1
|
Unger F, Lepple D, Asbach M, Craciunescu L, Zeiser C, Kandolf AF, Fišer Z, Hagara J, Hagenlocher J, Hiller S, Haug S, Deutsch M, Grüninger P, Novák J, Bettinger HF, Broch K, Engels B, Schreiber F. Optical Absorption Properties in Pentacene/Tetracene Solid Solutions. J Phys Chem A 2024; 128:747-760. [PMID: 38232326 DOI: 10.1021/acs.jpca.3c06737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Modifying the optical and electronic properties of crystalline organic thin films is of great interest for improving the performance of modern organic semiconductor devices. Therein, the statistical mixing of molecules to form a solid solution provides an opportunity to fine-tune optical and electronic properties. Unfortunately, the diversity of intermolecular interactions renders mixed organic crystals highly complex, and a holistic picture is still lacking. Here, we report a study of the optical absorption properties in solid solutions of pentacene and tetracene, two prototypical organic semiconductors. In the mixtures, the optical properties can be continuously modified by statistical mixing at the molecular level. Comparison with time-dependent density functional theory calculations on occupationally disordered clusters unravels the electronic origin of the low energy optical transitions. The disorder partially relaxes the selection rules, leading to additional optical transitions that manifest as optical broadening. Furthermore, the contribution of diabatic charge-transfer states is modified in the mixtures, reducing the observed splitting in the 0-0 vibronic transition. Additional comparisons with other blended systems generalize our results and indicate that changes in the polarizability of the molecular environment in organic thin-film blends induce shifts in the absorption spectrum.
Collapse
Affiliation(s)
- Frederik Unger
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Daniel Lepple
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Maximilian Asbach
- Julius-Maximilian University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Luca Craciunescu
- Julius-Maximilian University Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS Scotland, U.K
| | - Clemens Zeiser
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Andreas F Kandolf
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
- Institute of Organic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Zbyněk Fišer
- Department of Condensed Matter Physics (UFKL), Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Jakub Hagara
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Jan Hagenlocher
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Stefan Hiller
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Sara Haug
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Marian Deutsch
- Julius-Maximilian University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Peter Grüninger
- Institute of Organic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Jiří Novák
- Department of Condensed Matter Physics (UFKL), Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Holger F Bettinger
- Institute of Organic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Katharina Broch
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Bernd Engels
- Julius-Maximilian University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Frank Schreiber
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| |
Collapse
|
2
|
Rose PA, Krich JJ. Interpretations of High-Order Transient Absorption Spectroscopies. J Phys Chem Lett 2023; 14:10849-10855. [PMID: 38032056 DOI: 10.1021/acs.jpclett.3c02491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Transient absorption (TA) spectroscopy is an invaluable tool for determining the energetics and dynamics of excited states. When pump intensities are sufficiently high, TA spectra include both the generally desired third-order response and responses that are higher in order in the field amplitudes. Recent work demonstrated that pump-intensity-dependent TA measurements allow separating the orders of response, but the information content in those higher orders has not been described. We give a general framework for understanding high-order TA spectra. We extend to higher order the fundamental processes of standard TA: ground-state bleach (GSB), stimulated emission (SE), and excited-state absorption (ESA). Each order introduces two new processes: SE and ESA from previously inaccessible highly excited states and negations of lower-order processes. We show the new spectral and dynamical information at each order and show how the relative signs of the signals in different orders can be used to identify which processes dominate.
