1
|
Ratnayake M, Jian X, Tailhades J, Challis GL, Hansen MH, Lewandowski JR, Cryle MJ. Teicoplanin Nonribosomal Peptide Synthetase Is Unable to Incorporate Alpha-Ketoacid Building Blocks. Biochemistry 2025; 64:2039-2053. [PMID: 40215197 PMCID: PMC12060904 DOI: 10.1021/acs.biochem.4c00770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 05/07/2025]
Abstract
Glycopeptide antibiotics (GPAs) are a vital class of nonribosomal peptides used as therapies of last resort to treat infections by multidrug-resistant bacteria. These peptide antibiotics are assembled by nonribosomal peptide synthetases (NRPSs), modular megasynthases central to the biosynthesis of a wide range of peptide natural products. The adenylation (A) domains of NRPSs are involved in the selection and activation of the amino acid building blocks forming these peptide natural products, with their subsequent loading onto a neighboring carrier protein for incorporation into the growing peptide chain. This makes A-domains the gatekeepers of specificity in nonribosomal peptide biosynthesis, with further studies needed to reveal how this specificity is enforced at all stages of catalysis. The first building block found in GPAs is diverse and can comprise an amino acid, a ketoacid, or mixtures of both, which suggests that the A-domains responsible for selecting these residues can also incorporate non-amino acid substrates. In this study, we explored the acceptance of such substrates by the initiation module of the teicoplanin NRPS. Our in vitro assays demonstrated that this A-domain possesses an unexpected preference for activating ketoacids over the native amino acid substrate l-Hpg. However, only (d/l)-Hpg and related amino acids were able to be loaded onto the neighboring carrier protein domain during the subsequent thioesterification step. We further characterized the structure of this A-domain from teicoplanin biosynthesis in complex with d-4-hydroxyphenylglycine (d-Hpg), which revealed alterations in the positioning of the substrate carboxylate that help explain the high levels of pyrophosphate release seen with this amino acid. In combination with extensive molecular dynamics simulations, these data suggest that ketoacid incorporation in GPA biosynthesis is likely performed after amino acid incorporation by the NRPS and highlight the importance of considering both activation and carrier protein loading reactions performed by an A-domain when investigating substrate selectivity in nonribosomal peptide biosynthesis.
Collapse
Affiliation(s)
- Minuri
S. Ratnayake
- Biomedicine
Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Australia
- EMBL
Australia, Monash University, Clayton 3800, Australia
- ARC
Centre of Excellence for Innovations in Peptide and Protein Science, Clayton 3800, Australia
| | - Xinyun Jian
- Biomedicine
Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Australia
- EMBL
Australia, Monash University, Clayton 3800, Australia
- ARC
Centre of Excellence for Innovations in Peptide and Protein Science, Clayton 3800, Australia
| | - Julien Tailhades
- Biomedicine
Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Australia
- EMBL
Australia, Monash University, Clayton 3800, Australia
- ARC
Centre of Excellence for Innovations in Peptide and Protein Science, Clayton 3800, Australia
| | - Gregory L. Challis
- Biomedicine
Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Australia
- ARC
Centre of Excellence for Innovations in Peptide and Protein Science, Clayton 3800, Australia
- Department
of Chemistry, University of Warwick, Coventry CV4 7SH, U.K.
| | - Mathias H. Hansen
- Biomedicine
Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Australia
- EMBL
Australia, Monash University, Clayton 3800, Australia
- ARC
Centre of Excellence for Innovations in Peptide and Protein Science, Clayton 3800, Australia
| | | | - Max J. Cryle
- Biomedicine
Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Australia
- EMBL
Australia, Monash University, Clayton 3800, Australia
- ARC
Centre of Excellence for Innovations in Peptide and Protein Science, Clayton 3800, Australia
| |
Collapse
|
2
|
Seshadri K, Abad AND, Nagasawa KK, Yost KM, Johnson CW, Dror MJ, Tang Y. Synthetic Biology in Natural Product Biosynthesis. Chem Rev 2025; 125:3814-3931. [PMID: 40116601 DOI: 10.1021/acs.chemrev.4c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Synthetic biology has played an important role in the renaissance of natural products research during the post-genomics era. The development and integration of new tools have transformed the workflow of natural product discovery and engineering, generating multidisciplinary interest in the field. In this review, we summarize recent developments in natural product biosynthesis from three different aspects. First, advances in bioinformatics, experimental, and analytical tools to identify natural products associated with predicted biosynthetic gene clusters (BGCs) will be covered. This will be followed by an extensive review on the heterologous expression of natural products in bacterial, fungal and plant organisms. The native host-independent paradigm to natural product identification, pathway characterization, and enzyme discovery is where synthetic biology has played the most prominent role. Lastly, strategies to engineer biosynthetic pathways for structural diversification and complexity generation will be discussed, including recent advances in assembly-line megasynthase engineering, precursor-directed structural modification, and combinatorial biosynthesis.
