1
|
Sun Y, Zhao Y, Chen A. Short Aromatic Blocks Enhance Styrene Conversion in Polymer Cubosome Formation via Polymerization-Induced Self-Assembly. Macromol Rapid Commun 2025; 46:e2400891. [PMID: 39764711 DOI: 10.1002/marc.202400891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/16/2024] [Indexed: 05/01/2025]
Abstract
Polymer cubosomes (PCs) have garnered significant interest in the field of nanomaterials and nanotechnology due to their unique properties and potential applications. However, the fabrication of PCs remains challenging. Polymerization-induced self-assembly (PISA) is recognized as an efficient method for producing a variety of polymer particles, including PCs. Despite the advantages of PISA, the conversion of styrene (St), a core-forming monomer commonly used in PC preparation, is relatively low. Herein, a novel strategy is introduced to enhance the St conversion in PC preparation via PISA by incorporating a short azobenzene-containing block (PMAAz) into the hydrophilic macro-chain transfer agent (macro-CTA). Utilizing PMAAz-tailed poly(poly(ethylene glycol) methyl ether methacrylate), the St conversion is successfully improved from an initial 12.9-13.8% to an enhanced range of 19.1-26.9%. This enhancement in conversion allows for a reduced feeding ratio of St to macro-CTA in the preparation of PCs. Further studies into various blocks consisting of different hydrophobic monomers reveal that the aromatic interactions, derived from these short blocks, are crucial for increasing monomer conversion and facilitating PC formation. This study offers a direct and convenient approach to obtaining PCs with diversified functional groups efficiently, thereby significantly broadening the potential application of these materials.
Collapse
Affiliation(s)
- Yalan Sun
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Yongbin Zhao
- Suzhou Laboratory, Suzhou, Jiangsu, 215123, P. R. China
| | - Aihua Chen
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
2
|
Zhang Y, Lang Z, Zhang Q, Yao R, Tang W, Qiu T, Li Y, Tan H, Wang Y, Li Y. Moderate Active Hydrogen Generation over a Ni 2P/CoP Heterostructure for One-Step Electrosynthesizing of Azobenzene with High Selectivity. NANO LETTERS 2025; 25:828-836. [PMID: 39762148 DOI: 10.1021/acs.nanolett.4c05315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Through hydrogenation and N-N coupling, azobenzene can be produced via highly selective electrocatalytic nitrobenzene reduction, offering a mild, cost-effective, and sustainable industrial route. Inspired by the density functional theory calculations, the introduction of H* active Ni2P into CoP, which reduces the water dissociation energy barrier, optimizes H* adsorption, and moderates key intermediates' adsorption, is expected to assist its hydrogenation ability for one-step electrosynthesizing azobenzene. A self-supported NiCo@Ni2P/CoP nanorod array electrode was synthesized, featuring NiCo alloy nanoparticles within a Ni2P/CoP shell. By virtue of the thermodynamically optimal Ni2P/CoP heterostructure, along with overall fast electron transport in a core-shell integrated electrode, NiCo@Ni2P/CoP with abundant interfacial structure attains a great nitrobenzene conversion of 94.3%, especially prominent azobenzene selectivity of 97.2%, and Faradaic efficiency of 94.1% at -0.9 V (vs Hg/HgO). High-purity azobenzene crystals can also self-separate under refrigeration postelectrolysis. This work provides an energy-efficient and scalable pathway for the economical preparation of azobenzene in the electrocatalytic nitrobenzene hydrogenation.
