1
|
Xu X, Feng Y, Chen H, Huang N. Semiconducting Polyaromatic Covalent Organic Frameworks Constructed through Self-Aldol Condensation. J Am Chem Soc 2025; 147:16653-16660. [PMID: 40306963 DOI: 10.1021/jacs.5c04944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
The construction of semiconducting covalent organic frameworks (COFs) via single-component self-polymerization is of broad interest in reticular chemistry. Herein, two semiconducting polyaromatic COFs with all-fused-ring conjugation structures were synthesized through the self-aldol condensation of indanone-based building blocks. The resulting COFs exhibit n-type semiconducting properties and exceptional stability under harsh acidic and alkaline conditions. The electrical conductivity and charge carrier mobility of the polyaromatic COFs reached up to 5.5 × 10-3 S cm-1 and 0.62 cm2 V-1 s-1, which ranked as the highest values among n-type semiconducting COFs. The high crystallinity, intrinsic porosity, excellent conductivity, and abundant five-membered rings as active sites render these COFs as effective metal-free electrocatalysts toward oxygen reduction reaction (ORR). Notably, one of these COFs shows a half-wave potential of up to 0.77 V under alkaline conditions, which constitutes one of the highest values among the reported metal-free ORR electrocatalysts. In addition, owing to the strong robustness of the polyaromatic COFs, they also exhibit long-term catalytic durability. This study not only expands the diversity of semiconducting COFs but also establishes new paradigms for the development of high-performance metal-free electrocatalysts toward the ORR process.
Collapse
Affiliation(s)
- Xiaoyi Xu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yaoqian Feng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hongzheng Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ning Huang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Qiu J, Xue X, Zhang K, Tian X, Wan W, Fan T, Li Z, Wang H, Zhao Y. A mixed-linker strategy in covalent organic frameworks for enhanced sunlight-driven photocatalytic oxidation activity and stability. Chem Commun (Camb) 2025; 61:7257-7260. [PMID: 40260618 DOI: 10.1039/d5cc01192b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
We present a simple mixed-linker strategy to enhance the photocatalytic oxidation activity and stability of covalent organic framework semiconductors. The TpTfbPa-COF, featuring an unconventional reversed AA-stacking structure with both imine and ketoamine linkages, exhibits excellent structural stability and superior photocatalytic performance compared to the fully imine-linked TfbPa-COF and the fully ketoamine-linked TpPa-COF.
Collapse
Affiliation(s)
- Jikuan Qiu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
| | - Xinchun Xue
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
| | - Kangna Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
| | - Xiaoxin Tian
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
- School of Chemistry and Materials Engineering, Xinxiang University, Xinxiang, Henan 453003, P. R. China
| | - Wenrui Wan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
| | - Tingting Fan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
| | - Zhiyong Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
| | - Huiyong Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
| | - Yuling Zhao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
| |
Collapse
|
3
|
Li Q, Zhu Y, Pan T, Zhang G, Pang H. Covalent organic framework nanomaterials: Syntheses, architectures, and applications. Adv Colloid Interface Sci 2025; 339:103427. [PMID: 39929054 DOI: 10.1016/j.cis.2025.103427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/29/2024] [Accepted: 02/01/2025] [Indexed: 02/12/2025]
Abstract
Covalent Organic Frameworks (COFs) are characterized by high thermochemical stability, low backbone density, well-controlled physical and chemical properties, large specific surface volume and porosity, permanently open pore structure, and various synthesis strategies. These remarkable attributes confer COFs with significant potential for a myriad of applications ranging from catalysis technology, gas separation and storage, optoelectronic materials, environmental and energy sciences, and biomedical development. There are many synthetic design methods for COF materials, and dynamic covalent chemistry is the scientific basis of COF materials-oriented design, which gives the error correction ability of the covalent assembly process, and is the key to obtaining crystallization and stability at the same time. However, "crystallinity" and "stability" in the synthesis and preparation of COF materials are often like "You can't have your cake and eat it, too": on the one hand, the reversible covalent bonds used in the synthesis of highly crystalline COF framework are easy to decompose under extreme conditions, which greatly limits its application scenarios; On the other hand, although highly stable COF materials can be prepared by using irreversible covalent bonds, it is usually poor crystalline and difficult to have high performance. In addition, the strict deoxygenation operation required for synthesizing COF materials also limits its macro preparation and large-scale application. Therefore, the synthesis strategy and efficient preparation of highly stable and crystalline COF materials are a major obstacle to the practical application of this field. This paper describes the four structures of COF materials, as well as their synthesis methods, electrical energy-storing electrocatalysis, and significant environmental protection applications. The future directions, prospects, and possible barriers to the development of these materials are envisioned in.
Collapse
Affiliation(s)
- Qing Li
- Guangling College, Yangzhou University, Yangzhou 225009, Jiangsu, PR China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, PR China
| | - Yuanyuan Zhu
- Guangling College, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Tao Pan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, PR China
| | - Guangxun Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, PR China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, PR China; State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
4
|
Ma X, Hu J, Li S, Zheng T, Gao Y, Han Y, Pan H, Bian Y, Jiang J. Porphyrin-based covalent organic frameworks with undulated layers for efficient photocatalytic CO 2 reduction. Sci Bull (Beijing) 2025:S2095-9273(25)00347-0. [PMID: 40210495 DOI: 10.1016/j.scib.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/28/2025] [Accepted: 03/17/2025] [Indexed: 04/12/2025]
Abstract
Two-dimensional (2D) porphyrin (Por)-based covalent organic frameworks (COFs) provide an attractive and effective strategy for photocatalytic CO2 reduction, but the layered structure due to π-π stacking is challenging for the exposure of active sites and transfer of mass and photogenerated carriers. In this study, a series of 2D conjugated porphyrin-based COFs were prepared using porphyrin blocks with linking units having different degrees of twisting. According to the experimental and theoretical calculation results, owing to the large spatial steric hindrance between the two carbazole units connected by the N-N single bond, a greatly undulating layered structure was formed in NN-Por-COF, which enhanced mass transfer and exposed more catalytic sites. The introduction of carbazole also modulated the electronic structure of the porphyrin Co center, which lowered the reaction energy barrier. The optimization of the structural and electronic effects led to the excellent photocatalytic CO2 reduction performance of NN-Por-COF, with CO conversion rates as high as 22.38 and 3.02 mmol g-1 h-1 under pure and diluted (10%) CO2 atmosphere, respectively, which are superior to those of most of the reported porphyrin-based photocatalysts.
Collapse
Affiliation(s)
- Xiaolin Ma
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jingyue Hu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Senzhi Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tianyu Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ying Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuesheng Han
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Houhe Pan
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Yongzhong Bian
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China.
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
5
|
Sun T, Wang Z, Wang Y, Xu Q, Wang K, Jiang J. Porphyrin-Based Covalent Organic Frameworks for CO 2 Photo/Electro-Reduction. Angew Chem Int Ed Engl 2025; 64:e202422814. [PMID: 39924727 DOI: 10.1002/anie.202422814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Indexed: 02/11/2025]
Abstract
Photo/electro-catalytic CO2 reduction into high-value products are promising strategies for addressing both environmental problems and energy crisis. Duo to their advantageous visible light absorption ability, adjustable optic/electronic properties, definite active center, post-modification capability, and excellent stability, porphyrin-based covalent organic frameworks (COFs) have emerged as attractive photo/electro-catalysts towards CO2 reduction. In this review, the research progress of the porphyrin-based COFs for photo/electro-catalytic CO2 reduction is summarized including the design principles, catalytic performance, and reaction mechanism. In addition, this review also presents some challenges and prospects for the application of porphyrin-based COFs in photo/electro-catalytic CO2 reduction, laying the base for both fundamental research and application efforts.
Collapse
Affiliation(s)
- Tingting Sun
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zhi Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yuhui Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Qingmei Xu
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Kang Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
6
|
Aslam AA, Amjad S, Irshad A, Kokab O, Ullah MS, Farid A, Mehmood RA, Hassan SU, Nazir MS, Ahmed M. From Fundamentals to Synthesis: Covalent Organic Frameworks as Promising Materials for CO 2 Adsorption. Top Curr Chem (Cham) 2025; 383:10. [PMID: 39987291 DOI: 10.1007/s41061-025-00494-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 02/01/2025] [Indexed: 02/24/2025]
Abstract
Covalent organic frameworks (COFs) are highly crystalline polymers that possess exceptional porosity and surface area, making them a subject of significant research interest. COF materials are synthesized by chemically linking organic molecules in a repetitive arrangement, creating a highly effective porous crystalline structure that adsorbs and retains gases. They are highly effective in removing impurities, such as CO2, because of their desirable characteristics, such as durability, high reactivity, stable porosity, and increased surface area. This study offers a background overview, encompassing a concise discussion of the current issue of excessive carbon emissions, and a synopsis of the materials most frequently used for CO2 collection. This review provides a detailed overview of COF materials, particularly emphasizing their synthesis methods and applications in carbon capture. It presents the latest research findings on COFs synthesized using various covalent bond formation techniques. Moreover, it discusses emerging trends and future prospects in this particular field.
Collapse
Affiliation(s)
- Awais Ali Aslam
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100, Gliwice, Poland.
- Department of Chemistry, COMSATS University Islamabad, Lahore, 58000, Pakistan.
| | - Sania Amjad
- Department of Chemistry, Government College Women University, Sialkot, Pakistan
| | - Adnan Irshad
- Department of Chemistry, University of Education Lahore, Vehari, 61100, Pakistan
- Department of Chemical Engineering, University of New South Wales, Sydney, Australia
| | - Osama Kokab
- Department of Chemistry, COMSATS University Islamabad, Lahore, 58000, Pakistan
| | - Mudassar Sana Ullah
- Department of Chemistry, Division of Science and Technology, University of Education, College Road, Lahore, 54770, Pakistan
| | - Awais Farid
- Department of Chemistry, University of Education Lahore, Vehari, 61100, Pakistan
| | - Rana Adeel Mehmood
- Department of Chemistry, University of Education Lahore, Vehari, 61100, Pakistan
| | - Sadaf Ul Hassan
- Department of Chemistry, COMSATS University Islamabad, Lahore, 58000, Pakistan
| | | | - Mahmood Ahmed
- Department of Chemistry, Division of Science and Technology, University of Education, College Road, Lahore, 54770, Pakistan.
| |
Collapse
|
7
|
Wu X, Wang H, Huang N. Three-Dimensional Covalent Organic Frameworks with lil Topology. J Am Chem Soc 2025; 147:6016-6022. [PMID: 39921914 DOI: 10.1021/jacs.4c16422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2025]
Abstract
The diversity of covalent organic frameworks (COFs) is continuously expanding, providing various materials with tailor-made structures and properties. However, the development of crystalline three-dimensional (3D) COFs with new topologies is an essential but arduous challenge. In this study, we first developed one kind of 3D COFs with the lil topological structure, which were assembled by D4h- and C2h-symmetric building blocks. The 3D COFs were determined in a space group of Imma, in which each D4h-symmetric unit is connected with four C2h-symmetric units, forming a noninterpenetrated network. The densely packed copper phthalocyanine and stable polyimide linkage render these COFs as a polymeric material with high dielectric constant and low dielectric loss at high frequencies (>1 kHz). Significantly, the dielectric constant was determined as high as 63, which constitutes a new record value among phthalocyanine-based and polyimide polymers. Therefore, this study not only provides important guidance for the design of 3D lil-net COFs but also supplies promising materials for application in high-energy-density and pulsed capacitors.