Collapse
Affiliation(s)
- Kaushik Seshadri
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Abner N D Abad
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Kyle K Nagasawa
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Karl M Yost
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Colin W Johnson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Moriel J Dror
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| |
Collapse
|
3
|
Nemoto M, Ando W, Mano T, Lee M, Yuzawa S, Mizuno T. Identification of Key Amino Acids in the A Domains of Polymyxin Synthetase Responsible for 2,4-Diaminobutyric Acid Adenylation in Paenibacillus polymyxa NBRC3020 Strain. ACS Chem Biol 2025; 20:321-331. [PMID: 39818748 DOI: 10.1021/acschembio.4c00553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Developing novel nonribosomal peptides (NRPs) requires a comprehensive understanding of the enzymes involved in their biosynthesis, particularly the substrate amino acid recognition mechanisms in the adenylation (A) domain. This study focused on the A domain responsible for adenylating l-2,4-diaminobutyric acid (l-Dab) within the synthetase of polymyxin, an NRP produced by Paenibacillus polymyxa NBRC3020. To date, investigations into recombinant proteins that selectively adenylate l-Dab─exploring substrate specificity and enzymatic activity parameters─have been limited to reports on A domains found in enzymes synthesizing l-Dab homopolymers (pldA from S. celluloflavus USE31 and pddA from S. hindustanus NBRC15115), which remain exceedingly rare. The polymyxin synthetase in NBRC3020 contains five A domains specific to l-Dab, distributed across five distinct modules (modules 1, 3, 4, 5, 8, and 9). In this study, we successfully obtained soluble A domain proteins from modules 1, 5, 8, and 9 by preparing module-specific recombinant proteins. These proteins were expressed in E. coli BAP-1, purified via Ni-affinity chromatography, and demonstrated high specificity for l-Dab. Through sequence homology analysis, three-dimensional structural modeling, docking simulations to estimate substrate-binding sites, and functional validation using alanine mutants, we identified Glu281 and Asp344 as critical residues for recognizing the side chain amino group of l-Dab, and Asp238 as essential for recognizing its main chain amino group in the A domain. Notably, these key residues were conserved not only across the A domains in modules 1, 5, 8, and 9 of P. polymyxa NBRC3020 but also in those of the P. polymyxa PKB1 strain, as confirmed by sequence homology analysis. Interestingly, in pldA and pddA, the key residues involved in recognizing the side-chain amino group of l-Dab, which are conserved among polymyxin synthetases of NBRC3020 and PKB1 strain, were not observed. This suggests a potentially different mechanism for l-Dab recognition.