Collapse
Affiliation(s)
- Peter A Rose
- Department of Physics, University of Ottawa, Ottawa ON K1N 6N5, Canada
| | - Jacob J Krich
- Department of Physics, University of Ottawa, Ottawa ON K1N 6N5, Canada
- Nexus for Quantum Technologies, University of Ottawa, Ottawa ON K1N 6N5, Canada
| |
Collapse
|
3
|
Bhattacharyya A, Sahu A, Patra S, Tiwari V. Low- and high-frequency vibrations synergistically enhance singlet exciton fission through robust vibronic resonances. Proc Natl Acad Sci U S A 2023; 120:e2310124120. [PMID: 38019862 PMCID: PMC10710028 DOI: 10.1073/pnas.2310124120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/14/2023] [Indexed: 12/01/2023] Open
Abstract
Singlet exciton fission (SEF) is initiated by ultrafast internal conversion of a singlet exciton into a correlated triplet pair [Formula: see text]. The "reaction coordinates" for ultrafast SEF even in archetypal systems such as pentacene thin film remain unclear. Couplings between fast electrons and slow nuclei are ubiquitous across a range of phenomena in chemistry. Accordingly, spectroscopic detection of vibrational coherences in the [Formula: see text] photoproduct motivated investigations into a possible role of vibronic coupling, akin to that reported in several photosynthetic proteins. However, acenes are very different from chlorophylls with 10× larger vibrational displacements upon photoexcitation and low-frequency vibrations modulating intermolecular orbital overlaps. Whether (and if so how) these unique features carry any mechanistic significance for SEF remains a poorly understood question. Accordingly, synthetic design of new molecules aiming to mimic this process across the solar spectrum has broadly relied on tuning electronic couplings. We address this gap and identify previously unrecognized synergistic interplay of vibrations, which in striking contrast to photosynthesis, vitally enhances SEF across a broad, nonselective and, therefore, unavoidable range of vibrational frequencies. We argue that attaching mechanistic significance to spectroscopically observed prominent quantum beats is misleading. Instead, we show that vibronic mixing leads to anisotropic quantum beats and propose readily implementable polarization-based two-dimensional electronic spectroscopy experiments which uniquely distinguish vibrations which drive vibronic mixing and promote SEF, against spectator vibrations simply accompanying ultrafast internal conversion. Our findings introduce crucial ingredients in synthetic design of SEF materials and spectroscopy experiments aiming to decipher mechanistic details from quantum beats.
Collapse
Affiliation(s)
- Atandrita Bhattacharyya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore560012, India
| | - Amitav Sahu
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore560012, India
| | - Sanjoy Patra
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore560012, India
| | - Vivek Tiwari
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore560012, India
| |
Collapse
|
4
|
Wang JX, Yin J, Gutiérrez-Arzaluz L, Thomas S, Shao W, Alshareef HN, Eddaoudi M, Bakr OM, Mohammed OF. Singlet Fission-Based High-Resolution X-Ray Imaging Scintillation Screens. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2300406. [PMID: 37083237 DOI: 10.1002/advs.202300406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/02/2023] [Indexed: 05/03/2023]
Abstract
X-ray imaging technology is critical to numerous different walks of daily life, ranging from medical radiography and security screening all the way to high-energy physics. Although several organic chromophores are fabricated and tested as X-ray imaging scintillators, they generally show poor scintillation performance due to their weak X-ray absorption cross-section and inefficient exciton utilization efficiency. Here, a singlet fission-based high-performance organic X-ray imaging scintillator with near unity exciton utilization efficiency is presented. Interestingly, it is found that the X-ray sensitivity and imaging resolution of the singlet fission-based scintillator are dramatically improved by an efficient energy transfer from a thermally activated delayed fluorescence (TADF) sensitizer, in which both singlet and triplet excitons can be efficiently harnessed. The fabricated singlet fission-based scintillator exhibits a high X-ray imaging resolution of 27.5 line pairs per millimeter (lp mm-1 ), which exceeds that of most commercial scintillators, demonstrating its high potential use in medical radiography and security inspection.
Collapse
Affiliation(s)
- Jian-Xin Wang
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Jun Yin
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Luis Gutiérrez-Arzaluz
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Simil Thomas
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Wenyi Shao
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Husam N Alshareef
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mohamed Eddaoudi
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Osman M Bakr
- KAUST Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Omar F Mohammed
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Bai Y, Ni W, Sun K, Chen L, Ma L, Zhao Y, Gurzadyan GG, Gelin MF. Plenty of Room on the Top: Pathways and Spectroscopic Signatures of Singlet Fission from Upper Singlet States. J Phys Chem Lett 2022; 13:11086-11094. [PMID: 36417755 DOI: 10.1021/acs.jpclett.2c03053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We investigate dynamic signatures of the singlet fission (SF) process triggered by the excitation of a molecular system to an upper singlet state SN (N > 1) and develop a computational methodology for the simulation of nonlinear spectroscopic signals revealing the SN → TT1 SF in real time. We demonstrate that SF can proceed directly from the upper state SN, bypassing the lowest excited state, S1. We determine the main SN → TT1 reaction pathways and show by computer simulation and spectroscopic measurements that the SN-initiated SF can be faster and more efficient than the traditionally studied S1 → TT1 SF. We claim that the SN → TT1 SF offers novel promising opportunities for engineering SF systems and enhancing SF yields.
Collapse
Affiliation(s)
- Yiting Bai
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Wenjun Ni
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Kewei Sun
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | | | - Lin Ma
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangdong 510006, China
| | - Yang Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Gagik G Gurzadyan
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, Dalian University of Technology, Dalian 116024, China
| | - Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|