1
|
Betinol IO, Kuang Y, Mulley BP, Reid JP. Controlling Stereoselectivity with Noncovalent Interactions in Chiral Phosphoric Acid Organocatalysis. Chem Rev 2025; 125:4184-4286. [PMID: 40101184 DOI: 10.1021/acs.chemrev.4c00869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Chiral phosphoric acids (CPAs) have emerged as highly effective Brønsted acid catalysts in an expanding range of asymmetric transformations, often through novel multifunctional substrate activation modes. Versatile and broadly appealing, these catalysts benefit from modular and tunable structures, and compatibility with additives. Given the unique types of noncovalent interactions (NCIs) that can be established between CPAs and various reactants─such as hydrogen bonding, aromatic interactions, and van der Waals forces─it is unsurprising that these catalyst systems have become a promising approach for accessing diverse chiral product outcomes. This review aims to provide an in-depth exploration of the mechanisms by which CPAs impart stereoselectivity, positioning NCIs as the central feature that connects a broad spectrum of catalytic reactions. Spanning literature from 2004 to 2024, it covers nucleophilic additions, radical transformations, and atroposelective bond formations, highlighting the applicability of CPA organocatalysis. Special emphasis is placed on the structural and mechanistic features that govern CPA-substrate interactions, as well as the tools and techniques developed to enhance our understanding of their catalytic behavior. In addition to emphasizing mechanistic details and stereocontrolling elements in individual reactions, we have carefully structured this review to provide a natural progression from these specifics to a broader, class-level perspective. Overall, these findings underscore the critical role of NCIs in CPA catalysis and their significant contributions to advancing asymmetric synthesis.
Collapse
Affiliation(s)
- Isaiah O Betinol
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Yutao Kuang
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Brian P Mulley
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jolene P Reid
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
2
|
Hu X, Shen B, Zhang J, Yu P. Mechanistic insights into the stereocontrolling non-covalent π interactions in Pd-catalyzed redox-relay Heck arylation reaction. Chem Commun (Camb) 2025; 61:5178-5181. [PMID: 40071613 DOI: 10.1039/d5cc00650c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
The mechanism and origin of enantioselectivity of palladium-catalyzed redox-relay Heck arylation of 1,1-disubstituted homoallylic alcohols were investigated computationally. The computed mechanism consists of an initial migratory insertion, followed by a β-hydride elimination, and a subsequent re-insertion/elimination process to yield an enol intermediate, which tautomerizes to the more stable carbonyl product. Results from DFT calculations suggest that the key enantiodetermining step is the reinsertion of an alkene intermediate into the Pd-H bond, but not the initial migratory insertion of the substrate into the Pd-Aryl species. By comparing two chiral pyridine oxazoline ligands with a focus on the phenyl versus tert-butyl substituent effects, a plethora of attractive non-covalent π interactions, including CH-π interaction, lone pair-π interaction and T-shaped π-π interaction, are identified to play a key role in enabling high enantioselectivity of this reaction. This work provides mechanistic insights into the comprehensive understanding of this catalytic cascade, and highlights the significant role played by non-covalent π interactions in its enantiocontrol.
Collapse
Affiliation(s)
- Xiaoxiao Hu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Boming Shen
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Jin Zhang
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
3
|
Kim SF, Liles JP, Lux MC, Park H, Jurczyk J, Soda Y, Yeung CS, Sigman MS, Sarpong R. Interrogation of Enantioselectivity in the Photomediated Ring Contractions of Saturated Heterocycles. J Am Chem Soc 2025; 147:1851-1866. [PMID: 39746148 PMCID: PMC12081160 DOI: 10.1021/jacs.4c13999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
We recently reported a chiral phosphoric acid (CPA) catalyzed enantioselective photomediated ring contraction of piperidines and other saturated heterocycles. By extruding a single heteroatom from a ring, this transformation builds desirable C(sp3)-C(sp3) bonds in the ring contracted products; however, the origins of enantioselectivity remain poorly understood. In this work, enantioselectivity of the ring contraction has been explored across an expanded structurally diverse substrate scope, revealing a wide range of enantioselectivities (0-99%) using two distinct CPA catalysts. Mechanistic investigations support rate-determining excitation that generates short-lived achiral intermediates that are intercepted by the CPA in an enantiodetermining ring closure. The effects of competitive uncatalyzed reactivity and light-driven reversibility of the enantiodetermining ring closure on enantioselectivity have been elucidated. Statistical models were built by regressing the range of enantioselectivities from the substrate scope against key structural features of the products for both CPA catalysts. The resultant models suggested distinct factors that influence the enantioselectivity response for each catalyst and enabled rational modification of a pharmaceutically relevant target molecule to improve enantioselectivity. Finally, density functional theory (DFT)-based transition state analysis identified distinct noncovalent interactions with each catalyst that correlated with the unique selectivity-relevant features uncovered through statistical modeling. Our findings not only offer comprehensive insight into the origins of enantioselectivity in this system but should also aid future development of related photomediated CPA-catalyzed reactions.