Collapse
Affiliation(s)
- Mai Nemoto
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Wataru Ando
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Taichi Mano
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Minjae Lee
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa 252-0882, Japan
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Satoshi Yuzawa
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-0882, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | - Toshihisa Mizuno
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
- Department of Nanopharmaceutical Sciences, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho Showa-ku, Nagoya, Aichi 466-8555, Japan
| |
Collapse
|
4
|
Ishikawa F, Nohara M, Miyanaga A, Kuramoto S, Miyano N, Asamizu S, Kudo F, Onaka H, Eguchi T, Tanabe G. Biosynthetic Incorporation of Non-native Aryl Acid Building Blocks into Peptide Products Using Engineered Adenylation Domains. ACS Chem Biol 2024; 19:2569-2579. [PMID: 39620357 DOI: 10.1021/acschembio.4c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Nonribosomal peptides (NRPs), one of the most widespread secondary metabolites in nature, with therapeutically significant activities, are biosynthesized by modular nonribosomal peptide synthetases (NRPSs). Aryl acids contribute to the structural diversity of NRPs as well as nonproteinogenic amino acids and keto acids. We previously confirmed that a single Asn-to-Gly substitution in the 2,3-dihydroxybenzoic acid-activating adenylation (A) domain EntE involved in enterobactin biosynthesis accepts monosubstituted benzoic acid derivatives with nitro, cyano, bromo, and iodo functionalities at the 2 or 3 positions. Here, we showed that the mutant EntE (N235G) accommodates various disubstituted benzoic acid derivatives with halogen, methyl, methoxy, nitro, and cyano functionalities at the 2 and 3 positions and monosubstituted benzoic acid with an alkyne at the 3 position. Structural analysis of the mutant EntE (N235G) with nonhydrolyzable aryl-AMP analogues using 3-chloro-2-methylbenzoic acid and 3-prop-2-ynoxybenzoic acid revealed how bulky 3-chloro-2-methylbenzoic acid and clickable 3-prop-2-ynoxybenzoic acid are recognized by enlarging the substrate-binding pocket of the enzyme. When engineered EntE mutants were coupled with enterobactin and vibriobactin biosynthetic enzymes, 3-hydroxybenzoic acid-, salicylic acid-, and 3-bromo-2-fluorobenzoic acid-containing peptides were produced as early stage intermediates, highlighting the potential of NRP biosynthetic pathway engineering for constructing diverse aryl acid-containing metabolites.
Collapse
Affiliation(s)
- Fumihiro Ishikawa
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-oskaa, Osaka 577-8502, Japan
| | - Maya Nohara
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-oskaa, Osaka 577-8502, Japan
| | - Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Satoki Kuramoto
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-oskaa, Osaka 577-8502, Japan
| | - Natsuki Miyano
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-oskaa, Osaka 577-8502, Japan
| | - Shumpei Asamizu
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Hiroyasu Onaka
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima, Tokyo 171-8588, Japan
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Genzoh Tanabe
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-oskaa, Osaka 577-8502, Japan
| |
Collapse
|
5
|
Hilvert D. Spiers Memorial Lecture: Engineering biocatalysts. Faraday Discuss 2024; 252:9-28. [PMID: 39046423 PMCID: PMC11389855 DOI: 10.1039/d4fd00139g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024]
Abstract
Enzymes are being engineered to catalyze chemical reactions for many practical applications in chemistry and biotechnology. The approaches used are surveyed in this short review, emphasizing methods for accessing reactivities not expressed by native protein scaffolds. The successful generation of completely de novo enzymes that rival the rates and selectivities of their natural counterparts highlights the potential role that designer enzymes may play in the coming years in research, industry, and medicine. Some challenges that need to be addressed to realize this ambitious dream are considered together with possible solutions.
Collapse
Affiliation(s)
- Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
6
|
Fiedler J, Trottmann F, Ishida K, Ishida-Ito M, Hertweck C. Direct α-Hydroxy Acid Loading onto a Bacterial Thiotemplate Assembly Line via a Multienzyme Gateway. Angew Chem Int Ed Engl 2024; 63:e202405165. [PMID: 38728443 DOI: 10.1002/anie.202405165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/12/2024]
Abstract
Various nonribosomal peptide synthetases (NRPSs) create structural and functional diversity by incorporating α-hydroxy acids into peptide backbones. Trigonic acid, an unusual cyclopropanol-substituted hydroxy acid, is the source of the molecular warhead of malleicyprol, a critical virulence factor of human and animal pathogens of the Burkholderia pseudomallei (BP) group. The process of selecting and loading this building block remained enigmatic as the NRPS module designated for this task is incomplete. Using a combination of bioinformatics, mutational analyses, targeted metabolomics, and in vitro biochemical assays, we show that two trans-acting enzymes are required to load this central building block onto the modular assembly line. An adenylation-thiolation didomain enzyme (BurJ) activates trigonic acid, followed by the translocation of the enzyme-bound α-hydroxy acid thioester by an FkbH-like protein with a mutated phosphatase domain (BurH). This specialized gateway is the first reported direct loading of an α-hydroxy acid onto a bona fide NRPS module in bacteria and expands the synthetic biology toolbox for the site-specific incorporation of non-canonical building blocks. Moreover, insight into the biochemical basis of virulence factor biosynthesis can provide a foundation for developing enzyme inhibitors as anti-virulence therapeutics against BP pathogen infections.