Collapse
Affiliation(s)
- Xinyu Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hanwen Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ning Huang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Cao J, Lv J, Yin Y, Bai Q, Li M, Hou Z. Covalent Organic Frameworks with Fe/Co Single-Atom Nanozyme for Alendronate Sodium Detection. ACS APPLIED NANO MATERIALS 2025; 8:1490-1498. [DOI: 10.1021/acsanm.4c06116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Affiliation(s)
- Jingcheng Cao
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang 050051, China
- Orthopaedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Jie Lv
- College of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China
- Postdoctoral Mobile Station of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Yingchao Yin
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang 050051, China
- Orthopaedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Qingqing Bai
- College of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China
| | - Meng Li
- College of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China
| | - Zhiyong Hou
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang 050051, China
- Orthopaedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| |
Collapse
|
9
|
Irie T, Das S, Fang Q, Negishi Y. The Importance and Discovery of Highly Connected Covalent Organic Framework Net Topologies. J Am Chem Soc 2025; 147:1367-1380. [PMID: 39745262 DOI: 10.1021/jacs.4c14458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Furthering the field of synthetic organic chemistry from the discrete molecules regime to the extended structure regime, covalent organic frameworks (COFs) represent a new genre of crystalline porous materials featuring designability with molecular-level precision, well-defined porosity, and exceptional stability imparted by the robust covalent linkages reticulating organic molecules. The topology of COFs is a principal feature that regulates their functionality and usability for emerging technologies. Profound comprehension of network topologies and maneuvering them toward targeted applications are crucial to advancing the realm of COF research and developing novel functional materials for exciting breakthroughs. In this Perspective, we discuss the recent research pursuits contributing to the discovery of highly connected COF nets having novel topologies, assess the key challenges to achieving such network topologies, and offer insights into the current scenario and future directions.
Collapse
Affiliation(s)
- Tsukasa Irie
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Saikat Das
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
10
|
Chen F, Zheng H, Yusran Y, Li H, Qiu S, Fang Q. Exploring high-connectivity three-dimensional covalent organic frameworks: topologies, structures, and emerging applications. Chem Soc Rev 2025; 54:484-514. [PMID: 39585733 DOI: 10.1039/d4cs00703d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Covalent organic frameworks (COFs) represent a highly versatile class of crystalline porous materials, formed by the deliberate assembly of organic building units into ordered two-dimensional (2D) and three-dimensional (3D) structures. Their unique combination of topological precision and tunable micro- or mesoporous architectures offers unmatched flexibility in material design. By selecting specific building units, reactive sites, and functional groups, COFs can be engineered to achieve customized skeletal, porous, and interfacial properties, opening the door to materials with optimized performance for diverse applications. Among recent advances, high-connectivity 3D COFs have emerged as a particularly exciting development, with their intricate network structures enabling unprecedented levels of structural complexity, stability, and functionality. This review provides a comprehensive overview of the synthesis strategies, topological design principles, structural characterization techniques, and emerging applications of high-connectivity 3D COFs. We explore their potential across a broad range of cutting-edge applications, including gas adsorption and separation, macromolecule adsorption, dye removal, photocatalysis, electrocatalysis, lithium-sulfur batteries, and charge transport. By examining these key areas, we aim to deepen the understanding of the intricate relationship between structure and function, guiding the rational design of next-generation COF materials. The continued advancements in this field hold immense promise for revolutionizing sectors such as energy storage, catalysis, and molecular separation, making high-connectivity 3D COFs a cornerstone for future technological innovations.
Collapse
Affiliation(s)
- Fengqian Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Haorui Zheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Yusran Yusran
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Hui Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China.
| |
Collapse
|
11
|
Hsueh CH, He C, Zhang J, Tan X, Zhu H, Cheong WCM, Li AZ, Chen X, Duan H, Zhao Y, Chen C. Three-Dimensional Mesoporous Covalent Organic Framework for Photocatalytic Oxidative Dehydrogenation to Quinoline. J Am Chem Soc 2024; 146:33857-33864. [PMID: 39606862 DOI: 10.1021/jacs.4c12286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Developing precious metal-free catalysts for organic reactions under mild conditions is urgent. Herein, we report a three-dimensional covalent organic framework (3D-COF) with high crystallinity and permanent pores, termed 3D-TABPA-COF, for the oxidation of tetrahydroquinoline to quinoline. The 3D-TABPA-COF assembled based on N4,N4-bis(4'-amino-[1,1'-biphenyl]-4-yl)-[1,1'-biphenyl]-4,4'-diamine (TABPA) is the catalytic active center for the conversion of tetrahydroquinoline. The triphenylamine in the structure is an effective photosensitizer, which not only enhances the light absorption capacity but also facilitates the rapid transfer of photogenerated electrons and ensures effective carrier separation. The obtained 3D-TABPA-COF has a high specific surface area (2745.06 m2 g-1) and mesopores of 3.57 nm. This is attributed to the fact that the bor topology is not easy to interpenetrate. It can oxidize tetrahydroquinoline to obtain quinoline efficiently under visible light irradiation. In addition, we also performed various photochemical characterizations combined with density functional theory calculations to elucidate the reaction mechanism from tetrahydroquinoline to quinoline. This work provides a feasible strategy for constructing 3D-COF to achieve efficient photocatalytic organic reactions.
Collapse
Affiliation(s)
- Chou-Hung Hsueh
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chang He
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
- Institute of Molecular Engineering Plus, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jiaqi Zhang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xin Tan
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Haojie Zhu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Weng-Chon Max Cheong
- Macao Institute of Materials Science and Engineering, Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao SAR 999078, China
| | - An-Zhen Li
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xin Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Haohong Duan
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yingbo Zhao
- School of Physical Science and Technology, Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Chen Chen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Doremus JG, Lotsi B, Sharma A, McGrier PL. Photocatalytic applications of covalent organic frameworks: synthesis, characterization, and utility. NANOSCALE 2024; 16:21619-21672. [PMID: 39495099 DOI: 10.1039/d4nr03204g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Photocatalysis has emerged as an energy efficient and safe method to perform organic transformations, and many semiconductors have been studied for use as photocatalysts. Covalent organic frameworks (COFs) are an established class of crystalline, porous materials constructed from organic units that are easily tunable. COFs importantly display semiconductor properties and respectable photoelectric behaviour, making them a strong prospect as photocatalysts. In this review, we summarize the design, synthetic methods, and characterization techniques for COFs. Strategies to boost photocatalytic performance are also discussed. Then the applications of COFs as photocatalysts in a variety of reactions are detailed. Finally, a summary, challenges, and future opportunities for the development of COFs as efficient photocatalysts are entailed.
Collapse
Affiliation(s)
- Jared G Doremus
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Bertha Lotsi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Aadarsh Sharma
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Psaras L McGrier
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
13
|
Ge S, Wei K, Peng W, Huang R, Akinlabi E, Xia H, Shahzad MW, Zhang X, Xu BB, Jiang J. A comprehensive review of covalent organic frameworks (COFs) and their derivatives in environmental pollution control. Chem Soc Rev 2024; 53:11259-11302. [PMID: 39479879 DOI: 10.1039/d4cs00521j] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Covalent organic frameworks (COFs) have gained considerable attention due to their design possibilities as the molecular organic building blocks that can stack in an atomically precise spatial arrangement. Since the inception of COFs in 2005, there has been a continuous expansion in the product range of COFs and their derivatives. This expansion has led to the evolution of three-dimensional structures and various synthetic routes, propelling the field towards large-scale preparation of COFs and their derivatives. This review will offer a holistic analysis and comparison of the spatial structure and synthesis techniques of COFs and their derivatives. The conventional methods of COF synthesis (i.e., ultrasonic chemical, microwave, and solvothermal) are discussed alongside the synthesis strategies of new COFs and their derivatives. Furthermore, the applications of COFs and their derived materials are demonstrated in air, water, and soil pollution management such as gas capture, catalytic conversion, adsorption, and pollutant removal. Finally, this review highlights the current challenges and prospects for large-scale preparation and application of new COFs and the derived materials. In line with the United Nations Sustainable Development Goals (SDGs) and the needs of digital-enabled technologies (AI and machine learning), this review will encompass the future technical trends for COFs in environmental pollution control.
Collapse
Affiliation(s)
- Shengbo Ge
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Kexin Wei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Wanxi Peng
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Runzhou Huang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Esther Akinlabi
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Hongyan Xia
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Muhammad Wakil Shahzad
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Xuehua Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Ben Bin Xu
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Jianchun Jiang
- Key Lab of Biomass Energy and Material of Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China.
| |
Collapse
|
14
|
Li J, Zhou J, Wang XH, Guo C, Li RH, Zhuang H, Feng W, Hua Y, Lan YQ. In situ Construction of Single-Atom Electronic Bridge on COF to Enhance Photocatalytic H 2 Production. Angew Chem Int Ed Engl 2024; 63:e202411721. [PMID: 39136169 DOI: 10.1002/anie.202411721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Indexed: 09/25/2024]
Abstract
Photocatalytic hydrogen production is one of the most valuable technologies in the future energy system. Here, we designed a metal-covalent organic frameworks (MCOFs) with both small-sized metal clusters and nitrogen-rich ligands, named COF-Cu3TG. Based on our design, small-sized metal clusters were selected to increase the density of active sites and shorten the distance of electron transport to active sites. While another building block containing nitrogen-rich organic ligands acted as a node that could in situ anchor metal atoms during photocatalysis and form interlayer single-atom electron bridges (SAEB) to accelerate electron transport. Together, they promoted photocatalytic performance. This represented the further utilization of Ru atoms and was an additional application of the photosensitizer. N2-Ru-N2 electron bridge (Ru-SAEB) was created in situ between the layers, resulting in a considerable enhancement in the hydrogen production rate of the photocatalyst to 10.47 mmol g-1 h-1. Through theoretical calculation and EXAFS, the existence position and action mechanism of Ru-SAEB were reasonably inferred, further confirming the rationality of the Ru-SAEB configuration. A sufficiently proximity between the small-sized Cu3 cluster and the Ru-SAEB was found to expedite electron transfer. This work demonstrated the synergistic impact of small molecular clusters with Ru-SAEB for efficient photocatalytic hydrogen production.