Collapse
Affiliation(s)
- Sojung F. Kim
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jordan P. Liles
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Michaelyn C. Lux
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States; Present Address: Pfizer Research & Development, Cambridge, Massachusetts 02139, United States
| | - Hojoon Park
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Justin Jurczyk
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States; Present Address: Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Yasuki Soda
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States; Present Address: Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States; Present Address: The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Charles S. Yeung
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Phun GS, Slocumb HS, Ruud KJ, Nie S, Antonio C, Furche F, Dong VM, Yang XH. Hydroselenation of olefins: elucidating the β-selenium effect. Chem Sci 2024; 15:20523-20533. [PMID: 39600504 PMCID: PMC11586760 DOI: 10.1039/d4sc05766j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
We report a light-promoted hydroselenation of alkenes with high anti-Markovnikov selectivity. Blue light activates an aryl diselenide to generate a seleno radical with subsequent addition into an alkene to form a β-seleno carbon radical. Hydrogen atom transfer (HAT) from the selenol to the carbon radical generates the linear selenide with high selectivity in preference to the branched isomer. These studies reveal a unique β-selenium effect, where a selenide β to a carbon radical imparts high anti-selectivity for radical addition through delocalization of the HAT transition state.
Collapse
Affiliation(s)
- Gabriel S Phun
- Department of Chemistry, University of California Irvine California 92697 USA
| | - Hannah S Slocumb
- Department of Chemistry, University of California Irvine California 92697 USA
| | - Kirsten J Ruud
- Department of Chemistry, University of California Irvine California 92697 USA
| | - Shaozhen Nie
- Department of Medicinal Chemistry Glaxo-Smith-Kline, Collegeville Pennsylvania 19426 USA
| | - Cheyenne Antonio
- Department of Chemistry, University of California San Francisco California 94143 USA
| | - Filipp Furche
- Department of Chemistry, University of California Irvine California 92697 USA
| | - Vy M Dong
- Department of Chemistry, University of California Irvine California 92697 USA
| | - Xiao-Hui Yang
- Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology Beijing 100081 P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
5
|
Chen Y, Zhen Q, Meng FJ, Yu P, Xu C. Lone Pair-π Interactions in Organic Reactions. Chem Rev 2024; 124:13370-13396. [PMID: 39535080 DOI: 10.1021/acs.chemrev.4c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Noncovalent interactions between a lone pair of electrons and π systems can be categorized into two types based on the nature of π systems. Lone pair-π(C═O) interactions with π systems of unsaturated, polarized bonds are primarily attributed to orbital interactions, whereas lone pair-π(Ar) interactions with π systems of aromatic functional groups result from electrostatic attractions (for electron-deficient aryls) or dispersion attractions and Pauli repulsions (for electron-rich/neutral aryls). Unlike well-established noncovalent interactions, lone pair-π interactions have been comparatively underappreciated or less used to influence reaction outcomes. This review emphasizes experimental and computational studies aimed at integrating lone pair-π interactions into the design of catalytic systems and utilizing these interactions to regulate the reactivity and selectivity of chemical transformations. The role of lone pair-π interactions is highlighted in the stabilization or destabilization of transition states and ground-state binding. Examples influenced by lone pair-π interactions with both unsaturated, polarized bonds and aromatic rings as π systems are included. At variance with previous reviews, the present review is not structured according to the physical origin of particular classes of lone pair-π interactions but is divided into chapters according to ways in which lone pair-π interactions affect kinetics and/or selectivity of reactions.