Collapse
Affiliation(s)
- Jonas Fiedler
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product, Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Felix Trottmann
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product, Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Keishi Ishida
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product, Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Mie Ishida-Ito
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product, Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product, Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
- Natural Product Chemistry, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
7
|
Ratnayake M, Ho YTC, Jian X, Cryle MJ. An in vitro assay to explore condensation domain specificity from non-ribosomal peptide synthesis. Methods Enzymol 2024; 702:89-119. [PMID: 39155122 DOI: 10.1016/bs.mie.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Non-ribosomal peptide synthesis produces a wide range of bioactive peptide natural products and is reliant on a modular architecture based on repeating catalytic domains able to generate diverse peptide sequences. In this chapter we detail an in vitro biochemical assay to explore the substrate specificity of condensation domains, which are responsible for peptide elongation, from the biosynthetic machinery that produces from the siderophore fuscachelin. This assay removes the requirement to utilise the specificity of adjacent adenylation domains and allows the acceptance of a wide range of synthetic substrates to be explored.
Collapse
Affiliation(s)
- Minuri Ratnayake
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; EMBL Australia, Monash University, Clayton, VIC, Australia; ARC Centre of Excellence for Innovations in Peptide and Protein Science
| | - Y T Candace Ho
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Xinyun Jian
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; EMBL Australia, Monash University, Clayton, VIC, Australia; ARC Centre of Excellence for Innovations in Peptide and Protein Science
| | - Max J Cryle
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; EMBL Australia, Monash University, Clayton, VIC, Australia; ARC Centre of Excellence for Innovations in Peptide and Protein Science.
| |
Collapse
|
8
|
Heard SC, Winter JM. Structural, biochemical and bioinformatic analyses of nonribosomal peptide synthetase adenylation domains. Nat Prod Rep 2024; 41:1180-1205. [PMID: 38488017 PMCID: PMC11253843 DOI: 10.1039/d3np00064h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Indexed: 07/18/2024]
Abstract
Covering: 1997 to July 2023The adenylation reaction has been a subject of scientific intrigue since it was first recognized as essential to many biological processes, including the homeostasis and pathogenicity of some bacteria and the activation of amino acids for protein synthesis in mammals. Several foundational studies on adenylation (A) domains have facilitated an improved understanding of their molecular structures and biochemical properties, in particular work on nonribosomal peptide synthetases (NRPSs). In NRPS pathways, A domains activate their respective acyl substrates for incorporation into a growing peptidyl chain, and many nonribosomal peptides are bioactive. From a natural product drug discovery perspective, improving existing bioinformatics platforms to predict unique NRPS products more accurately from genomic data is desirable. Here, we summarize characterization efforts of A domains primarily from NRPS pathways from July 1997 up to July 2023, covering protein structure elucidation, in vitro assay development, and in silico tools for improved predictions.
Collapse
Affiliation(s)
- Stephanie C Heard
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jaclyn M Winter
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
9
|
Folger IB, Frota NF, Pistofidis A, Niquille DL, Hansen DA, Schmeing TM, Hilvert D. High-throughput reprogramming of an NRPS condensation domain. Nat Chem Biol 2024; 20:761-769. [PMID: 38308044 PMCID: PMC11142918 DOI: 10.1038/s41589-023-01532-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 12/19/2023] [Indexed: 02/04/2024]
Abstract
Engineered biosynthetic assembly lines could revolutionize the sustainable production of bioactive natural product analogs. Although yeast display is a proven, powerful tool for altering the substrate specificity of gatekeeper adenylation domains in nonribosomal peptide synthetases (NRPSs), comparable strategies for other components of these megaenzymes have not been described. Here we report a high-throughput approach for engineering condensation (C) domains responsible for peptide elongation. We show that a 120-kDa NRPS module, displayed in functional form on yeast, can productively interact with an upstream module, provided in solution, to produce amide products tethered to the yeast surface. Using this system to screen a large C-domain library, we reprogrammed a surfactin synthetase module to accept a fatty acid donor, increasing catalytic efficiency for this noncanonical substrate >40-fold. Because C domains can function as selectivity filters in NRPSs, this methodology should facilitate the precision engineering of these molecular assembly lines.