Collapse
Affiliation(s)
- Jie Li
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Jie Zhou
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province School of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Xiao-Han Wang
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Can Guo
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Run-Han Li
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Huifen Zhuang
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Wenhai Feng
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Yingjie Hua
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province School of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Ya-Qian Lan
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
15
|
Ye H, Franco C, Aboouf MA, Thiersch M, Sevim S, Llacer‐Wintle J, Veciana A, Llauradó‐Capdevila G, Wang K, Chen X, Tang Q, Matheu R, Wendel‐Garcia PD, Sánchez‐Murcia PA, Nelson BJ, Luo C, Puigmartí‐Luis J, Pané S. Insights into the Biological Activity and Bio-Interaction Properties of Nanoscale Imine-Based 2D and 3D Covalent Organic Frameworks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407391. [PMID: 39387248 PMCID: PMC11600295 DOI: 10.1002/advs.202407391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/16/2024] [Indexed: 10/15/2024]
Abstract
Covalent Organic Frameworks (COFs) emerged as versatile materials with promising potential in biomedicine. Their customizable functionalities and tunable pore structures make them valuable for various biomedical applications such as biosensing, bioimaging, antimicrobial activity, and targeted drug delivery. Despite efforts made to create nanoscale COFs (nCOFs) to enhance their interaction with biological systems, a comprehensive understanding of their inherent biological activities remains a significant challenge. In this study, a thorough investigation is conducted into the biocompatibility and anti-neoplastic properties of two distinct imine-based nCOFs. The approach involved an in-depth analysis of these nCOFs through in vitro experiments with various cell types and in vivo assessments using murine models. These findings revealed significant cytotoxic effects on tumor cells. Moreover, the activation of multiple cellular death pathways, including apoptosis, necroptosis, and ferroptosis is determined, supported by evidence at the molecular level. In vivo evaluations exhibited marked inhibition of tumor growth, associated with the elevated spontaneous accumulation of nCOFs in tumor tissues and the modulation of cell death-related protein expression. The research contributes to developing a roadmap for the characterization of the intricate interactions between nCOFs and biological systems and opens new avenues for exploiting their therapeutic potential in advanced biomedical applications.
Collapse
Affiliation(s)
- Hao Ye
- Multi‐Scale Robotics Lab (MSRL)Institute of Robotics & Intelligent Systems (IRIS)ETH ZurichZurich8092Switzerland
| | - Carlos Franco
- Multi‐Scale Robotics Lab (MSRL)Institute of Robotics & Intelligent Systems (IRIS)ETH ZurichZurich8092Switzerland
| | - Mostafa A. Aboouf
- Institute of Veterinary PhysiologyVetsuisse FacultyUniversity of ZurichWinterthurerstrasse 260Zurich8057Switzerland
- Department of BiochemistryFaculty of PharmacyAin Shams UniversityCairo11566Egypt
| | - Markus Thiersch
- Institute of Veterinary PhysiologyVetsuisse FacultyUniversity of ZurichWinterthurerstrasse 260Zurich8057Switzerland
| | - Semih Sevim
- Multi‐Scale Robotics Lab (MSRL)Institute of Robotics & Intelligent Systems (IRIS)ETH ZurichZurich8092Switzerland
| | - Joaquin Llacer‐Wintle
- Multi‐Scale Robotics Lab (MSRL)Institute of Robotics & Intelligent Systems (IRIS)ETH ZurichZurich8092Switzerland
| | - Andrea Veciana
- Multi‐Scale Robotics Lab (MSRL)Institute of Robotics & Intelligent Systems (IRIS)ETH ZurichZurich8092Switzerland
| | - Gemma Llauradó‐Capdevila
- Departament de Ciència dels Materials i Química Física Institut de Química Teòrica i ComputacionalUniversity of BarcelonaBarcelona08028Spain
| | - Kaiyuan Wang
- Department of PharmaceuticsWuya College of InnovationShenyang Pharmaceutical University103 Wenhua RoadShenyang Liaoning110016P. R. China
| | - Xiang‐Zhong Chen
- State Key Laboratory of Photovoltaic Science and TechnologyShanghai Frontiers Science Research Base of Intelligent Optoelectronics and PerceptionInstitute of OptoelectronicsInternational Institute of Intelligent Nanorobots and NanosystemsFudan UniversitySonghu Road 2005Shanghai200438China
- Yiwu Research Intitute of Fudan UniversityYiwu322000China
| | - Qiao Tang
- Multi‐Scale Robotics Lab (MSRL)Institute of Robotics & Intelligent Systems (IRIS)ETH ZurichZurich8092Switzerland
| | - Roc Matheu
- Departament de Química Inorgànica i OrgànicaInstitut de Química Teòrica i ComputacionalBarcelona08028Spain
| | - Pedro D. Wendel‐Garcia
- Institute of Intensive Care MedicineUniversity Hospital ZurichRämistrasse 100Zurich8091Switzerland
| | - Pedro A. Sánchez‐Murcia
- Laboratory of Computer‐Aided Molecular DesignDivision of Medicinal ChemistryOtto‐Loewi Research CenterMedical University of GrazNeue Stiftingstalstraße 6/IIIGrazA‐8010Austria
| | - Bradley J. Nelson
- Multi‐Scale Robotics Lab (MSRL)Institute of Robotics & Intelligent Systems (IRIS)ETH ZurichZurich8092Switzerland
| | - Cong Luo
- Department of PharmaceuticsWuya College of InnovationShenyang Pharmaceutical University103 Wenhua RoadShenyang Liaoning110016P. R. China
| | - Josep Puigmartí‐Luis
- Departament de Ciència dels Materials i Química Física Institut de Química Teòrica i ComputacionalUniversity of BarcelonaBarcelona08028Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)Pg. Lluís Companys 23Barcelona08010Spain
| | - Salvador Pané
- Multi‐Scale Robotics Lab (MSRL)Institute of Robotics & Intelligent Systems (IRIS)ETH ZurichZurich8092Switzerland
| |
Collapse
|
16
|
Wen F, Xu K, Feng Y, Huang N. Two-Dimensional Covalent Organic Frameworks with Pentagonal Pores. J Am Chem Soc 2024; 146:19680-19685. [PMID: 38979969 DOI: 10.1021/jacs.4c06438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The pore shapes of two-dimensional covalent organic frameworks (2D COFs) significantly limit their practical applications in separation and catalysis. Although various 2D COFs with polygonal pores have been well developed, constructing COFs with pentagonal pores remains an enormous challenge. In this work, we developed one kind of pentagonal COFs with the mcm topological structure for the first time, through the rational combination of C4 and C2 symmetric building blocks. The resulting pentagonal COFs exhibit high crystallinity, excellent porosity, and strong robustness. Moreover, the inbuilt porphyrin units render these COFs as efficient electrocatalytic catalysts toward oxygen reduction reaction with a half-wave potential of up to 0.81 V, which ranks as one of the highest values among COFs-based electrocatalysts. This work not only verified the possibility of constructing 2D COFs with pentagonal pores but also developed a strategy for the construction of functional 2D COFs for interesting applications.
Collapse
Affiliation(s)
- Fuxiang Wen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Kai Xu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yaoqian Feng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ning Huang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
17
|
Dong P, Xu X, Wu T, Luo R, Kong W, Xu Z, Yuan S, Zhou J, Lei J. Stepwise Protonation of Three-Dimensional Covalent Organic Frameworks for Enhancing Hydrogen Peroxide Photosynthesis. Angew Chem Int Ed Engl 2024; 63:e202405313. [PMID: 38738593 DOI: 10.1002/anie.202405313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/14/2024]
Abstract
Three-dimensional covalent organic frameworks (3D COFs), recognized for their tailorable structures and accessible active sites, offer a promising platform for developing advanced photocatalysts. However, the difficulty in the synthesis and functionalization of 3D COFs hinders their further development. In this study, we present a series of 3D-bcu-COFs with 8 connected porphyrin units linked by linear linkers through imine bonds as a versatile platform for photocatalyst design. The photoresponse of 3D-bcu-COFs was initially modulated by functionalizing linear linkers with benzo-thiadiazole or benzo-selenadiazole groups. Furthermore, taking advantage of the well-exposed porphyrin and imine sites in 3D-bcu-COFs, their photocatalytic activity was optimized by stepwise protonation of imine bonds and porphyrin centers. The dual protonated COF with benzo-selenadiazole groups exhibited enhanced charge separation, leading to an increased photocatalytic H2O2 production under visible light. This enhancement demonstrates the combined benefits of linker functionalization and stepwise protonation on photocatalytic efficiency.
Collapse
Affiliation(s)
- Pengfei Dong
- State Key Laboratory of Analytical Chemistry for Life Science State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xinyu Xu
- State Key Laboratory of Analytical Chemistry for Life Science State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Taikang Wu
- State Key Laboratory of Analytical Chemistry for Life Science State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Rengan Luo
- State Key Laboratory of Analytical Chemistry for Life Science State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Weisu Kong
- State Key Laboratory of Analytical Chemistry for Life Science State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhiyuan Xu
- State Key Laboratory of Analytical Chemistry for Life Science State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shuai Yuan
- State Key Laboratory of Analytical Chemistry for Life Science State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
18
|
Ma TT, Huang GZ, Wang XH, Liang Y, Li RH, Wang B, Yao SJ, Liao JP, Li SL, Yan Y, Lan YQ. Photochromic radical states in 3D covalent organic frameworks with zyg topology for enhanced photocatalysis. Natl Sci Rev 2024; 11:nwae177. [PMID: 38883289 PMCID: PMC11173181 DOI: 10.1093/nsr/nwae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 06/18/2024] Open
Abstract
Covalent-organic frameworks (COFs) with photoinduced donor-acceptor (D-A) radical pairs show enhanced photocatalytic activity in principle. However, achieving long-lived charge separation in COFs proves challenging due to the rapid charge recombination. Here, we develop a novel strategy by combining [6 + 4] nodes to construct zyg-type 3D COFs, first reported in COF chemistry. This structure type exhibits a fused Olympic-rings-like shape, which provides a platform for stabilizing the photoinduced D-A radical pairs. The zyg-type COFs containing catalytically active moieties such as triphenylamine and phenothiazine (PTZ) show superior photocatalytic production rates of hydrogen peroxide (H2O2). Significantly, the photochromic radical states of these COFs show up to 400% enhancement in photocatalytic activity compared to the parent states, achieving a remarkable H2O2 synthesis rate of 3324 μmol g-1 h-1, which makes the PTZ-COF one of the best crystalline porous photocatalysts in H2O2 production. This work will shed light on the synthesis of efficient 3D COF photocatalysts built on topologies that can facilitate photogenerating D-A radical pairs for enhanced photocatalysis.
