation(s)
- Haiting Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Haoquan Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Huiying Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Tong Wu
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, China
| | - Yanbin Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaomin Ma
- Cryo-EM Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Siming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
10
|
Wen H, Liu Y, Liu S, Peng Z, Wu X, Yuan H, Jiang J, Li B. Heterogeneous Catalysis in Production and Utilization of Formic Acid for Renewable Energy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305405. [PMID: 38072804 DOI: 10.1002/smll.202305405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/18/2023] [Indexed: 05/03/2024]
Abstract
As the cleanest energy source, hydrogen has been followed with interest by researchers around the world. However, due to the internal low density of hydrogen, it cannot be stored and used efficiently which limits the hydrogen application on a huge scale. Chemical hydrogen storage is considered as a useful method for efficient handling and storage. Due to its excellent safety, formic acid stands out. It is worth noting that the matter and energy conversion is established based on formic acid, which is not referred to in the previous documentation. In this review, the latest development of research on heterogeneous catalysis via production and application of formic acid for energy application is reported. The matter and energy conversion based on formic acid are both discussed systematically. More importantly, with formic acid as the node, biomass energy shows potential to be in a dominant position in the energy conversion process. In addition, the catalytic mechanism is also mentioned. This review can provide the current state in this field and the new inspirations for developing superior catalytic systems.
Collapse
Affiliation(s)
- Hao Wen
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Yanyan Liu
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
- College of Science, Henan Agricultural University, 63 Agriculture Road, Zhengzhou, 450002, P. R. China
| | - Shuling Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Zhikun Peng
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Xianli Wu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Huiyu Yuan
- School of Materials Science and Engineering, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
| | - Baojun Li
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| |
Collapse
|
11
|
Liu Q, Xu W, Huang H, Shou H, Low J, Dai Y, Gong W, Li Y, Duan D, Zhang W, Jiang Y, Zhang G, Cao D, Wei K, Long R, Chen S, Song L, Xiong Y. Spectroscopic visualization of reversible hydrogen spillover between palladium and metal-organic frameworks toward catalytic semihydrogenation. Nat Commun 2024; 15:2562. [PMID: 38519485 PMCID: PMC10959988 DOI: 10.1038/s41467-024-46923-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
Hydrogen spillover widely occurs in a variety of hydrogen-involved chemical and physical processes. Recently, metal-organic frameworks have been extensively explored for their integration with noble metals toward various hydrogen-related applications, however, the hydrogen spillover in metal/MOF composite structures remains largely elusive given the challenges of collecting direct evidence due to system complexity. Here we show an elaborate strategy of modular signal amplification to decouple the behavior of hydrogen spillover in each functional regime, enabling spectroscopic visualization for interfacial dynamic processes. Remarkably, we successfully depict a full picture for dynamic replenishment of surface hydrogen atoms under interfacial hydrogen spillover by quick-scanning extended X-ray absorption fine structure, in situ surface-enhanced Raman spectroscopy and ab initio molecular dynamics calculation. With interfacial hydrogen spillover, Pd/ZIF-8 catalyst shows unique alkyne semihydrogenation activity and selectivity for alkynes molecules. The methodology demonstrated in this study also provides a basis for further exploration of interfacial species migration.
Collapse
Affiliation(s)
- Qiaoxi Liu
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | - Wenjie Xu
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hao Huang
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hongwei Shou
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jingxiang Low
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yitao Dai
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wanbing Gong
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Youyou Li
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Delong Duan
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wenqing Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yawen Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Guikai Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Dengfeng Cao
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Kecheng Wei
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ran Long
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Shuangming Chen
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Li Song
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yujie Xiong
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China.