Collapse
Affiliation(s)
- Yuekun Zhang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry Northeast Normal University, Changchun, Jilin 130024, China
| | - Zhongling Lang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry Northeast Normal University, Changchun, Jilin 130024, China
| | - Qiu Zhang
- School of Chemistry and Chemical Engineering, Shandong Institute of Petroleum and Chemical Technology, Dongying, Shandong 257061, China
| | - Ruiqi Yao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry Northeast Normal University, Changchun, Jilin 130024, China
| | - Wensi Tang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry Northeast Normal University, Changchun, Jilin 130024, China
| | - Tianyu Qiu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry Northeast Normal University, Changchun, Jilin 130024, China
| | - Yingqi Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry Northeast Normal University, Changchun, Jilin 130024, China
| | - Huaqiao Tan
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry Northeast Normal University, Changchun, Jilin 130024, China
| | - YongHui Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry Northeast Normal University, Changchun, Jilin 130024, China
| | - YangGuang Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry Northeast Normal University, Changchun, Jilin 130024, China
| |
Collapse
|
3
|
Jones BE, Fitzpatrick A, Fowell K, Edwards-Gayle CJC, Khunti N, Inoue K, Daniels S, Williams E, Blayo C, Evans RC, Cowieson N. Developing an in situ LED irradiation system for small-angle X-ray scattering at B21, Diamond Light Source. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:763-770. [PMID: 38819843 PMCID: PMC11226168 DOI: 10.1107/s1600577524003205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/13/2024] [Indexed: 06/01/2024]
Abstract
Beamline B21 at the Diamond Light Source synchrotron in the UK is a small-angle X-ray scattering (SAXS) beamline that specializes in high-throughput measurements via automated sample delivery systems. A system has been developed whereby a sample can be illuminated by a focused beam of light coincident with the X-ray beam. The system is compatible with the highly automated sample delivery system at the beamline and allows a beamline user to select a light source from a broad range of wavelengths across the UV and visible spectrum and to control the timing and duration of the light pulse with respect to the X-ray exposure of the SAXS measurement. The intensity of the light source has been characterized across the wavelength range enabling experiments where a quantitative measure of dose is important. Finally, the utility of the system is demonstrated via measurement of several light-responsive samples.
Collapse
Affiliation(s)
- Beatrice E. Jones
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OxfordshireOX11 0DE, United Kingdom
- Department of Materials Science and MetallurgyUniversity of Cambridge27 Charles Babbage RoadCambridgeCB3 0FSUnited Kingdom
| | - Ann Fitzpatrick
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OxfordshireOX11 0DE, United Kingdom
| | - Kieran Fowell
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OxfordshireOX11 0DE, United Kingdom
| | | | - Nikul Khunti
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OxfordshireOX11 0DE, United Kingdom
| | - Katsuaki Inoue
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OxfordshireOX11 0DE, United Kingdom
| | - Steven Daniels
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OxfordshireOX11 0DE, United Kingdom
| | - Eugene Williams
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OxfordshireOX11 0DE, United Kingdom
| | - Camille Blayo
- School of ChemistryTrinity College Dublin, University of DublinCollege GreenDublinIreland
| | - Rachel C. Evans
- Department of Materials Science and MetallurgyUniversity of Cambridge27 Charles Babbage RoadCambridgeCB3 0FSUnited Kingdom
| | - Nathan Cowieson
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OxfordshireOX11 0DE, United Kingdom
| |
Collapse
|
4
|
Jones B, Greenfield JL, Cowieson N, Fuchter MJ, Evans RC. Light-Driven Hexagonal-to-Cubic Phase Switching in Arylazopyrazole Lyotropic Liquid Crystals. J Am Chem Soc 2024; 146:12315-12319. [PMID: 38683357 PMCID: PMC11082889 DOI: 10.1021/jacs.4c02709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Photoinduced manipulation of the nanoscale molecular structure and organization of soft materials can drive changes in the macroscale properties. Here we demonstrate the first example of a light-induced one- to three-dimensional mesophase transition at room temperature in lyotropic liquid crystals constructed from arylazopyrazole photosurfactants in water. We exploit this characteristic to use light to selectively control the rate of gas (CO2) diffusion across a prototype lyotropic liquid crystal membrane. Such control of phase organization, dimensionality, and permeability unlocks the potential for stimuli-responsive analogues in technologies for controlled delivery.
Collapse
Affiliation(s)
- Beatrice
E. Jones
- Department
of Materials Science & Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, U.K.