Collapse
Affiliation(s)
- Tian-Tian Ma
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Guo-Zhang Huang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiao-Han Wang
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Yan Liang
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Run-Han Li
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Bin Wang
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Su-Juan Yao
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Jia-Peng Liao
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Shun-Li Li
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Yong Yan
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
19
|
Liu J, Ma J, Wang T, Xue XS, Zhu C. Radical-Mediated α- tert-Alkylation of Aldehydes by Consecutive 1,4- and 1,3-(Benzo)thiazolyl Migrations. JACS AU 2024; 4:2108-2114. [PMID: 38938795 PMCID: PMC11200231 DOI: 10.1021/jacsau.4c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/29/2024]
Abstract
The direct alkylation of the α-position of aldehydes is an effective method for accessing a wide range of structurally diverse aldehydes, yet tert-alkylation has proven to be a challenging task. In this study, we present a novel radical-mediated tert-alkylation approach targeting the α-position of aldehydes, enabling the synthesis of complex aliphatic aldehydes. The transformation is initiated by the interaction between an in situ generated enamine intermediate and α-bromo sulfone, forming an electron donor-acceptor (EDA) complex, followed by consecutive 1,4- and 1,3-functional group migrations. This protocol operates under metal-free and mild photochemical conditions, delivering a broad scope of products and providing new mechanistic insights into radical rearrangement reactions.
Collapse
Affiliation(s)
- Jige Liu
- Frontiers
Science Center for Transformative Molecules, Zhangjiang Institute
for Advanced Study, and Shanghai Key Laboratory for Molecular Engineering
of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Key
Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry,
Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Jiangshan Ma
- Frontiers
Science Center for Transformative Molecules, Zhangjiang Institute
for Advanced Study, and Shanghai Key Laboratory for Molecular Engineering
of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Tongkun Wang
- Key
Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University
of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiao-Song Xue
- Key
Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University
of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Chen Zhu
- Frontiers
Science Center for Transformative Molecules, Zhangjiang Institute
for Advanced Study, and Shanghai Key Laboratory for Molecular Engineering
of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Key
Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry,
Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| |
Collapse
|
20
|
Liu M, Xu Q, Zeng G. Ionic Covalent Organic Frameworks in Adsorption and Catalysis. Angew Chem Int Ed Engl 2024; 63:e202404886. [PMID: 38563659 DOI: 10.1002/anie.202404886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
The ion extraction and electro/photo catalysis are promising methods to address environmental and energy issues. Covalent organic frameworks (COFs) are a class of promising template to construct absorbents and catalysts because of their stable frameworks, high surface areas, controllable pore environments, and well-defined catalytic sites. Among them, ionic COFs as unique class of crystalline porous materials, with charges in the frameworks or along the pore walls, have shown different properties and resulting performance in these applications with those from charge-neutral COFs. In this review, current research progress based on the ionic COFs for ion extraction and energy conversion, including cationic/anionic materials and electro/photo catalysis is reviewed in terms of the synthesis strategy, modification methods, mechanisms of adsorption and catalysis, as well as applications. Finally, we demonstrated the current challenges and future development of ionic COFs in design strategies and applications.
Collapse
Affiliation(s)
- Minghao Liu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315199, P. R. China
| | - Qing Xu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gaofeng Zeng
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
21
|
Sheng X, Wang Z, Sheng G, Zhu C, Xiao D, Shan T, Xiao X, Liu M, Li G, Zhu Y, Sessler JL, Huang F. Three-Dimensional Crystalline Organic Framework Stabilized by Molecular Mortise-and-Tenon Jointing. J Am Chem Soc 2024; 146:12547-12555. [PMID: 38656766 DOI: 10.1021/jacs.4c01104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Three-dimensional (3D) crystalline organic frameworks with complex topologies, high surface area, and low densities afford a variety of application prospects. However, the design and construction of these frameworks have been largely limited to systems containing polyhedron-shaped building blocks or those relying on component interpenetration. Here, we report the synthesis of a 3D crystalline organic framework based on molecular mortise-and-tenon jointing. This new material takes advantage of tetra(4-pyridylphenyl)ethylene and chlorinated bis(benzodioxaborole)benzene as building blocks and is driven by dative B-N bonds. A single-crystal X-ray diffraction analysis of the framework reveals the presence of two-dimensional (2D) layers with helical channels that are formed presumably during the boron-nitrogen coordination process. The protrusion of dichlorobenzene units from the upper and lower surfaces of the 2D layers facilitates the key mortise-and-tenon connections. These connections enable the interlocking of adjacent layers and the stabilization of an overall 3D framework. The resulting framework is endowed with high porosity and attractive mechanical properties, rendering it potentially suitable for the removal of impurities from acetylene.
Collapse
Affiliation(s)
- Xinru Sheng
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- Petroleum Exploration and Production Research Institute, SINOPEC, Beijing 100083, P. R. China
| | - Zeju Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Guan Sheng
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Chongzhi Zhu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ding Xiao
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Tianyu Shan
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Xuedong Xiao
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Ming Liu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Guangfeng Li
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Yihan Zhu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| |
Collapse
|
22
|
Huang W, Zhang W, Yang S, Wang L, Yu G. 3D Covalent Organic Frameworks from Design, Synthesis to Applications in Optoelectronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308019. [PMID: 38057125 DOI: 10.1002/smll.202308019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/13/2023] [Indexed: 12/08/2023]
Abstract
Covalent organic frameworks (COFs), a new class of crystalline materials connected by covalent bonds, have been developed rapidly in the past decades. However, the research on COFs is mainly focused on two-dimensional (2D) COFs, and the research on three-dimensional (3D) COFs is still in the initial stage. In 2D COFs, the covalent bonds exist only in the 2D flakes and can form 1D channels, which hinder the charge transport to some extent. In contrast, 3D COFs have a more complex pore structure and thus exhibit higher specific surface area and richer active sites, which greatly enhance the 3D charge carrier transport. Therefore, compared to 2D COFs, 3D COFs have stronger applicability in energy storage and conversion, sensing, and optoelectronics. In this review, it is first introduced the design principles for 3D COFs, and in particular summarize the development of conjugated building blocks in 3D COFs, with a special focus on their application in optoelectronics. Subsequently, the preparation of 3D COF powders and thin films and methods to improve the stability and functionalization of 3D COFs are summarized. Moreover, the applications of 3D COFs in electronics are outlined. Finally, conclusions and future research directions for 3D COFs are presented.
Collapse
Affiliation(s)
- Wei Huang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuai Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
23
|
Guo Z, Zhang Z, Sun J. Topological Analysis and Structural Determination of 3D Covalent Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312889. [PMID: 38290005 DOI: 10.1002/adma.202312889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/24/2024] [Indexed: 02/01/2024]
Abstract
3D covalent organic frameworks (3D COFs) constitute a new type of crystalline materials that consist of a range of porous structures with numerous applications in the fields of adsorption, separation, and catalysis. However, because of the complexity of the three-periodic net structure, it is desirable to develop a thorough structural comprehension, along with a means to precisely determine the actual structure. Indeed, such advancements would considerably contribute to the rational design and application of 3D COFs. In this review, the reported topologies of 3D COFs are introduced and categorized according to the configurations of their building blocks, and a comprehensive overview of diffraction-based structural determination methods is provided. The current challenges and future prospects for these materials will also be discussed.
Collapse
Affiliation(s)
- Zi'ang Guo
- College of Chemistry and Molecular Engineering, Beijing National Laboratory of Molecular Sciences, Peking University, Beijing, 100871, P. R. China
| | - Zeyue Zhang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory of Molecular Sciences, Peking University, Beijing, 100871, P. R. China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering, Beijing National Laboratory of Molecular Sciences, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
24
|
Das S, Mabuchi H, Irie T, Sasaki K, Nozaki M, Tomioka R, Wen D, Zhao Y, Ben T, Negishi Y. 3D Covalent Organic Framework with "the" Topology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307666. [PMID: 38279566 DOI: 10.1002/smll.202307666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Discovery of new topology covalent organic frameworks (COFs) is a mainstay in reticular chemistry and materials research because it not only serves as a stepwise guide to the designed construction of covalent-organic architectures but also helps to comprehend function from structural design point-of-view. Proceeding on this track, the first 3D COF, TUS-38, with the topology is constructed by reticulating a planar triangular 3-c node of D3h symmetry with a tetragonal prism 8-c node of D2h symmetry via [3 + 8] reversible imine condensation reaction. TUS-38 represents a twofold interpenetrated multidirectional pore network with a high degree of crystallinity and structural integrity. Interestingly, stemming from the nitrogen-rich s-triazine rings with electron-deficient character and ─C ═ N─ linkages composing the TUS-38 framework that benefit to the charge-transfer and hence dipole-dipole electrostatic interactions between the framework and iodine in addition to exclusive topological characteristics of the exotic the net, TUS-38 achieves an exemplary capacity for iodine vapor uptake reaching 6.3 g g-1. Recyclability studies evidence that TUS-38 can be reused at least five times retaining 95% of its initial adsorption capacity; while density functional theory (DFT) calculations have heightened the understanding of the interactions between iodine molecules and the framework.
Collapse
Affiliation(s)
- Saikat Das
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Haruna Mabuchi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Tsukasa Irie
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Kohki Sasaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Mika Nozaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Rina Tomioka
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Dan Wen
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Yu Zhao
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Teng Ben
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Yuichi Negishi
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
25
|
Wang X, Jin Y, Li N, Zhang H, Liu X, Yang X, Pan H, Wang T, Wang K, Qi D, Jiang J. 12 Connecting Sites Linked Three-dimensional Covalent Organic Frameworks with Intrinsic Non-interpenetrated shp Topology for Photocatalytic H 2O 2 Synthesis. Angew Chem Int Ed Engl 2024; 63:e202401014. [PMID: 38334002 DOI: 10.1002/anie.202401014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/10/2024]
Abstract
Developing high connectivity (>8) three-dimensional (3D) covalent organic frameworks (COFs) towards new topologies and functions remains a great challenge owing to the difficulty in getting high connectivity organic building blocks. This however represents the most important step towards promoting the diversity of COFs due to the still limited dynamic covalent bonds available for constructing COFs at this stage. Herein, highly connected phthalocyanine-based (Pc-based) 3D COFs MPc-THHI-COFs (M=H2, Ni) were afforded from the reaction between 2,3,9,10,16,17,23,24-octacarboxyphthalocyanine M(TAPc) (M=H2, Ni) and 5,5',5'',5''',5'''',5'''''-(triphenylene-2,3,6,7,10,11-hexayl)hexa(isophthalohydrazide) (THHI) with 12 connecting sites. Powder X-ray diffraction analysis together with theoretical simulations and transmission electron microscopy reveals their crystalline nature with an unprecedented non-interpenetrated shp topology. Experimental and theoretical investigations disclose the broadened visible light absorption range and narrow optical band gap of MPc-THHI-COFs. This in combination with their 3D nanochannels endows them with efficient photocatalysis performance for H2O2 generation from O2 and H2O via 2e- oxygen reduction reaction and 2e- water oxidation reaction under visible-light irradiation (λ >400 nm). This work provides valuable result for the development of high connectivity functional COFs towards diverse application potentials.