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241000, China.
| |
Collapse
|
12
|
Ge S, Gong L, Yi P, Mo X, Liu C, Yi XY, He P. N-Site Regulation of Pyridyltriazole in Cp*Ir(N̂N)(H 2O) Complexes Achieving Catalytic FA Dehydrogenation. Inorg Chem 2023; 62:18375-18383. [PMID: 37910633 DOI: 10.1021/acs.inorgchem.3c01649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
A series of novel Cp*Ir complexes with nitrogen-rich N̂N bidentate ligands were developed for the catalytic dehydrogenation of formic acid in water under base-free conditions. These complexes were synthesized by using pyridyl 1,2,4-triazole, methylated species, or pyridyl 1,2,3-triazole as a N-site regulation ligand and were fully characterized. Complex 1-H2O bearing 1,2,4-triazole achieved a high turnover frequency of 14192 h-1 at 90 °C in 4 M FA aqueous solution. The terminal and bridged Ir-H intermediates of 1-H2O were successfully detected by 1H NMR and mass spectrometry measurements. Kinetic isotope effect experiments and density functional theory (DFT) calculations were performed; then a plausible mechanism was proposed involving the β-hydride elimination and formation of H2. Water-assisted H2 release was proven to be the rate-determining step of the reaction. The distribution of Mulliken charges on N atoms of triazole ligand internally revealed that the ortho site N2 of 1-H2O with a higher electron density was conducive to efficient proton transfer. Additionally, the advantage of water-assisted short-range bridge of 1,2,4-triazole moieties led to a higher catalytic activity of 1-H2O. This study demonstrated the effectiveness of nitrogen-rich ligands on FA dehydrogenation and revealed a good strategy for N site regulation in the development of new homogeneous catalysts.
Collapse
Affiliation(s)
- Shun Ge
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Lishan Gong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Pingping Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Xiufang Mo
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Chao Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Xiao-Yi Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Piao He
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| |
Collapse
|
13
|
Elsherbiny AS, Rady A, Abdelhameed RM, Gemeay AH. Efficiency and selectivity of cost-effective Zn-MOF for dye removal, kinetic and thermodynamic approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106860-106875. [PMID: 36847947 PMCID: PMC10611857 DOI: 10.1007/s11356-023-25919-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Green synthesis of metal-organic frameworks (MOFs) has attracted a lot of attention as a crucial step for practical industrial applications. In this work, green synthesis of zinc(II) metal-organic framework (Zn-MOF) has been carried out at room temperature. The Zn metal (node) was extracted from spent domestic batteries, and the linker was benzene di-carboxylic acid (BDC). The characterization of the as-prepared Zn-MOF was accomplished by PXRD, FT-IR spectroscopy, SEM, TEM, TGA, and nitrogen adsorption at 77 K. All the characterization techniques strongly supported that as-synthesized Zn-MOF using metallic solid waste Zn is similar to that was reported in the literature. The as-prepared Zn-MOF was stable in water for 24 h without any changes in its functional groups and framework. The prepared Zn-MOF was tested for the adsorption of three dyes, two anionic dyes, aniline blue (AB), and orange II (O(II)) as well as methylene blue (MB), an example of cationic dye from aqueous solution. AB has the highest equilibrium adsorbed amount, qe, of value 55.34 mg g-1 at pH = 7 and 25 °C within 40 min. Investigation of the adsorption kinetics indicated that these adsorption processes could be described as a pseudo-second-order kinetic model. Furthermore, the adsorption process of the three dyes was described well by the Freundlich isotherm model. According to the thermodynamic parameters, the adsorption of AB on the prepared Zn-MOF was an endothermic and spontaneous process. In contrast, it was non-spontaneous and exothermic for the uptake of O(II) and MB. This study complements the business case development model of "solid waste to value-added MOFs."