- Diamond
Light Source, Harwell Science and Innovation
Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | - Jake L. Greenfield
- Department
of Chemistry, Molecular Sciences Research
Hub, White City Campus, Imperial College London, 82 Wood Lane, London, W12 7SL, U.K.
- Institut
für Organische Chemie, Universität
Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Nathan Cowieson
- Diamond
Light Source, Harwell Science and Innovation
Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | - Matthew J. Fuchter
- Department
of Chemistry, Molecular Sciences Research
Hub, White City Campus, Imperial College London, 82 Wood Lane, London, W12 7SL, U.K.
| | - Rachel C. Evans
- Department
of Materials Science & Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, U.K.
| |
Collapse
|
5
|
Caselli L, Conti L, De Santis I, Berti D. Small-angle X-ray and neutron scattering applied to lipid-based nanoparticles: Recent advancements across different length scales. Adv Colloid Interface Sci 2024; 327:103156. [PMID: 38643519 DOI: 10.1016/j.cis.2024.103156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/28/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
Lipid-based nanoparticles (LNPs), ranging from nanovesicles to non-lamellar assemblies, have gained significant attention in recent years, as versatile carriers for delivering drugs, vaccines, and nutrients. Small-angle scattering methods, employing X-rays (SAXS) or neutrons (SANS), represent unique tools to unveil structure, dynamics, and interactions of such particles on different length scales, spanning from the nano to the molecular scale. This review explores the state-of-the-art on scattering methods applied to unveil the structure of lipid-based nanoparticles and their interactions with drugs and bioactive molecules, to inform their rational design and formulation for medical applications. We will focus on complementary information accessible with X-rays or neutrons, ranging from insights on the structure and colloidal processes at a nanoscale level (SAXS) to details on the lipid organization and molecular interactions of LNPs (SANS). In addition, we will review new opportunities offered by Time-resolved (TR)-SAXS and -SANS for the investigation of dynamic processes involving LNPs. These span from real-time monitoring of LNPs structural evolution in response to endogenous or external stimuli (TR-SANS), to the investigation of the kinetics of lipid diffusion and exchange upon interaction with biomolecules (TR-SANS). Finally, we will spotlight novel combinations of SAXS and SANS with complementary on-line techniques, recently enabled at Large Scale Facilities for X-rays and neutrons. This emerging technology enables synchronized multi-method investigation, offering exciting opportunities for the simultaneous characterization of the structure and chemical or mechanical properties of LNPs.
Collapse
Affiliation(s)
- Lucrezia Caselli
- Physical Chemistry 1, University of Lund, S-221 00 Lund, Sweden.
| | - Laura Conti
- Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Ilaria De Santis
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy
| | - Debora Berti
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy; Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
6
|
Wang K, Zhai S, Qin Y, Hao M, Su S, Li S, Tang X. Competitive coordination assembly of light-degradable gold nanocluster-intercalated metal organic frameworks for photoresponsive drug release. J Mater Chem B 2024; 12:4018-4028. [PMID: 38578014 DOI: 10.1039/d3tb03012a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
On-demand controlled drug release holds great promise for cancer therapy. Light-degradable nanocarriers have gained increasing attention for designing controllable drug delivery systems owing to their spatiotemporally controllable properties. Herein, a highly luminescent and light-degradable nanocarrier is constructed by intercalating glutathione-capped gold nanoclusters (AuNCs) into zeolitic imidazolate framework-8 (ZIF-8) via competitive coordination assembly, named AuNC@ZIF-8, for light-triggered drug release. Glutathione-capped AuNCs and 2-methylimidazole (MIm) competitively coordinated with Zn2+ to form AuNC@ZIF-8 using a one step process in an aqueous solution. Specifically, the obtained AuNC@ZIF-8 has a high quantum yield of 52.96% and displays a distinctive property of photolysis. Competitive coordination interactions within AuNC@ZIF-8 were evidenced by X-ray diffraction and X-ray photoelectron spectroscopy, in which Zn2+ strongly coordinated with the N of MIm and weakly coordinated with the carboxyl/amino groups in the glutathione of AuNCs. Under light irradiation, the Au-S bond in AuNCs breaks, enhancing the coordination ability between carboxyl/amino groups and Zn2+. This collapses the crystal structure of AuNC@ZIF-8 and causes subsequent fluorescence quenching. Additionally, AuNC@ZIF-8 is successfully employed as a luminescent nanocarrier of anticancer drugs to form drug-AuNC@ZIF-8, in which three typical anticancer drugs are selected due to different coordination interactions. The obtained smart drug-AuNC@ZIF-8 can be effectively internalized into HeLa cells and degraded in response to blue light, with negligible dark cytotoxicity and high light cytotoxicity. This study highlights the crucial role of competitive coordination interactions in synthesizing functional materials with fluorescence efficiency and photolytic properties.