Collapse
Affiliation(s)
- Yu Chen
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qianqian Zhen
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fan-Jie Meng
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chen Xu
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
6
|
Tâmega GS, Costa MO, de Araujo Pereira A, Barbosa Ferreira MA. Data Science Guiding Analysis of Organic Reaction Mechanism and Prediction. CHEM REC 2024; 24:e202400148. [PMID: 39499081 DOI: 10.1002/tcr.202400148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/09/2024] [Indexed: 11/07/2024]
Abstract
Advancements in synthetic organic chemistry are closely related to understanding substrate and catalyst reactivities through detailed mechanistic studies. Traditional mechanistic investigations are labor-intensive and rely on experimental kinetic, thermodynamic, and spectroscopic data. Linear free energy relationships (LFERs), exemplified by Hammett relationships, have long facilitated reactivity prediction despite their inherent limitations when using experimental constants or incorporating comprehensive experimental data. Data-driven modeling, which integrates cheminformatics with machine learning, offers powerful tools for predicting and interpreting mechanisms and effectively handling complex reactivities through multiparameter strategies. This review explores selected examples of data-driven strategies for investigating organic reaction mechanisms. It highlights the evolution and application of computational descriptors for mechanistic inference.
Collapse
Affiliation(s)
- Giovanna Scalli Tâmega
- Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Mateus Oliveira Costa
- Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Ariel de Araujo Pereira
- Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| | | |
Collapse
|
7
|
Ravasco JMJM, Felicidade J, Pinto MV, Santos FMF, Campos-González R, Arteaga JF, Mehraz M, Langevin C, Fernandes A, Nguyen HC, Ng DYW, Coelho JAS, Pischel U, Gois PMP. Data-Driven Discovery of a New Fluorescent BASHY Dye for Bioimaging. JACS AU 2024; 4:4212-4222. [PMID: 39610736 PMCID: PMC11600176 DOI: 10.1021/jacsau.4c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 11/30/2024]
Abstract
Fluorescent molecules play a crucial role in biomedicine by facilitating the visualization and tracking of biological processes with sensitivity and specificity. However, tailoring their structure to meet the demands of live cell and in vivo imaging presents a significant challenge due to the intricate interplay of factors governing their structural and photophysical properties. In this study, we explored the potential of using multivariate linear free-energy relationships (mLFER) to optimize a multicomponent fluorescent platform. We prepared a small library of 20 fluorescent boronic-acid-derived salicylidenehydrazone (BASHY) complexes using a versatile reaction protocol and characterized their chemical stability in water-containing media. The obtained data served as input for the development of an mLFER model, enabling the prediction of a new BASHY dye and unraveling previously unknown mechanisms governing the stability of this unique platform of fluorescent dyes. The optimized dye was successfully employed in live cell experiments and in zebrafish larvae.
Collapse
Affiliation(s)
- João M J M Ravasco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal
| | - João Felicidade
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal
| | - Maria V Pinto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal
| | - Fábio M F Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal
| | - René Campos-González
- CIQSO - Centre for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen s/n, Huelva 21071, Spain
| | - Jesús F Arteaga
- CIQSO - Centre for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen s/n, Huelva 21071, Spain
| | - Manon Mehraz
- INRAE National Research Institute for Agriculture, Food and Environment, Université Paris-Saclay, IERP, Jouy-en-Josas 78350, France
| | - Christelle Langevin
- INRAE National Research Institute for Agriculture, Food and Environment, Université Paris-Saclay, IERP, Jouy-en-Josas 78350, France
| | - Adelaide Fernandes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal
| | - Ha-Chi Nguyen
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - David Y W Ng
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Jaime A S Coelho
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculty of Sciences, Universidade de Lisboa, Campo Grande, Lisbon 1749-016, Portugal
| | - Uwe Pischel
- CIQSO - Centre for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen s/n, Huelva 21071, Spain
| | - Pedro M P Gois
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal
| |
Collapse
|
8
|
Hoch M, Sparascio S, Cerveri A, Bigi F, Maggi R, Viscardi R, Maestri G. The effect of tethered bi-naphthyls on visible-light promoted alkene-alkene [2 + 2] cycloadditions. Photochem Photobiol Sci 2024; 23:1543-1563. [PMID: 39073548 DOI: 10.1007/s43630-024-00615-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
Dispersion interactions are ubiquitous weak interactions that can play a role in many chemical events. Tailor-made catalysts and additives can lead to more selective reactions by properly exploiting dispersion interactions. Although radical-π dispersion interactions are known to have an important stabilizing role, this concept has been so far overlooked in synthetic photochemistry. We recently proved that similar dispersion interactions can play a profound impact on several reactions involving an energy transfer step. We present herein a study on the co-catalytic effect of tethered bi-naphthyl derivatives on the visible-light-promoted alkene-alkene [2 + 2] cycloaddition. A library of tethered bi-naphthyl derivatives was prepared in order to evaluate the impact of the tether on the efficiency of the prototypical [2 + 2] cycloaddition. The best performing additives showed a dramatic effect on the efficiency of the cyclization, and a rationalization of their relative efficiency was carried out through DFT modeling. The best co-catalyst allowed one to isolate desired products in good to excellent yields even employing several challenging substrates. These results offer new tools to devise optimized [2 + 2] photocycloaddition methods and provide valuable information for the design of organic co-catalyst that can boost photochemical reactions by exploiting dispersion interactions.