Collapse
Affiliation(s)
- Ines B Folger
- Laboratory of Organic Chemistry, ETH Zurich, Zurich, Switzerland
| | - Natália F Frota
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada
| | - Angelos Pistofidis
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada
| | - David L Niquille
- Laboratory of Organic Chemistry, ETH Zurich, Zurich, Switzerland
| | - Douglas A Hansen
- Laboratory of Organic Chemistry, ETH Zurich, Zurich, Switzerland
| | - T Martin Schmeing
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
Ratnayake MS, Hansen MH, Cryle MJ. Enzyme engineering lets us play with new building blocks in non-ribosomal peptide synthesis. Structure 2024; 32:520-522. [PMID: 38701750 DOI: 10.1016/j.str.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024]
Abstract
In a recent issue of Nature Chemical Biology, Folger et al. demonstrated a high-throughput approach for engineering peptide bond forming domains from non-ribosomal peptide synthesis. A non-ribosomal peptide synthetase module from surfactin biosynthesis was reprogrammed to accept a fatty acid substrate into peptide biosynthesis, thus illustrating the potential of this approach for generating novel bioactive peptides.
Collapse
Affiliation(s)
- Minuri S Ratnayake
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; EMBL Australia, Monash University, Clayton, VIC 3800, Australia; ARC Centre of Excellence for Innovations in Peptide and Protein Science, Clayton, VIC 3800, Australia
| | - Mathias H Hansen
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; EMBL Australia, Monash University, Clayton, VIC 3800, Australia; ARC Centre of Excellence for Innovations in Peptide and Protein Science, Clayton, VIC 3800, Australia
| | - Max J Cryle
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; EMBL Australia, Monash University, Clayton, VIC 3800, Australia; ARC Centre of Excellence for Innovations in Peptide and Protein Science, Clayton, VIC 3800, Australia.
| |
Collapse
|
11
|
Camus A, Gantz M, Hilvert D. High-Throughput Engineering of Nonribosomal Extension Modules. ACS Chem Biol 2023; 18:2516-2523. [PMID: 37983914 PMCID: PMC10728897 DOI: 10.1021/acschembio.3c00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023]
Abstract
Nonribosomal peptides constitute an important class of natural products that display a wide range of bioactivities. They are biosynthesized by large assembly lines called nonribosomal peptide synthetases (NRPSs). Engineering NRPS modules represents an attractive strategy for generating customized synthetases for the production of peptide variants with improved properties. Here, we explored the yeast display of NRPS elongation and termination modules as a high-throughput screening platform for assaying adenylation domain activity and altering substrate specificity. Depending on the module, display of A-T bidomains or C-A-T tridomains, which also include an upstream condensation domain, proved to be most effective. Reprograming a tyrocidine synthetase elongation module to accept 4-propargyloxy-phenylalanine, a noncanonical amino acid that is not activated by the native protein, illustrates the utility of this approach for altering NRPS specificity at internal sites.
Collapse
Affiliation(s)
- Anna Camus
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Maximilian Gantz
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
12
|
Zhang K, Kries H. Biomimetic engineering of nonribosomal peptide synthesis. Biochem Soc Trans 2023; 51:1521-1532. [PMID: 37409512 DOI: 10.1042/bst20221264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/07/2023]
Abstract
Nonribosomal peptides (NRPs) have gained attention due to their diverse biological activities and potential applications in medicine and agriculture. The natural diversity of NRPs is a result of evolutionary processes that have occurred over millions of years. Recent studies have shed light on the mechanisms by which nonribosomal peptide synthetases (NRPSs) evolve, including gene duplication, recombination, and horizontal transfer. Mimicking natural evolution could be a useful strategy for engineering NRPSs to produce novel compounds with desired properties. Furthermore, the emergence of antibiotic-resistant bacteria has highlighted the urgent need for new drugs, and NRPs represent a promising avenue for drug discovery. This review discusses the engineering potential of NRPSs in light of their evolutionary history.