Collapse
Affiliation(s)
- Abeer S Elsherbiny
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Ahmed Rady
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Reda M Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Ali H Gemeay
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
14
|
Singh G, Garg D, Kumar S, Verma R, Malik AK. Terbium-based dual-ligand metal organic framework by diffusion method for selective and sensitive detection of danofloxacin in aqueous medium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106015-106025. [PMID: 37723392 DOI: 10.1007/s11356-023-29895-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
A water-dispersible Tb(III)-based metal organic framework (TBP) was produced by diffusion technique using benzene-1,3,5-tricarboxylic acid (BTC) and pyridine as easily accessible ligands at low cost. The as-synthesized TBP with a crystalline structure and rod-shaped morphology has exhibited thermal stability up to 465 °C. Elemental analysis confirmed the presence of carbon, oxygen, nitrogen, and terbium in the synthesized MOF. TBP was used as a fluorescent probe for detection of danofloxacin (DANO) in an aqueous medium with significant enhancement of fluorescence intensity as compared to various fluoroquinolone antibiotics (levofloxacin (LEVO), ofloxacin (OFLO), norfloxacin (NOR), and ciprofloxacin (CIPRO)) with a low detection limit of 0.45 ng/mL (1.25 nm). The developed method has successfully detected DANO rapidly (i.e., response time = 1 min) with remarkable recovery (97.66-101.96%) and a relative standard deviation (RSD) of less than 2.2%. Additionally, TBP showcased good reusability up to three cycles without any significant performance decline. The in-depth mechanistic studies of the density functional theory (DFT) calculations and mode of action revealed that hydrogen bonding interactions and photo-induced electron transfer (PET) are the major factors for the turn-on enhancement behavior of TBP towards DANO. Thus, the present work provides the quick and precise identification of DANO using a new fluorescent MOF (TBP) synthesized via a unique and facile diffusion technique.
Collapse
Affiliation(s)
- Gurdeep Singh
- Department of Chemistry, Punjabi University, 147002, Patiala, Punjab, India
| | - Deepika Garg
- Department of Chemistry, Punjabi University, 147002, Patiala, Punjab, India
| | - Sanjay Kumar
- Department of Chemistry, Multani Mal Modi College, 147001, Patiala, Punjab, India
| | - Rajpal Verma
- Department of Chemistry, Punjabi University, 147002, Patiala, Punjab, India
- Department of Chemistry, Dr. B. R. Ambedkar Govt. College, Dabwali, Sirsa, Haryana, 125104, India
| | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, 147002, Patiala, Punjab, India.
| |
Collapse
|
15
|
Sahoo D, Tyagi S, Agarwal S, Shakya J, Ali N, Yoo WJ, Kaviraj B. Cost-Effective and Highly Efficient Manganese-Doped MoS 2 Nanosheets as Visible-Light-Driven Photocatalysts for Wastewater Treatment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7109-7121. [PMID: 37156095 DOI: 10.1021/acs.langmuir.3c00390] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
One of the main objectives in wastewater treatment and sustainable energy production is to find photocatalysts that are favorably efficient and cost-effective. Transition-metal dichalcogenides (TMDs) are promising photocatalytic materials; out of all, MoS2 is extensively studied as a cocatalyst in the TMD library due to its exceptional photocatalytic activity for the degradation of organic dyes due to its distinctive morphology, adequate optical absorption, and rich active sites. However, sulfur ions on the active edges facilitate the catalytic activity of MoS2. On the basal planes, sulfur ions are catalytically inactive. Injecting metal atoms into the MoS2 lattice is a handy approach for triggering the surface of the basal planes and enriching catalytically active sites. Effective band gap engineering, sulfur edges, and improved optical absorption of Mn-doped MoS2 nanostructures are promising for improving their charge separation and photostimulated dye degradation activity. The percentage of dye degradation of MB under visible-light irradiations was found to be 89.87 and 100% for pristine and 20% Mn-doped MoS2 in 150 and 90 min, respectively. However, the degradation of MB dye was increased when the doping concentration in MoS2 increased from 5 to 20%. The kinetic study showed that the first-order kinetic model described the photodegradation mechanism well. After four cycles, the 20% Mn-doped MoS2 catalysts maintained comparable catalytic efficacy, indicating its excellent stability. The results demonstrated that the Mn-doped MoS2 nanostructures exhibit exceptional visible-light-driven photocatalytic activity and could perform well as a catalyst for industrial wastewater treatment.