Collapse
Affiliation(s)
- Ke Wang
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Xianyang 712046, Shaanxi, P. R. China.
| | - Sicheng Zhai
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Xianyang 712046, Shaanxi, P. R. China.
| | - Yuanyuan Qin
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, 712083, Shaanxi, P. R. China.
| | - Mengke Hao
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, 712083, Shaanxi, P. R. China.
| | - Siqi Su
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, 712083, Shaanxi, P. R. China.
| | - Shuming Li
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, 712083, Shaanxi, P. R. China.
| | - Xuexue Tang
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Xianyang 712046, Shaanxi, P. R. China.
| |
Collapse
|
7
|
Wu J, Kreimendahl L, Tao S, Anhalt O, Greenfield JL. Photoswitchable imines: aryliminopyrazoles quantitatively convert to long-lived Z-isomers with visible light. Chem Sci 2024; 15:3872-3878. [PMID: 38487238 PMCID: PMC10935669 DOI: 10.1039/d3sc05841g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
Arylimines offer promise in dynamic-covalent materials due to their recyclability and ease of synthesis. However, their light-triggered E/Z isomerism has received little attention. This is attributed to challenges that include low thermal stability of their metastable state (<60 s at 20 °C), incomplete photoswitching (<50% to the metastable state), and the need for UV light (≤365 nm). We overcome these limitations with a novel class of imine photoswitch, the aryliminopyrazoles (AIPs). These AIPs can be switched using visible light (470 nm), attain photostationary states with over 95% of the Z-isomer, exhibit great resistance to fatigue, and have thermal half-lives up to 19.2 hours at room temperature. Additionally, they display T-type and negative photochromism under visible light irradiation-a useful property. The photochromic properties, quantitative assembly and accessibility of precursors set these photoswitches apart from their azo-based analogues. These findings open avenues for next-generation photoresponsive dynamic-covalent materials driven solely by these new photochromic linkages and further exploration of photocontrolled dynamic combinatorial chemistry.