Collapse
Affiliation(s)
- Kexin Zhang
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI Jena), 07745 Jena, Germany
| | - Hajo Kries
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI Jena), 07745 Jena, Germany
- Organic Chemistry I, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
13
|
Stephan P, Langley C, Winkler D, Basquin J, Caputi L, O'Connor SE, Kries H. Directed Evolution of Piperazic Acid Incorporation by a Nonribosomal Peptide Synthetase. Angew Chem Int Ed Engl 2023; 62:e202304843. [PMID: 37326625 DOI: 10.1002/anie.202304843] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/17/2023]
Abstract
Engineering of biosynthetic enzymes is increasingly employed to synthesize structural analogues of antibiotics. Of special interest are nonribosomal peptide synthetases (NRPSs) responsible for the production of important antimicrobial peptides. Here, directed evolution of an adenylation domain of a Pro-specific NRPS module completely switched substrate specificity to the non-standard amino acid piperazic acid (Piz) bearing a labile N-N bond. This success was achieved by UPLC-MS/MS-based screening of small, rationally designed mutant libraries and can presumably be replicated with a larger number of substrates and NRPS modules. The evolved NRPS produces a Piz-derived gramicidin S analogue. Thus, we give new impetus to the too-early dismissed idea that widely accessible low-throughput methods can switch the specificity of NRPSs in a biosynthetically useful fashion.
Collapse
Affiliation(s)
- Philipp Stephan
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
| | - Chloe Langley
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Daniela Winkler
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
| | - Jérôme Basquin
- Department of Structural Cell Biology, Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152, Planegg Martinsried, Germany
| | - Lorenzo Caputi
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Hajo Kries
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
| |
Collapse
|
14
|
Kahlert L, Lichstrahl MS, Townsend CA. Colorimetric Determination of Adenylation Domain Activity in Nonribosomal Peptide Synthetases by Using Chrome Azurol S. Chembiochem 2023; 24:e202200668. [PMID: 36511946 PMCID: PMC10041650 DOI: 10.1002/cbic.202200668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Adenylation domains are the main contributor to structural complexity among nonribosomal peptides due to their varied but stringent substrate selection. Several in vitro assays to determine the substrate specificity of these dedicated biocatalysts have been implemented, but high sensitivity is often accompanied by the cost of laborious procedures, expensive reagents or the requirement for auxiliary enzymes. Here, we describe a simple protocol that is based on the removal of ferric iron from a preformed chromogenic complex between ferric iron and Chrome Azurol S. Adenylation activity can be rapidly followed by a decrease in absorbance at 630 nm, visualized by a prominent color change from blue to orange.
Collapse
Affiliation(s)
- Lukas Kahlert
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland, 21218, USA
| | - Michael S Lichstrahl
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland, 21218, USA
| | - Craig A Townsend
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland, 21218, USA
| |
Collapse
|
15
|
Mordhorst S, Ruijne F, Vagstad AL, Kuipers OP, Piel J. Emulating nonribosomal peptides with ribosomal biosynthetic strategies. RSC Chem Biol 2023; 4:7-36. [PMID: 36685251 PMCID: PMC9811515 DOI: 10.1039/d2cb00169a] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Peptide natural products are important lead structures for human drugs and many nonribosomal peptides possess antibiotic activity. This makes them interesting targets for engineering approaches to generate peptide analogues with, for example, increased bioactivities. Nonribosomal peptides are produced by huge mega-enzyme complexes in an assembly-line like manner, and hence, these biosynthetic pathways are challenging to engineer. In the past decade, more and more structural features thought to be unique to nonribosomal peptides were found in ribosomally synthesised and posttranslationally modified peptides as well. These streamlined ribosomal pathways with modifying enzymes that are often promiscuous and with gene-encoded precursor proteins that can be modified easily, offer several advantages to produce designer peptides. This review aims to provide an overview of recent progress in this emerging research area by comparing structural features common to both nonribosomal and ribosomally synthesised and posttranslationally modified peptides in the first part and highlighting synthetic biology strategies for emulating nonribosomal peptides by ribosomal pathway engineering in the second part.
Collapse
Affiliation(s)
- Silja Mordhorst
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| | - Fleur Ruijne
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Nijenborgh 7, 9747 AG Groningen The Netherlands
| | - Anna L Vagstad
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Nijenborgh 7, 9747 AG Groningen The Netherlands
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| |
Collapse
|