Collapse
Affiliation(s)
- Xinxin Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ning Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hao Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaolin Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiya Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Houhe Pan
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tianyu Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Dongdong Qi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
26
|
S S, Rajamohan N, S S, R A, M R. Sustainable remediation of pesticide pollutants using covalent organic framework - A review on material properties, synthesis methods and application. ENVIRONMENTAL RESEARCH 2024; 246:118018. [PMID: 38199472 DOI: 10.1016/j.envres.2023.118018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/08/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Covalent organic frameworks (COF) have emerged as a potential class of materials for a variety of applications in a wide number of sectors including power storage, environmental services, and biological applications due to their ordered and controllable porosity, large surface area, customizable structure, remarkable stability, and diverse electrical characteristics. COF have received a lot of attention in recent years in the field of environmental remediation, It also find its way to eliminate the emerging pollutant from the environment notably pesticide from polluted water. This review more concentrated on the application of COF in pesticide removal by modifying COF structure, COF synthesis and material properties. To increase the adsorption ability and selectivity of the material towards certain pesticides removal, the synthesis of COF involves organic linkers with various functional groups such as amine, carboxylic acid groups etc. The COF have a high degree of stability and endurance make them suitable for intermittent usage in water treatment applications. This review manifests the novel progress where modified COFs employed in a prominent manner to remove pesticides from polluted water. Some examples of COF application in the eradication of pesticides are triformyl phenylene framework functionalized with amine groups has capacity to remove up to 50 mg/l of Organophosphorus - chlorpyrifos. COF modified to improve their photocatalytic capacity to breakdown the pesticide under visible light irradiation. COF tetraphenyl ethylene linked with carboxylic acid group shows efficient photocatalytic degradation of 90% of organochlorine insecticide endosulfan when subjected to visible light. Atrazine and imidacloprid are reduced from 100 ppm to 1 ppm in aqueous solutions by COF based on high adsorption capacity. In addition, the strategies, technique, synthesis and functional group modification design of COF are discussed.
Collapse
Affiliation(s)
- Sujatha S
- Department of Chemical Engineering, St.Joseph's College of Engineering, OMR, Chennai, India.
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, Oman
| | - Sanjay S
- Department of Chemical Engineering, St.Joseph's College of Engineering, OMR, Chennai, India
| | - Abhishek R
- Department of Chemical Engineering, St.Joseph's College of Engineering, OMR, Chennai, India
| | - Rajasimman M
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, Chidambaram, India
| |
Collapse
|
27
|
Al-Dolaimy F, Saraswat SK, Hussein BA, Hussein UAR, Saeed SM, Kareem AT, Abdulwahid AS, Mizal TL, Muzammil K, Alawadi AH, Alsalamy A, Hussin F, Kzarb MH. A review of recent advancement in covalent organic framework (COFs) synthesis and characterization with a focus on their applications in antibacterial activity. Micron 2024; 179:103595. [PMID: 38341939 DOI: 10.1016/j.micron.2024.103595] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/13/2024] [Accepted: 01/29/2024] [Indexed: 02/13/2024]
Abstract
The primary objective of this review is to present a comprehensive examination of the synthesis, characterization, and antibacterial applications of covalent organic frameworks (COFs). COFs represent a distinct category of porous materials characterized by a blend of advantageous features, including customizable pore dimensions, substantial surface area, and adaptable chemical properties. These attributes position COFs as promising contenders for various applications, notably in the realm of antibacterial activity. COFs exhibit considerable potential in the domain of antibacterial applications, owing to their amenability to functionalization with antibacterial agents. The scientific community is actively exploring COFs that have been imbued with metal ions, such as copper or silver, given their observed robust antibacterial properties. These investigations strongly suggest that COFs could be harnessed effectively as potent antibacterial agents across a diverse array of applications. Finally, COFs hold immense promise as a novel class of materials for antibacterial applications, shedding light on the synthesis, characterization, and functionalization of COFs tailored for specific purposes. The potential of COFs as effective antibacterial agents beckons further exploration and underscores their potential to revolutionize antibacterial strategies in various domains.
Collapse
Affiliation(s)
| | | | - Baydaa Abed Hussein
- Department of Medical Engineering, Al-Manara College for Medical Sciences, Maysan, Amarah, Iraq.
| | | | | | - Ashwaq Talib Kareem
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq.
| | | | - Thair L Mizal
- Department of Medical Engineering, Al-Esraa University College, Baghdad, Iraq.
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, KSA.
| | - Ahmed Hussien Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Najaf, Iraq.
| | - Ali Alsalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq.
| | - Farah Hussin
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq.
| | - Mazin Hadi Kzarb
- College of Physical Education and Sport Sciences, Al-Mustaqbal University, 51001 Hillah, Babil, Iraq.
| |
Collapse
|
28
|
Kang X, Cheng C, Chen X, Dong J, Liu Y, Cui Y. Three-Dimensional Homochiral Covalent Organic Frameworks with Intrinsic Chiral qzd Topology. J Am Chem Soc 2024; 146:8407-8416. [PMID: 38482804 DOI: 10.1021/jacs.3c14230] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Although a variety of chiral porous framework materials have been reported, there are few examples known to combine molecular chirality, helicity, and three-dimensional (3D) intrinsically chiral topology in one structure, which is beneficial for chirality transfer and amplification. Here, we report the synthesis of the first two 3D covalent organic frameworks (COFs) with an intrinsic chiral qzd topology, which exhibit unusual integration of various homochiral and homohelical features. By imine condensation of 4-connected porphyrin tetraamines and 2-connected enantiopure diene dialdehyde, we prepared two isostructural COFs with a noninterpenetrated qzd topology. The specific geometry and conformation flexibility of the V-shaped diene linker control the alignment of square-planar porphyrin units with rotational linkages and facilitate the creation of homochiral extended porous structures that feature a helical arrangement of porphyrins. Post-synthetic metalation of CCOF 23 with Rh(I) affords a heterogeneous catalyst for the asymmetric Michael addition reaction of aryl boronic acids to 2-cyclohexenone, which shows higher enantioselectivities compared to their homogeneous counterparts, presumably due to the confined effect of helical channels. This finding will provide an impetus to explore multichirality materials, offering new insights into the generation and control of helicity, homochirality, and enantioselectivity in the solid state.
Collapse
Affiliation(s)
- Xing Kang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cheng Cheng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinqiao Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
29
|
Zheng X, Chen X, Li X, Zhu J, Chen J, Lin F, Shen L, Xu Y, Jiang L. Designed Synthesis of Fe/Zr Bimetallic Organic Framework to Enhance the Selective Conversion of H 2S to Sulfur. Inorg Chem 2024; 63:5586-5597. [PMID: 38481363 DOI: 10.1021/acs.inorgchem.3c04543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The development of stable and effective catalysts to convert toxic H2S into high value-added sulfur is essential for production safety and environmental protection. However, the inherent defects of traditional iron- and zirconium-based catalysts, such as poor activity, high oxygen consumption, and low sulfur selectivity, limit their further developments and applications. Herein, the Fe-Zr bimetallic organic framework FeUIO-66(x) with different cubic morphologies was synthesized via a facile solvothermal method. The results indicate that the introduction of Fe not only increases the specific surface area and weak L-sites of the catalyst without changing its crystal structure, which provides enough reaction space and more active sites for the adsorption and activation of H2S, but also reduces the activation energy of the reaction, significantly promoting the selective oxidation of H2S. As a result, the as-obtained FeUIO-66(1) catalyst exhibits the highest desulfurization activity and superior durability and water resistance stability, and its H2S conversion and sulfur selectivity within 50 h are 100 and 88%, respectively. More importantly, the structure of the catalyst after the desulfurization reaction is consistent with that of the fresh counterpart. The study offers new insights into the development of effective and stable bimetallic catalysts to eliminate H2S and recycle sulfur.
Collapse
Affiliation(s)
- Xiaoxiao Zheng
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, P. R. China
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian 350002, P. R. China
| | - Xiaoping Chen
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian 350002, P. R. China
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Xiaoqing Li
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, P. R. China
| | - Jide Zhu
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, P. R. China
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian 350002, P. R. China
| | - Jipeng Chen
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, P. R. China
| | - Fengcai Lin
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, P. R. China
| | - Lijuan Shen
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian 350002, P. R. China
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Yanlian Xu
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, P. R. China
| | - Lilong Jiang
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|
30
|
Yang X, An Q, Li X, Fu Y, Yang S, Liu M, Xu Q, Zeng G. Charging modulation of the pyridine nitrogen of covalent organic frameworks for promoting oxygen reduction reaction. Nat Commun 2024; 15:1889. [PMID: 38424127 PMCID: PMC10904383 DOI: 10.1038/s41467-024-46291-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
Covalent organic frameworks (COFs) are ideal templates for constructing metal-free catalysts for the oxygen reduction reaction due to their highly tuneable skeletons and controllable porous channels. However, the development of highly active sites within COFs remains challenging due to their limited electron-transfer capabilities and weak binding affinities for reaction intermediates. Herein, we constructed highly active catalytic centres by modulating the electronic states of the pyridine nitrogen atoms incorporated into the frameworks of COFs. By incorporating different pyridine units (such as pyridine, ionic pyridine, and ionic imidazole units), we tuned various properties including dipole moments, reductive ability, hydrophilicity, and binding affinities towards reaction intermediates. Notably, the ionic imidazole COF (im-PY-BPY-COF) exhibited greater activity than the neutral COF (PY-BPY-COF) and ionic pyridine COF (ion-PY-BPY-COF). Specifically, im-PY-BPY-COF demonstrated a half-wave potential of 0.80 V in 0.1 M KOH, outperforming other metal-free COFs. Theoretical calculations and in situ synchrotron radiation Fourier transform infrared spectroscopy confirmed that the carbon atoms in the ionic imidazole rings improved the activity by facilitating binding of the intermediate OOH* and promoting the desorption of OH*. This study provides new insights into the design of highly active metal-like COF catalysts.
Collapse
Affiliation(s)
- Xiubei Yang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS) Shanghai, Shanghai, 201210, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences Beijing, Beijing, 100049, P. R. China
| | - Qizheng An
- National Synchrotron Radiation Laboratory, University of Science and Technology of China Hefei, Hefei, 230029, P.R. China
| | - Xuewen Li
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS) Shanghai, Shanghai, 201210, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences Beijing, Beijing, 100049, P. R. China
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden Dresden, Dresden, 01062, Germany.
| | - Shuai Yang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS) Shanghai, Shanghai, 201210, P. R. China
| | - Minghao Liu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS) Shanghai, Shanghai, 201210, P. R. China
| | - Qing Xu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS) Shanghai, Shanghai, 201210, P. R. China.
- School of Chemical Engineering, University of Chinese Academy of Sciences Beijing, Beijing, 100049, P. R. China.
| | - Gaofeng Zeng
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS) Shanghai, Shanghai, 201210, P. R. China.