Collapse
Affiliation(s)
- Jiarong Wu
- Institut für Organische Chemie, Universität Würzburg 97074 Würzburg Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg 97074 Würzburg Germany
| | - Lasse Kreimendahl
- Institut für Organische Chemie, Universität Würzburg 97074 Würzburg Germany
| | - Suyuan Tao
- Institut für Organische Chemie, Universität Würzburg 97074 Würzburg Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg 97074 Würzburg Germany
| | - Olga Anhalt
- Center for Nanosystems Chemistry (CNC), Universität Würzburg 97074 Würzburg Germany
| | - Jake L Greenfield
- Institut für Organische Chemie, Universität Würzburg 97074 Würzburg Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg 97074 Würzburg Germany
| |
Collapse
|
8
|
Mathews PD, Gama GS, Megiati HM, Madrid RRM, Garcia BBM, Han SW, Itri R, Mertins O. Flavonoid-Labeled Biopolymer in the Structure of Lipid Membranes to Improve the Applicability of Antioxidant Nanovesicles. Pharmaceutics 2024; 16:141. [PMID: 38276511 PMCID: PMC10819309 DOI: 10.3390/pharmaceutics16010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Nanovesicles produced with lipids and polymers are promising devices for drug and bioactive delivery and are of great interest in pharmaceutical applications. These nanovesicles can be engineered for improvement in bioavailability, patient compliance or to provide modified release or enhanced delivery. However, their applicability strongly depends on the safety and low immunogenicity of the components. Despite this, the use of unsaturated lipids in nanovesicles, which degrade following oxidation processes during storage and especially during the proper routes of administration in the human body, may yield toxic degradation products. In this study, we used a biopolymer (chitosan) labeled with flavonoid (catechin) as a component over a lipid bilayer for micro- and nanovesicles and characterized the structure of these vesicles in oxidation media. The purpose of this was to evaluate the in situ effect of the antioxidant in three different vesicular systems of medium, low and high membrane curvature. Liposomes and giant vesicles were produced with the phospholipids DOPC and POPC, and crystalline cubic phase with monoolein/DOPC. Concentrations of chitosan-catechin (CHCa) were included in all the vesicles and they were challenged in oxidant media. The cytotoxicity analysis using the MTT assay (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) revealed that concentrations of CHCa below 6.67 µM are non-toxic to HeLa cells. The size and zeta potential of the liposomes evidenced the degradation of their structures, which was minimized by CHCa. Similarly, the membrane of the giant vesicle, which rapidly deteriorated in oxidative solution, was protected in the presence of CHCa. The production of a lipid/CHCa composite cubic phase revealed a specific cubic topology in small-angle X-ray scattering, which was preserved in strong oxidative media. This study demonstrates the specific physicochemical characteristics introduced in the vesicular systems related to the antioxidant CHCa biopolymer, representing a platform for the improvement of composite nanovesicle applicability.
Collapse
Affiliation(s)
- Patrick D. Mathews
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, Sao Paulo 04023-062, Brazil; (P.D.M.); (G.S.G.); (H.M.M.); (R.R.M.M.)
- Institute of Biosciences, Sao Paulo State University, Botucatu 18618-689, Brazil
| | - Gabriella S. Gama
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, Sao Paulo 04023-062, Brazil; (P.D.M.); (G.S.G.); (H.M.M.); (R.R.M.M.)
| | - Hector M. Megiati
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, Sao Paulo 04023-062, Brazil; (P.D.M.); (G.S.G.); (H.M.M.); (R.R.M.M.)
| | - Rafael R. M. Madrid
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, Sao Paulo 04023-062, Brazil; (P.D.M.); (G.S.G.); (H.M.M.); (R.R.M.M.)
| | - Bianca B. M. Garcia
- Interdisciplinary Center for Gene Therapy, Paulista Medical School, Federal University of Sao Paulo, Sao Paulo 04023-062, Brazil; (B.B.M.G.); (S.W.H.)
| | - Sang W. Han
- Interdisciplinary Center for Gene Therapy, Paulista Medical School, Federal University of Sao Paulo, Sao Paulo 04023-062, Brazil; (B.B.M.G.); (S.W.H.)
| | - Rosangela Itri
- Applied Physics Department, Institute of Physics, University of Sao Paulo, Sao Paulo 05508-900, Brazil;
| | - Omar Mertins
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, Sao Paulo 04023-062, Brazil; (P.D.M.); (G.S.G.); (H.M.M.); (R.R.M.M.)