Collapse
Affiliation(s)
- Matteo Hoch
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Sara Sparascio
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Alessandro Cerveri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Franca Bigi
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
- IMEM-CNR, Parco Area delle Scienze 37/A, 43124, Parma, Italy
| | - Raimondo Maggi
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Rosanna Viscardi
- ENEA, Casaccia Research Center, 00123, Santa Maria di Galeria, Rome, Italy
| | - Giovanni Maestri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy.
| |
Collapse
|
9
|
Tsutsui Y, Yanaka I, Takeda K, Kondo M, Takizawa S, Kojima R, Konishi A, Yasuda M. Selective recognition between aromatics and aliphatics by cage-shaped borates supported by a machine learning approach. Org Biomol Chem 2024; 22:4283-4291. [PMID: 38602393 DOI: 10.1039/d4ob00408f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Selective recognition between hydrocarbon moieties is a longstanding issue. Although we developed a π-pocket Lewis acid catalyst with high selectivity for aromatic aldehydes over aliphatic ones, a general strategy for catalyst design remains elusive. As an approach that transfers the molecular recognition based on multiple cooperative non-covalent interactions within the π-pocket to a rational catalyst design, herein, we demonstrate Lewis acid catalysts showing improved selectivity through the support of an ensemble algorithm with random forest, Ada Boost, and XG Boost as a machine learning (ML) approach. Using 7963 explanatory variables extracted from model hetero-Diels-Alder reactions, the ensemble algorithm predicted the chemoselectivity of unlearned catalysts. Experiments confirmed the prediction. The proposed catalyst shows the highest selective recognition, reminiscing enzymatic catalytic activity. Additionally, a SHapley Additive exPlanations (SHAP) method suggested that the selectivity originates from the polarizability and three-dimensional size of the catalyst. This insight leads to rational design guidelines for Lewis acid catalysts with dispersion forces.
Collapse
Affiliation(s)
- Yuya Tsutsui
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan.
| | - Issei Yanaka
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, 432-8561, Japan.
| | - Kazuhiro Takeda
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, 432-8561, Japan.
| | - Masaru Kondo
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | | | - Ryosuke Kojima
- Department of Biomedical Data Intelligence, Graduate School of Medicine, Kyoto University, Sakyo-ku, 606-8507, Japan
| | - Akihito Konishi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan.
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, 565-0871, Japan
| | - Makoto Yasuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan.
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, 565-0871, Japan
| |
Collapse
|
10
|
Hu SP, Gao CH, Liu TM, Miao BY, Wang HC, Yu W, Han B. Integrating Olefin Carboamination and Hofmann-Löffler-Freytag Reaction by Radical Deconstruction of Hydrazonyl N-N Bond. Angew Chem Int Ed Engl 2024; 63:e202400168. [PMID: 38380865 DOI: 10.1002/anie.202400168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 02/22/2024]
Abstract
As a type of elementary organic compounds containing N-N single bond, hydrazone involved chemical conversions are extremely extensive, but they are mainly limited to N2-retention and N2-removal modes. We report herein an unprecedented protocol for the realization of division utilization of the N2-moiety of hydrazone by a radical facilitated N-N bond deconstruction strategy. This new conversion mode enables the successful combination of alkene carboamination and Hofmann-Löffler-Freytag reaction by the reaction of N-homoallyl mesitylenesulfonyl hydrazones with ethyl difluoroiodoacetate under photocatalytic redox neutral conditions. Mechanism studies reveal that the reaction undergoes a radical relay involving addition, crucial remote imino-N migration and H-atom transfer. Consequently, a series of structurally significant ϵ-N-sulphonamide-α,α-difluoro-γ-amino acid esters are efficiently produced via continuous C-C bond and dual C-N bonds forging.