- School of Chemical Engineering, University of Chinese Academy of Sciences Beijing, Beijing, 100049, P. R. China.
| |
Collapse
|
31
|
Chang J, Chen F, Li H, Suo J, Zheng H, Zhang J, Wang Z, Zhu L, Valtchev V, Qiu S, Fang Q. Three-dimensional covalent organic frameworks with nia nets for efficient separation of benzene/cyclohexane mixtures. Nat Commun 2024; 15:813. [PMID: 38280854 PMCID: PMC10821887 DOI: 10.1038/s41467-024-45005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/11/2024] [Indexed: 01/29/2024] Open
Abstract
The synthesis of three-dimensional covalent organic frameworks with highly connected building blocks presents a significant challenge. In this study, we report two 3D COFs with the nia topology, named JUC-641 and JUC-642, by introducing planar hexagonal and triangular prism nodes. Notably, our adsorption studies and breakthrough experiments reveal that both COFs exhibit exceptional separation capabilities, surpassing previously reported 3D COFs and most porous organic polymers, with a separation factor of up to 2.02 for benzene and cyclohexane. Additionally, dispersion-corrected density functional theory analysis suggests that the good performance of these 3D COFs can be attributed to the incorporation of highly aromatic building blocks and the presence of extensive pore structures. Consequently, this research not only expands the diversity of COFs but also highlights the potential of functional COF materials as promising candidates for environmentally-friendly separation applications.
Collapse
Affiliation(s)
- Jianhong Chang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, People's Republic of China
| | - Fengqian Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, People's Republic of China
| | - Hui Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, People's Republic of China.
| | - Jinquan Suo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, People's Republic of China
| | - Haorui Zheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, People's Republic of China
| | - Jie Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, People's Republic of China
| | - Zitao Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, People's Republic of China
| | - Liangkui Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, People's Republic of China
| | - Valentin Valtchev
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, People's Republic of China
- Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, Caen, France
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, People's Republic of China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, People's Republic of China.
| |
Collapse
|
32
|
Mabuchi H, Irie T, Sakai J, Das S, Negishi Y. Covalent Organic Frameworks: Cutting-Edge Materials for Carbon Dioxide Capture and Water Harvesting from Air. Chemistry 2024; 30:e202303474. [PMID: 38078517 DOI: 10.1002/chem.202303474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Indexed: 01/12/2024]
Abstract
The implacable rise of carbon dioxide (CO2 ) concentration in the atmosphere and acute water stress are one of the central challenges of our time. Present-day chemistry is strongly inclined towards more sustainable solutions. Covalent organic frameworks (COFs), attributable to their structural designability with atomic precision, functionalizable chemical environment and robust extended architectures, have demonstrated promising performances in CO2 trapping and water harvesting from air. In this Review, we discuss the major developments in this field as well as sketch out the opportunities and shortcomings that remain over large-scale COF synthesis, device engineering, and long-term performance in real environments.
Collapse
Affiliation(s)
- Haruna Mabuchi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Tsukasa Irie
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Jin Sakai
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Saikat Das
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
33
|
Liu D, Ma H, Zhu C, Qiu F, Yu W, Ma LL, Wei XW, Han YF, Yuan G. Molecular Co-Catalyst Confined within a Metallacage for Enhanced Photocatalytic CO 2 Reduction. J Am Chem Soc 2024; 146:2275-2285. [PMID: 38215226 DOI: 10.1021/jacs.3c14254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
The construction of structurally well-defined supramolecular hosts to accommodate catalytically active species within a cavity is a promising way to address catalyst deactivation. The resulting supramolecular catalysts can significantly improve the utilization of catalytic sites, thereby achieving a highly efficient chemical conversion. In this study, the Co-metalated phthalocyanine (Pc-Co) was successfully confined within a tetragonal prismatic metallacage, leading to the formation of a distinctive type of supramolecular photocatalyst (Pc-Co@Cage). The host-guest architecture of Pc-Co@Cage was unambiguously elucidated by single-crystal X-ray diffraction (SCXRD), NMR, and ESI-TOF-MS, revealing that the single cobalt active site can be thoroughly isolated within the space-restricted microenvironment. In addition, we found that Pc-Co@Cage can serve as a homogeneous supramolecular photocatalyst that displays high CO2 to CO conversion in aqueous media under visible light irradiation. This supramolecular photocatalyst exhibits an obvious improvement in activity (TONCO = 4175) and selectivity (SelCO = 92%) relative to the nonconfined Pc-Co catalyst (TONCO = 500, SelCO = 54%). The present strategy provided a rare example for the construction of a highly active, selective, and stable photocatalyst for CO2 reduction through a cavity-confined molecular catalyst within a discrete metallacage.
Collapse
Affiliation(s)
- Dongdong Liu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Huirong Ma
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Chao Zhu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Fengyi Qiu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Weibin Yu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Li-Li Ma
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Xian-Wen Wei
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Guozan Yuan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| |
Collapse
|
34
|
Wang H, Shi L, Qu Z, Zhang L, Wang X, Wang Y, Liu S, Ma H, Guo Z. Increasing Donor-Acceptor Interactions and Particle Dispersibility of Covalent Triazine Frameworks for Higher Crystallinity and Enhanced Photocatalytic Activity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2296-2308. [PMID: 38189244 DOI: 10.1021/acsami.3c15536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Covalent triazine frameworks (CTFs) have recently emerged as an efficient class of photocatalysts due to their structural diversity and excellent stability. Nevertheless, the synthetic reactions of CTFs have usually suffered from poor reversibility, resulting in a low crystallinity of the materials. Here, we report the introduction of methoxy groups on the monomer 2,5-diphenylthiazolo[5,4-d]thiazole to reinforce interlayer π-π interactions of the resulting donor-acceptor type CTFs, which improved crystallinity, further increasing the visible light absorption range and allowing for efficient separation and transport of carriers. The morphology is strongly correlated to the wettability, which has a significant impact on the mass transfer capacity and photocatalytic activity in the photocatalytic reaction. To further improve crystallinity and photocatalytic activity, CTF-NWU-T3 photocatalysts in a bowl shape were prepared using a SiO2 template. The energy band structure, photocatalytic hydrogen evolution, and pollutant degradation efficiency of involved materials were investigated. The donor-acceptor type CTF-NWU-T3 with a bowl-shaped morphology, synthesized using the template method and the introduction of methoxy groups, exhibited an excellent photocatalytic hydrogen production rate of 32064 μmol·h-1·g-1. This study highlights the significance of improving donor-acceptor interactions and increasing the dispersibility of catalyst particles in dispersion to enhance the photocatalytic activity of heterogeneous photocatalysts.
Collapse
Affiliation(s)
- Hao Wang
- School of Chemical Engineering/Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, Shaanxi 710069, P. R. China
| | - Lanting Shi
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
| | - Zhi Qu
- School of Chemical Engineering/Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, Shaanxi 710069, P. R. China
| | - Lingfeng Zhang
- School of Chemical Engineering/Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, Shaanxi 710069, P. R. China
| | - Xiao Wang
- School of Chemical Engineering/Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, Shaanxi 710069, P. R. China
| | - Yefeng Wang
- School of Chemical Engineering/Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, Shaanxi 710069, P. R. China
| | - Shuai Liu
- School of Chemical Engineering/Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, Shaanxi 710069, P. R. China
| | - Haixia Ma
- School of Chemical Engineering/Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, Shaanxi 710069, P. R. China
| | - Zhaoqi Guo
- School of Chemical Engineering/Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, Shaanxi 710069, P. R. China
| |
Collapse
|
35
|
Wu X, Zong L, Huang N. Highly luminescent olefin-linked covalent organic frameworks. Chem Commun (Camb) 2024; 60:320-323. [PMID: 38063047 DOI: 10.1039/d3cc05238a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
A new olefin-linked covalent organic framework (COF) was developed using 1,3,5-triformylbenzene (TFB) and tetraethyl p-xylylenediphosphonate (TEXDP) as building blocks through a Horner-Wadsworth-Emmons reaction. By combination of the aromatic columnar ordering and high conjugation, the resulting TFB-TEXDP-COF exhibits a fluorescence quantum yield of up to 41%, which constitutes the new record value among COFs.
Collapse
Affiliation(s)
- Xinyu Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Lina Zong
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Ning Huang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
36
|
Liu Y, Liu X, Su A, Gong C, Chen S, Xia L, Zhang C, Tao X, Li Y, Li Y, Sun T, Bu M, Shao W, Zhao J, Li X, Peng Y, Guo P, Han Y, Zhu Y. Revolutionizing the structural design and determination of covalent-organic frameworks: principles, methods, and techniques. Chem Soc Rev 2024; 53:502-544. [PMID: 38099340 DOI: 10.1039/d3cs00287j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Covalent organic frameworks (COFs) represent an important class of crystalline porous materials with designable structures and functions. The interconnected organic monomers, featuring pre-designed symmetries and connectivities, dictate the structures of COFs, endowing them with high thermal and chemical stability, large surface area, and tunable micropores. Furthermore, by utilizing pre-functionalization or post-synthetic functionalization strategies, COFs can acquire multifunctionalities, leading to their versatile applications in gas separation/storage, catalysis, and optoelectronic devices. Our review provides a comprehensive account of the latest advancements in the principles, methods, and techniques for structural design and determination of COFs. These cutting-edge approaches enable the rational design and precise elucidation of COF structures, addressing fundamental physicochemical challenges associated with host-guest interactions, topological transformations, network interpenetration, and defect-mediated catalysis.
Collapse
Affiliation(s)
- Yikuan Liu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Xiaona Liu
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - An Su
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Chengtao Gong
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Shenwei Chen
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Liwei Xia
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Chengwei Zhang
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Xiaohuan Tao
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Yue Li
- Institute of Intelligent Computing, Zhejiang Lab, Hangzhou 311121, China
| | - Yonghe Li
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Tulai Sun
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Mengru Bu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Wei Shao
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Jia Zhao
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Xiaonian Li
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Yongwu Peng
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Peng Guo
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yu Han
- School of Emergent Soft Matter, South China University of Technology, Guangzhou, China.
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Yihan Zhu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
37
|
Wen F, Wu X, Li X, Huang N. Two-Dimensional Covalent Organic Frameworks as Tailor-Made Scaffolds for Water Harvesting. Chemistry 2023; 29:e202302399. [PMID: 37718650 DOI: 10.1002/chem.202302399] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 09/19/2023]
Abstract
Developing materials to harvest water from the air is of great importance to alleviate the water shortage for people living in arid regions, where the annual average relative humidity (RH) is lower than 0.4. In this work, we report a general nitrogen atom incorporation strategy to prepare high-performance covalent organic frameworks (COFs) for water harvesting from the air in arid areas. A series of COFs, namely COF-W1, COF-W2, and COF-W3 were developed for this purpose. Different contents of nitrogen were embedded into COFs by incorporating pyridine units into the building blocks. With the increasing content of nitrogen from COF-W1 to COF-W3, the inflection points of their water isotherms shift distinctly from RH values from 0.65 to 0.25. Significantly, COF-W3 exhibits the lowest inflection point at a low RH value of 0.25 and reaches a high uptake capacity of 0.28 g g-1 at 25 °C with a low hysteresis loop. Moreover, the gram-scale COF-W3 retains its high performance, which renders it more attractive in water harvesting. This work demonstrates the feasibility of this nitrogen incorporation strategy to acquire high-performance COFs as water harvesters in the future.