| |
Collapse
|
9
|
Loo YS, Zahid NI, Madheswaran T, Ikeno S, Nurdin A, Mat Azmi ID. Coencapsulation of Gemcitabine and Thymoquinone in Citrem-Phosphatidylcholine Hexosome Nanocarriers Improves In Vitro Cellular Uptake in Breast Cancer Cells. Mol Pharm 2023; 20:4611-4628. [PMID: 37587099 DOI: 10.1021/acs.molpharmaceut.3c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Lyotropic liquid crystalline nanoassemblies (LLCNs) are internally self-assembled (ISA)-somes formed by amphiphilic molecules in a mixture comprising a lipid, stabilizer, and/or surfactant and aqueous media/dispersant. LLCNs are unique nanoassemblies with versatile applications in a wide range of biomedical functions. However, they comprise a nanosystem that is yet to be fully explored for targeted systemic treatment of breast cancer. In this study, LLCNs proposed for gemcitabine and thymoquinone (Gem-TQ) co-delivery were prepared from soy phosphatidylcholine (SPC), phytantriol (PHYT), or glycerol monostearate (MYVR) in optimized ratios containing a component of citric and fatty acid ester-based emulsifier (Grinsted citrem) or a triblock copolymer, Pluronic F127 (F127). Hydrodynamic particle sizes determined were below 400 nm (ranged between 96 and 365 nm), and the series of nanoformulations displayed negative surface charge. Nonlamellar phases identified by small-angle X-ray scattering (SAXS) profiles comprise the hexagonal, cubic, and micellar phases. In addition, high entrapment efficiency that accounted for 98.3 ± 0.1% of Gem and 99.5 ± 0.1% of TQ encapsulated was demonstrated by the coloaded nanocarrier system, SPC/citrem/Gem-TQ hexosomes. Low cytotoxicity of SPC-citrem hexosomes was demonstrated in MCF10A cells consistent with hemo- and biocompatibility observed in zebrafish (Danio rerio) embryos for up to 96 h postfertilization (hpf). SPC/citrem/Gem-TQ hexosomes demonstrated IC50 of 24.7 ± 4.2 μM in MCF7 breast cancer cells following a 24 h treatment period with the moderately synergistic interaction between Gem and TQ retained (CI = 0.84). Taken together, biocompatible SPC/citrem/Gem-TQ hexosomes can be further developed as a multifunctional therapeutic nanodelivery approach, plausible for targeting breast cancer cells by incorporation of targeting ligands.
Collapse
Affiliation(s)
- Yan Shan Loo
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - N Idayu Zahid
- Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Shinya Ikeno
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, 808-01906 Fukuoka, Japan
| | - Armania Nurdin
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Intan Diana Mat Azmi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
10
|
Jennings J, Pabst G. Multiple Routes to Bicontinuous Cubic Liquid Crystal Phases Discovered by High-Throughput Self-Assembly Screening of Multi-Tail Lipidoids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2206747. [PMID: 37026678 DOI: 10.1002/smll.202206747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Bicontinuous cubic phases offer advantageous routes to a broad range of applied materials ranging from drug delivery devices to membranes. However, a priori design of molecules that assemble into these phases remains a technological challenge. In this article, a high-throughput synthesis of lipidoids that undergo protonation-driven self-assembly (PrSA) into liquid crystalline (LC) phases is conducted. With this screening approach, 12 different multi-tail lipidoid structures capable of assembling into the bicontinuous double gyroid phase are discovered. The large volume of small-angle X-ray scattering (SAXS) data uncovers unexpected design criteria that enable phase selection as a function of lipidoid headgroup size and architecture, tail length and architecture, and counterion identity. Surprisingly, combining branched headgroups with bulky tails forces lipidoids to adopt unconventional pseudo-disc conformations that pack into double gyroid networks, entirely distinct from other synthetic or biological amphiphiles within bicontinuous cubic phases. From a multitude of possible applications, two examples of functional materials from lipidoid liquid crystals are demonstrated. First, the fabrication of gyroid nanostructured films by interfacial PrSA, which are rapidly responsive to the external medium. Second, it is shown that colloidally-dispersed lipidoid cubosomes, for example, for drug delivery, are easily assembled using top-down solvent evaporation methods.
Collapse
Affiliation(s)
- James Jennings
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, 8010, Austria
- Field of Excellence BioHealth, University of Graz, Graz, 8010, Austria
| | - Georg Pabst
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, 8010, Austria
- Field of Excellence BioHealth, University of Graz, Graz, 8010, Austria
| |
Collapse
|