Collapse
Affiliation(s)
- Dhirendra Sahoo
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH-91, Greater Noida, Gautam Budha Nagar, Uttar Pradesh 201314, India
| | - Shivam Tyagi
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH-91, Greater Noida, Gautam Budha Nagar, Uttar Pradesh 201314, India
| | - Srishti Agarwal
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH-91, Greater Noida, Gautam Budha Nagar, Uttar Pradesh 201314, India
| | - Jyoti Shakya
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 10044 Stockholm, Sweden
| | - Nasir Ali
- SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
| | - Won Jong Yoo
- SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
| | - Bhaskar Kaviraj
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH-91, Greater Noida, Gautam Budha Nagar, Uttar Pradesh 201314, India
| |
Collapse
|
16
|
Nashre-Ul-Islam SM, Borah KK, Raza MA, Öztürkkan FE. Molecular docking with SARS-CoV-2 and potential drug property of a bioactive novel Zn(II) polymer: A combined experimental and theoretical study. Polyhedron 2023; 233:116304. [PMID: 36710999 PMCID: PMC9859646 DOI: 10.1016/j.poly.2023.116304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
A new Zn(II) coordination polymer based on o-phthalato (Phth) and 2-aminopyridine (2-Ampy) viz. {[Zn(2-Ampy)2(Phth)]∙(H2O)]}n (1) has been synthesized at room temperature and characterized by elemental analyses, electronic spectroscopy, FT-IR spectroscopy, thermal analysis (TGA/DSC), powder X-ray diffraction (PXRD) and single crystal X-ray diffraction. The basic trimeric units of 1 form a polymeric chain by N-H⋯O and π⋯π interactions. These polymeric chains interconnect through various non-covalent interactions in two perpendicular directions to ultimately give rise to a 3D architecture of 1. The interesting non-covalent interactions in 1, contributing to its stability in the solid state are studied by Hirshfeld surface analysis and other different theoretical tools. Molecular docking study of 1 is performed against six different proteins of SARS-CoV-2. The drug potential of the synthesized compound is evaluated by ADMET calculations.
Collapse
Affiliation(s)
| | | | - Muhammad Asam Raza
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Gujrat, Pakistan
| | | |
Collapse
|
17
|
Khaleghi H, Jaafarzadeh N, Esmaeili H, Ramavandi B. Alginate@Fe 3O 4@Bentonite nanocomposite for formaldehyde removal from synthetic and real effluent: optimization by central composite design. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:29566-29580. [PMID: 36417060 DOI: 10.1007/s11356-022-24189-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
In this study, Alginate@ Fe3O4/Bentonite nanocomposite was utilized to eliminate formaldehyde from wastewater. Structural features of bentonite, bentonite@Fe3O4, and Alginate@Fe3O4@Bentonite were determined using FT-IR, PXRD, Mapping, EDX, TEM, SEM, VSM, and BET analyses. The central composite design method was employed to find the optimal conditions for formaldehyde removal using Alg@Fe3O4@Bent nanocomposite. The maximum formaldehyde uptake efficiency (94.56%) was obtained at formaldehyde concentration of 10.69 ppm, the nanocomposite dose of 1.28 g/L, and pH of 9.96 after 16.53 min. Also, Alginate@Fe3O4@Bentonite composite was used to eliminate formaldehyde from Razi petrochemical wastewater and was able to eliminate 91.24% of formaldehyde, 70% of COD, and 68.9% of BOD5. The isotherm and kinetic investigations demonstrated that the formaldehyde uptake process by the foresaid adsorbent follows the Langmuir isotherm and quasi-first-order kinetic models, respectively. Also, the maximum uptake capacity was obtained at 50.25 mg/g. Moreover, the formaldehyde uptake process by the aforementioned nanocomposite was exothermic and spontaneous. Furthermore, the formaldehyde adsorption efficiency decreased slightly after six reuse cycles (less than 10%), indicating that Alginate@Fe3O4@Bentonite nanocomposite has remarkable recyclability. Besides, the influence of interfering ions like nitrate, carbonate, chloride, phosphate, and sulfate was studied on the formaldehyde removal efficiency and the results displayed that all ions except nitrate ion have low interaction with formaldehyde (less than 3% reduction in removal efficiency).
Collapse
Affiliation(s)
- Hossein Khaleghi
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Neamatollah Jaafarzadeh
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Esmaeili
- Department of Chemical Engineering, Bushehr Branch, Islamic Azad University, Bushehr, Iran.
| | - Bahman Ramavandi
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
18
|
Li T, He S, Kou L, Peng J, Liu H, Zou W, Cao Z, Wang T. Highly efficient Cu-EDTA decomplexation by Ag/AgCl modified MIL-53(Fe) under Xe lamp: Z-scheme configuration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|