Collapse
Affiliation(s)
- Fuxiang Wen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, 310058, Hangzhou, China
| | - Xinyu Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, 310058, Hangzhou, China
| | - Xiangyu Li
- Dalian Ecological and Environmental Affairs Service Center, Dalian Municipal Bureau of Ecological Environment, 116023, Dalian, China
| | - Ning Huang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, 310058, Hangzhou, China
| |
Collapse
|
38
|
Yun Q, Ge Y, Shi Z, Liu J, Wang X, Zhang A, Huang B, Yao Y, Luo Q, Zhai L, Ge J, Peng Y, Gong C, Zhao M, Qin Y, Ma C, Wang G, Wa Q, Zhou X, Li Z, Li S, Zhai W, Yang H, Ren Y, Wang Y, Li L, Ruan X, Wu Y, Chen B, Lu Q, Lai Z, He Q, Huang X, Chen Y, Zhang H. Recent Progress on Phase Engineering of Nanomaterials. Chem Rev 2023. [PMID: 37962496 DOI: 10.1021/acs.chemrev.3c00459] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
As a key structural parameter, phase depicts the arrangement of atoms in materials. Normally, a nanomaterial exists in its thermodynamically stable crystal phase. With the development of nanotechnology, nanomaterials with unconventional crystal phases, which rarely exist in their bulk counterparts, or amorphous phase have been prepared using carefully controlled reaction conditions. Together these methods are beginning to enable phase engineering of nanomaterials (PEN), i.e., the synthesis of nanomaterials with unconventional phases and the transformation between different phases, to obtain desired properties and functions. This Review summarizes the research progress in the field of PEN. First, we present representative strategies for the direct synthesis of unconventional phases and modulation of phase transformation in diverse kinds of nanomaterials. We cover the synthesis of nanomaterials ranging from metal nanostructures such as Au, Ag, Cu, Pd, and Ru, and their alloys; metal oxides, borides, and carbides; to transition metal dichalcogenides (TMDs) and 2D layered materials. We review synthesis and growth methods ranging from wet-chemical reduction and seed-mediated epitaxial growth to chemical vapor deposition (CVD), high pressure phase transformation, and electron and ion-beam irradiation. After that, we summarize the significant influence of phase on the various properties of unconventional-phase nanomaterials. We also discuss the potential applications of the developed unconventional-phase nanomaterials in different areas including catalysis, electrochemical energy storage (batteries and supercapacitors), solar cells, optoelectronics, and sensing. Finally, we discuss existing challenges and future research directions in PEN.
Collapse
Affiliation(s)
- Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Department of Chemical and Biological Engineering & Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yiyao Ge
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jiawei Liu
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore, 627833, Singapore
| | - Xixi Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Biao Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Yao Yao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qinxin Luo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Jingjie Ge
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chengtao Gong
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meiting Zhao
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Yutian Qin
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Chen Ma
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qingbo Wa
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xichen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Siyuan Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wei Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Hua Yang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yi Ren
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yongji Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Lujing Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xinyang Ruan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yuxuan Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Bo Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qipeng Lu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangchai Lai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Xiao Huang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
39
|
Xu X, Cui Q, Chen H, Huang N. Carborane-Based Three-Dimensional Covalent Organic Frameworks. J Am Chem Soc 2023; 145:24202-24209. [PMID: 37890127 DOI: 10.1021/jacs.3c08541] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
The predesignable porous structure and high structural flexibility of covalent organic frameworks (COFs) render this material desirable as a platform for addressing various cutting-edge issues. Precise control over their composition, topological structure, porosity, and stability to realize tailor-made functionality still remains a great challenge. In this work, we developed a new kind of three-dimensional (3D) carborane-based COF with a 7-fold interpenetrating dia topological diagram. The resulting COFs exhibited high crystallinity, exceptional porosity, and strong robustness. The slightly lower electronegativity of boron (2.04) than that of hydrogen (2.20) can lead to the polarization of the B-H bond into a Bδ+-Hδ- mode, which renders these COFs as high-performance materials for the adsorption and separation of hexane isomers through the B-Hδ-···Hδ+-C interaction. Significantly, the carborane content of obtained COFs reached up to 54.2 wt %, which gets the highest rank among all the reported porous materials. Combining high surface area, strong robustness, and high content of carborane, the obtained COFs can work as efficient adsorbents for the separation of the five hexane isomers with high separation factors. This work not only enhances the diversity of 3D functional COFs but also constitutes a further step toward the efficient separation of alkane isomers.
Collapse
Affiliation(s)
- Xiaoyi Xu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Qirui Cui
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Hongzheng Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ning Huang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
40
|
Luan TX, Wang JR, Li K, Li H, Nan F, Yu WW, Li PZ. Highly Enhancing CO 2 Photoreduction by Metallization of an Imidazole-linked Robust Covalent Organic Framework. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303324. [PMID: 37391273 DOI: 10.1002/smll.202303324] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/15/2023] [Indexed: 07/02/2023]
Abstract
Converting CO2 into value-added chemicals to solve the issues caused by carbon emission is promising but challenging. Herein, by embedding metal ions (Co2+ , Ni2+ , Cu2+ , and Zn2+ ) into an imidazole-linked robust photosensitive covalent organic framework (PyPor-COF), effective photocatalysts for CO2 conversion are rationally designed and constructed. Characterizations display that all of the metallized PyPor-COFs (M-PyPor-COFs) display remarkably high enhancement in their photochemical properties. Photocatalysis reactions reveal that the Co-metallized PyPor-COF (Co-PyPor-COF) achieves a CO production rate as high as up to 9645 µmol g-1 h-1 with a selectivity of 96.7% under light irradiation, which is more than 45 times higher than that of the metal-free PyPor-COF, while Ni-metallized PyPor-COF (Ni-PyPor-COF) can further tandem catalyze the generated CO to CH4 with a production rate of 463.2 µmol g-1 h-1 . Experimental analyses and theory calculations reveal that their remarkable performance enhancement on CO2 photoreduction should be attributed to the incorporated metal sites in the COF skeleton, which promotes the adsorption and activation of CO2 and the desorption of generated CO and even reduces the reaction energy barrier for the formation of different intermediates. This work demonstrates that by metallizing photoactive COFs, effective photocatalysts for CO2 conversion can be achieved.
Collapse
Affiliation(s)
- Tian-Xiang Luan
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, P. R. China
| | - Jia-Rui Wang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, P. R. China
| | - Keyu Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, P. R. China
| | - Hailian Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, P. R. China
| | - Fuchun Nan
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, P. R. China
| | - William W Yu
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, P. R. China
| | - Pei-Zhou Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, P. R. China
| |
Collapse
|
41
|
Xue R, Liu YS, Wang MY, Guo H, Yang W, Yang GY. Combination of covalent organic frameworks (COFs) and polyoxometalates (POMs): the preparation strategy and potential application of COF-POM hybrids. MATERIALS HORIZONS 2023; 10:4710-4723. [PMID: 37622235 DOI: 10.1039/d3mh00906h] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Both covalent organic frameworks (COFs) and polyoxometalates (POMs) show excellent properties and application potential in many fields, thus receiving widespread attention. In recent years, COF-POM hybrid materials were prepared by combining COFs and POMs through physical or chemical methods. COF-POM hybrids have shown high performance in many fields, such as catalysis, sensing, energy storage, and biomedicine. In this review, we introduced the preparation strategy and application of COF-POM hybrids in detail. We believe that the combination of COFs and POMs will provide more abundant functions and broad application prospects.
Collapse
Affiliation(s)
- Rui Xue
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| | - Yin-Sheng Liu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Ming-Yue Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Hao Guo
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Wu Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| |
Collapse
|
42
|
Luo S, Yan Q, Wang S, Hu H, Xiao S, Su X, Xu H, Gao Y. Conjugated Microporous Polymers Based on Octet and Tetratopic Linkers for Efficient Iodine Capture. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46408-46416. [PMID: 37748106 DOI: 10.1021/acsami.3c10786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Radioactive iodine from nuclear waste poses a huge threat to public safety and raises concerns about environmental pollution. There is thus a growing demand for developing novel adsorbents for highly effective iodine capture. In this work, we design and synthesize three novel conjugated microporous polymers, namely, TPE-PyTTA-CMP, TPE-TAPP-CMP, and TPE-TPDA-CMP, which are constructed by an imidization reaction based on octet and tetratopic linkers. The iodine vapor adsorption experiments show that the three CMPs have an excellent iodine adsorption capacity as high as 3.10, 3.67, and 4.68 g·g-1 under 348 K and ambient pressure conditions, respectively. The adsorbed iodine in the CMPs can be released into methanol in a dramatically rapid manner, and their excellent iodine adsorption performance can still be maintained after multiple cycles. In addition, the CMPs demonstrate good adsorption performance in an n-hexane solution of iodine, and the kinetic experimental data follow the pseudo-second-order model. The hierarchical porosity, extended π-conjugated skeleton, and rich electron-donor nitrogen sites of the CMPs could contribute to their excellent iodine adsorption performance. The knowledge information obtained in this work could open up new possibilities for designing novel CMPs targeting a wide range of environment-related applications.
Collapse
Affiliation(s)
- Siyu Luo
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| | - Qianqian Yan
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| | - Shenglin Wang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| | - Hui Hu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| | - Songtao Xiao
- China Institute of Atomic Energy, Beijing 102413, China
| | - Xiaofang Su
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| | - Huanjun Xu
- School of Science, Qiongtai Normal University, Haikou 571127, China
| | - Yanan Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| |
Collapse
|
43
|
Liu M, Zhao X, Yang S, Yang X, Li X, He J, Chen GZ, Xu Q, Zeng G. Modulating the Density of Catalytic Sites in Multiple-Component Covalent Organic Frameworks for Electrocatalytic Carbon Dioxide Reduction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44384-44393. [PMID: 37672678 DOI: 10.1021/acsami.3c10802] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
It is generally assumed that the more metal atoms in covalent organic frameworks (COFs) contribute to higher activity toward electrocatalytic carbon dioxide reduction (CO2RR) and hindered us in exploring the correlation between the density of catalytic sites and catalytic performances. Herein, we have constructed quantitative density of catalytic sites in multiple COFs for CO2RR, in which the contents of phthalocyanine (H2Pc) and nickel phthalocyanine (NiPc) units were preciously controlled. With a molar ratio of 1/1 for the H2Pc and NiPc units in COFs, the catalyst achieved the highest selectivity with a carbon monoxide Faradaic efficiency (FECO) of 95.37% and activity with a turnover frequency (TOF) of 4713.53 h-1. In the multiple H2Pc/NiPc-COFs, the electron-donating features of the H2Pc units provide electron transport to the NiPc centers and thus improved the binding ability of CO2 and intermediates on the NiPc units. The theoretical calculation further confirmed that the H2Pc units donated their electrons to the NiPc units in the frameworks, enhanced the electron density of the Ni sites, and improved the binding ability with Lewis acidic CO2 molecules, thereby boosting the CO2RR performance. This study provides us with new insight into the design of highly active catalysts in electrocatalytic systems.