Collapse
Affiliation(s)
- Si-Pei Hu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Chen-Hui Gao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Tu-Ming Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Bing-Yang Miao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Hong-Chen Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Bing Han
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
11
|
Cerveri A, Scarica G, Sparascio S, Hoch M, Chiminelli M, Tegoni M, Protti S, Maestri G. Boosting Energy-Transfer Processes via Dispersion Interactions. Chemistry 2024:e202304010. [PMID: 38224554 DOI: 10.1002/chem.202304010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
The generation of open-shell intermediates under mild conditions has opened broad synthetic opportunities during this century. However, these reactive species often require a case specific and tailored tuning of experimental parameters in order to efficiently convert substrates into products. We report a general approach that can overcome these ubiquitous limitations for several visible-light promoted energy-transfer processes. The use of either naphthalene (5-20 equiv.) or simple binaphthyl derivatives (10-30 mol %) greatly increases their efficiency, giving rise to a new strategy for catalysis. The trend is consistent among different media, photocatalysts, light sources and substrates, allowing one to improve existing methods, to more easily optimize conditions for new ones, and, moreover, to disclose otherwise inaccessible reaction pathways.
Collapse
Affiliation(s)
- Alessandro Cerveri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Gabriele Scarica
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Sara Sparascio
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Matteo Hoch
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Maurizio Chiminelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Matteo Tegoni
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, Università di Pavia, Via Taramelli 10, 27100, Pavia, Italy
| | - Giovanni Maestri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| |
Collapse
|
12
|
Bani-Yaseen AD, Al-Zoubi RM, Shkoor M. Spectrofluorometric investigations on the solvent effects on the photocyclization reaction of diclofenac. Heliyon 2023; 9:e20767. [PMID: 37920513 PMCID: PMC10618426 DOI: 10.1016/j.heliyon.2023.e20767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 09/23/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023] Open
Abstract
The solvent effects on the photochemical conversion rate of the photosensitizing drug diclofenac (DCF) were investigated using steady-state fluorescence spectroscopy. The spectral information obtained for the photochemical reaction of DCF in a set of neat solvents demonstrates that the photoconversion reaction rate of DCF is not only medium polarity dependent but also hydrogen-bonding dependent. The solvent effects were qualitatively and quantitatively assessed employing various solvatochromic models, including multi-parameter linear regression analysis (MLRA). Interestingly, the MLRA results (R = 0.99) revealed that the photoconversion rate increases with increasing solvent polarizability (π*) and H-bond donor capability (α), whereas the rate decreases with increasing hydrogen-bond acceptor capability (β). However, predominant effect of the solvent acidity compared to basicity and polarizability was observed. A hypothesis rationalizing the effects of H-bonding and medium polarity on DCF photoconversion reaction is presented and discussed.
Collapse
Affiliation(s)
- Abdulilah Dawoud Bani-Yaseen
- Department of Chemistry & Earth Sciences, Faculty of Arts & Science, Qatar University, P.O. Box: 2713, Doha, Qatar
| | - Raed M. Al-Zoubi
- Department of Biomedical Sciences, College of Health Sciences, QU-Health, Qatar University, Doha, 2713, Qatar
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
- Department of Chemistry, Jordan University of Science and Technology, P.O.Box 3030, Irbid, 22110, Jordan
| | - Mohanad Shkoor
- Department of Chemistry & Earth Sciences, Faculty of Arts & Science, Qatar University, P.O. Box: 2713, Doha, Qatar
| |
Collapse
|
13
|
Hejna BG, Ganley JM, Shao H, Tian H, Ellefsen JD, Fastuca NJ, Houk KN, Miller SJ, Knowles RR. Catalytic Asymmetric Hydrogen Atom Transfer: Enantioselective Hydroamination of Alkenes. J Am Chem Soc 2023; 145:16118-16129. [PMID: 37432783 PMCID: PMC10544660 DOI: 10.1021/jacs.3c04591] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
We report a highly enantioselective radical-based hydroamination of enol esters with sulfonamides jointly catalyzed by an Ir photocatalyst, Brønsted base, and tetrapeptide thiol. This method is demonstrated for the formation of 23 protected β-amino-alcohol products, achieving selectivities up to 97:3 er. The stereochemistry of the product is set through selective hydrogen atom transfer from the chiral thiol catalyst to a prochiral C-centered radical. Structure-selectivity relationships derived from structural variation of both the peptide catalyst and olefin substrate provide key insights into the development of an optimal catalyst. Experimental and computational mechanistic studies indicate that hydrogen-bonding, π-π stacking, and London dispersion interactions are contributing factors for substrate recognition and enantioinduction. These findings further the development of radical-based asymmetric catalysis and contribute to the understanding of the noncovalent interactions relevant to such transformations.