Collapse
Affiliation(s)
- Minghao Liu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315199, China
| | - Xingyue Zhao
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Shuai Yang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Xiubei Yang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuewen Li
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun He
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315199, China
- Nottingham Ningbo China Beacon of Excellence Research and Innovation Institute, Ningbo 315100, China
| | - George Zheng Chen
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Qing Xu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaofeng Zeng
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
44
|
Li H, Dilipkumar A, Abubakar S, Zhao D. Covalent organic frameworks for CO 2 capture: from laboratory curiosity to industry implementation. Chem Soc Rev 2023; 52:6294-6329. [PMID: 37591809 DOI: 10.1039/d2cs00465h] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
CO2 concentration in the atmosphere has increased by about 40% since the 1960s. Among various technologies available for carbon capture, adsorption and membrane processes have been receiving tremendous attention due to their potential to capture CO2 at low costs. The kernel for such processes is the sorbent and membrane materials, and tremendous progress has been made in designing and fabricating novel porous materials for carbon capture. Covalent organic frameworks (COFs), a class of porous crystalline materials, are promising sorbents for CO2 capture due to their high surface area, low density, controllable pore size and structure, and preferable stabilities. However, the absence of synergistic developments between materials and engineering processes hinders achieving the qualitative leap for net-zero emissions. Considering the lack of a timely review on the combination of state-of-the-art COFs and engineering processes, in this Tutorial Review, we emphasize the developments of COFs for meeting the challenges of carbon capture and disclose the strategies of fabricating COFs for realizing industrial implementation. Moreover, this review presents a detailed and basic description of the engineering processes and industrial status of carbon capture. It highlights the importance of machine learning in integrating simulations of molecular and engineering levels. We aim to stimulate both academia and industry communities for joined efforts in bringing COFs to practical carbon capture.
Collapse
Affiliation(s)
- He Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Akhil Dilipkumar
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Saifudin Abubakar
- ExxonMobil Asia Pacific Pte. Ltd., 1 HarbourFront Place, #06-00 HarbourFront Tower 1, 098633, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
45
|
Kurisingal JF, Yun H, Hong CS. Porous organic materials for iodine adsorption. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131835. [PMID: 37348374 DOI: 10.1016/j.jhazmat.2023.131835] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2023] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
The nuclear industry will continue to develop rapidly and produce energy in the foreseeable future; however, it presents unique challenges regarding the disposal of released waste radionuclides because of their volatility and long half-life. The release of radioactive isotopes of iodine from uranium fission reactions is a challenge. Although various adsorbents have been explored for the uptake of iodine, there is still interest in novel adsorbents. The novel adsorbents should be synthesized using reliable and economically feasible synthetic procedures. Herein, we discussed the state-of-the-art performance of various categories of porous organic materials including covalent organic frameworks, covalent triazine frameworks, porous aromatic frameworks, porous organic cages, among other porous organic polymers for the uptake of iodine. This review discussed the synthesis of porous organic materials and their iodine adsorption capacity and reusability. Finally, the challenges and prospects for iodine capture using porous organic materials are highlighted.
Collapse
Affiliation(s)
| | - Hongryeol Yun
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
46
|
Huang ZW, Hu KQ, Li XB, Bin ZN, Wu QY, Zhang ZH, Guo ZJ, Wu WS, Chai ZF, Mei L, Shi WQ. Thermally Induced Orderly Alignment of Porphyrin Photoactive Motifs in Metal-Organic Frameworks for Boosting Photocatalytic CO 2 Reduction. J Am Chem Soc 2023; 145:18148-18159. [PMID: 37531566 DOI: 10.1021/jacs.3c07047] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Efficient transfer of charge carriers through a fast transport pathway is crucial to excellent photocatalytic reduction performance in solar-driven CO2 reduction, but it is still challenging to effectively modulate the electronic transport pathway between photoactive motifs by feasible chemical means. In this work, we propose a thermally induced strategy to precisely modulate the fast electron transport pathway formed between the photoactive motifs of a porphyrin metal-organic framework using thorium ion with large ionic radius and high coordination number as the coordination-labile metal node. As a result, the stacking pattern of porphyrin molecules in the framework before and after the crystal transformations has changed dramatically, which leads to significant differences in the separation efficiency of photogenerated carriers in MOFs. The rate of photocatalytic reduction of CO2 to CO by IHEP-22(Co) reaches 350.9 μmol·h-1·g-1, which is 3.60 times that of IHEP-21(Co) and 1.46 times that of IHEP-23(Co). Photoelectrochemical characterizations and theoretical calculations suggest that the electron transport channels formed between porphyrin molecules inhibit the recombination of photogenerated carriers, resulting in high performance for photocatalytic CO2 reduction. The interaction mechanism of CO2 with IHEP-22(Co) was clarified by using in-situ electron paramagnetic resonance, in-situ diffuse reflectance infrared Fourier transform spectroscopy, in-situ extended X-ray absorption fine structure spectroscopy, and theoretical calculations. These results provide a new method to regulate the efficient separation and migration of charge carriers in CO2 reduction photocatalysts and will be helpful to guide the design and synthesis of photocatalysts with superior performance for the production of solar fuels.
Collapse
Affiliation(s)
- Zhi-Wei Huang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, 730000 Lanzhou, China
| | - Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Bo Li
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Ni Bin
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Hui Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Zhi-Jun Guo
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, 730000 Lanzhou, China
| | - Wang-Suo Wu
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, 730000 Lanzhou, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
47
|
Zhang Z, Bi S, Meng F, Li X, Li M, Mou K, Wu D, Zhang F. Hexatopic Vertex-Directed Approach to Vinylene-Linked Covalent Organic Frameworks with Heteroporous Topologies. J Am Chem Soc 2023; 145:16704-16710. [PMID: 37485987 DOI: 10.1021/jacs.3c04410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
A D3h-symmetric hexatopic monomer was first prepared by attaching the three-fold ditopic moiety 2,6-dimethylpyridine to the meta-positions of a phenyl ring. It was further condensed at its six pyridylmethyl carbons with linear ditopic aromatic dialdehydes, resulting in two vinylene-linked COFs with heteroporous topologies, as revealed by powder X-ray diffraction (PXRD), nitrogen sorption, and pore-size distribution analyses, as well as transmission electron microscopy (TEM) image. The linear- and cross-conjugations, respectively, arising from the 2,6-linked pyridines and meta-linked phenylenes in the hexatopic nodes rendered the resultant COFs with well-patterned π-delocalization, allowing for efficiently catalyzing the bromination of aromatic derivatives with the pore-size-dependent conversion yields and regioselectivity under the irradiation of green light.
Collapse
Affiliation(s)
- Zixing Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuai Bi
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fancheng Meng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaomeng Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengqi Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kaiwen Mou
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongqing Wu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fan Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
48
|
Vardhan H, Rummer G, Deng A, Ma S. Large-Scale Synthesis of Covalent Organic Frameworks: Challenges and Opportunities. MEMBRANES 2023; 13:696. [PMID: 37623757 PMCID: PMC10456518 DOI: 10.3390/membranes13080696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023]
Abstract
Connecting organic building blocks by covalent bonds to design porous crystalline networks has led to covalent organic frameworks (COFs), consequently transferring the flexibility of dynamic linkages from discrete architectures to extended structures. By virtue of the library of organic building blocks and the diversity of dynamic linkages and topologies, COFs have emerged as a novel field of organic materials that propose a platform for tailor-made complex structural design. Progress over the past two decades in the design, synthesis, and functional exploration of COFs in diverse applications successively established these frameworks in materials chemistry. The large-scale synthesis of COFs with uniform structures and properties is of profound importance for commercialization and industrial applications; however, this is in its infancy at present. An innovative designing and synthetic approaches have paved novel ways to address future hurdles. This review article highlights the fundamental of COFs, including designing principles, coupling reactions, topologies, structural diversity, synthetic strategies, characterization, growth mechanism, and activation aspects of COFs. Finally, the major challenges and future trends for large-scale COF fabrication are outlined.
Collapse
Affiliation(s)
- Harsh Vardhan
- Department of Chemistry and Fermentation Sciences, Appalachian State University, 525 Rivers Street, Boone, NC 28608, USA
| | - Grace Rummer
- Department of Chemistry and Fermentation Sciences, Appalachian State University, 525 Rivers Street, Boone, NC 28608, USA
| | - Angela Deng
- Department of Chemistry and Fermentation Sciences, Appalachian State University, 525 Rivers Street, Boone, NC 28608, USA
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
49
|
Dong P, Xu X, Luo R, Yuan S, Zhou J, Lei J. Postsynthetic Annulation of Three-Dimensional Covalent Organic Frameworks for Boosting CO 2 Photoreduction. J Am Chem Soc 2023. [PMID: 37421363 DOI: 10.1021/jacs.3c03897] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
Three-dimensional covalent organic frameworks (3D COFs), with interconnected pores and exposed functional groups, provide new opportunities for the design of advanced functional materials through postsynthetic modification. Herein, we demonstrate the successful postsynthetic annulation of 3D COFs to construct efficient CO2 reduction photocatalysts. Two 3D COFs, NJU-318 and NJU-319Fe, were initially constructed by connecting hexaphenyl-triphenylene units with pyrene- or Fe-porphyrin-based linkers. Subsequently, the hexaphenyl-triphenylene moieties within the COFs were postsynthetically transformed into π-conjugated hexabenzo-trinaphthylene (pNJU-318 and pNJU-319Fe) to enhance visible light absorption and CO2 photoreduction activity. The optimized photocatalyst, pNJU-319Fe, shows a CO yield of 688 μmol g-1, representing a 2.5-fold increase compared to that of unmodified NJU-319Fe. Notably, the direct synthesis of hexabenzo-trinaphthylene-based COF catalysts was unsuccessful due to the low solubility of conjugated linkers. This study not only provides an effective method to construct photocatalysts but also highlights the unlimited tunability of 3D COFs through structural design and postsynthetic modification.
Collapse
Affiliation(s)
- Pengfei Dong
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xinyu Xu
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Rengan Luo
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuai Yuan
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
50
|
Yuan Y, Bang KT, Wang R, Kim Y. Macrocycle-Based Covalent Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210952. [PMID: 36608278 DOI: 10.1002/adma.202210952] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Macrocycles with well-defined cavities and the ability to undergo supramolecular interactions are classical materials that have played an essential role in materials science. However, one of the most substantial barriers limiting the utilization of macrocycles is their aggregation, which blocks the active regions. Among many attempted strategies to prevent such aggregation, installing macrocycles into covalent organic frameworks (COFs), which are porous and stable reticular networks, has emerged as an ideal solution. The resulting macrocycle-based COFs (M-COFs) preserve the macrocycles' unique activities, enabling applications in various fields such as single-atom catalysis, adsorption/separation, optoelectronics, phototherapy, and structural design of forming single-layered or mechanically interlocked COFs. The resulting properties are unmatchable by any combination of macrocycles with other substrates, opening a new chapter in advanced materials. This review focuses on the latest progress in the concepts, synthesis, properties, and applications of M-COFs, and presents an in-depth outlook on the challenges and opportunities in this emerging field.
Collapse
Affiliation(s)
- Yufei Yuan
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ki-Taek Bang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Rui Wang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yoonseob Kim
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|