Collapse
Affiliation(s)
- Benjamin G. Hejna
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Jacob M. Ganley
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Huiling Shao
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Haowen Tian
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Jonathan D. Ellefsen
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Nicholas J. Fastuca
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Robert R. Knowles
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
14
|
Park SH, Bae G, Choi A, Shin S, Shin K, Choi CH, Kim H. Electrocatalytic Access to Azetidines via Intramolecular Allylic Hydroamination: Scrutinizing Key Oxidation Steps through Electrochemical Kinetic Analysis. J Am Chem Soc 2023. [PMID: 37428820 DOI: 10.1021/jacs.3c03172] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Azetidines are prominent structural scaffolds in bioactive molecules, medicinal chemistry, and ligand design for transition metals. However, state-of-the-art methods cannot be applied to intramolecular hydroamination of allylic amine derivatives despite their underlying potential as one of the most prevalent synthetic precursors to azetidines. Herein, we report an electrocatalytic method for intramolecular hydroamination of allylic sulfonamides to access azetidines for the first time. The merger of cobalt catalysis and electricity enables the regioselective generation of key carbocationic intermediates, which could directly undergo intramolecular C-N bond formation. The mechanistic investigations including electrochemical kinetic analysis suggest that either the catalyst regeneration by nucleophilic cyclization or the second electrochemical oxidation to access the carbocationic intermediate is involved in the rate-determining step (RDS) of our electrochemical protocol and highlight the ability of electrochemistry in providing ideal means to mediate catalyst oxidation.
Collapse
Affiliation(s)
- Steve H Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Geunsu Bae
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Ahhyeon Choi
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Suyeon Shin
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kwangmin Shin
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chang Hyuck Choi
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Republic of Korea
| | - Hyunwoo Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
15
|
Alektiar SN, Han J, Dang Y, Rubel CZ, Wickens ZK. Radical Hydrocarboxylation of Unactivated Alkenes via Photocatalytic Formate Activation. J Am Chem Soc 2023; 145:10991-10997. [PMID: 37186951 PMCID: PMC10636750 DOI: 10.1021/jacs.3c03671] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Herein we disclose a strategy to promote the hydrocarboxylation of unactivated alkenes using photochemical activation of formate salts. We illustrate that an alternative initiation mechanism circumvents the limitations of prior approaches and enables hydrocarboxylation of this challenging substrate class. Specifically, we found that accessing the requisite thiyl radical initiator without an exogenous chromophore eliminates major byproducts that have plagued attempts to exploit similar reactivity for unactivated alkene substrates. This redox-neutral method is technically simple to execute and effective across a broad range of alkene substrates. Feedstock alkenes, such as ethylene, are hydrocarboxylated at ambient temperature and pressure. A series of radical cyclization experiments indicate how the reactivity described in this report can be diverted by more complex radical processes.
Collapse
Affiliation(s)
- Sara N. Alektiar
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jimin Han
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Y Dang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Camille Z. Rubel
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Zachary K. Wickens
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
16
|
Kee CW. Molecular Understanding and Practical In Silico Catalyst Design in Computational Organocatalysis and Phase Transfer Catalysis-Challenges and Opportunities. Molecules 2023; 28:1715. [PMID: 36838703 PMCID: PMC9966076 DOI: 10.3390/molecules28041715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/25/2023] Open
Abstract
Through the lens of organocatalysis and phase transfer catalysis, we will examine the key components to calculate or predict catalysis-performance metrics, such as turnover frequency and measurement of stereoselectivity, via computational chemistry. The state-of-the-art tools available to calculate potential energy and, consequently, free energy, together with their caveats, will be discussed via examples from the literature. Through various examples from organocatalysis and phase transfer catalysis, we will highlight the challenges related to the mechanism, transition state theory, and solvation involved in translating calculated barriers to the turnover frequency or a metric of stereoselectivity. Examples in the literature that validated their theoretical models will be showcased. Lastly, the relevance and opportunity afforded by machine learning will be discussed.
Collapse
Affiliation(s)
- Choon Wee Kee
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| |
Collapse
|
17
|
The subtle art of radical control. Chem 2022. [DOI: 10.1016/j.chempr.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|